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Abstract

Given a collection of discrete random variables
representing outcomes of learned local predic-
tors in natural language, e.g., named entities
and relations, we seek an optimal global as-
signment to the variables in the presence of
general (non-sequential) constraints. Examples
of these constraints include the type of argu-
ments a relation can take, and the mutual activ-
ity of different relations, etc. We develop a lin-
ear programming formulation for this problem
and evaluate it in the context of simultaneously
learning named entities and relations. Our ap-
proach allows us to efficiently incorporate do-
main and task specific constraints at decision
time, resulting in significant improvements in
the accuracy and the “human-like” quality of
the inferences.

Introduction
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tions of Markov random fields (Lafferty et al., 2001). The
other frameworkinference with classifierRoth, 2002),
views maintaining constraints and learning classifiers as
separate processes. Various local classifiers are trained
without the knowledge of constraints. The predictions
are taken as input on the inference procedure which then
finds the best global prediction. In addition to the concep-
tual simplicity of this approach, it also seems to perform
better experimentally (Tjong Kim Sang and De Meulder,
2003).

Typically, efficient inference procedures in both frame-
works rely on dynamic programming (e.g., Viterbi),
which works well in sequential data. However, in many
important problems, the structure is more general, result-
ing in computationally intractable inference. Problems of
these sorts have been studied in computer vision, where
inference is generally performed over low level measure-
ments rather than over higher level predictors (Levin et
al., 2002; Boykov et al., 2001).

This work develops a novéhference with classifiers
approach. Rather than being restricted on sequential data,
we study a fairly general setting. The problem is defined

Natural language decisions often depend on the ouh terms of a collection of discrete random variables rep-

comes of several different but mutually dependent predigesenting binary relations and their arguments; we seek

tions. These predictions must respect some constraings optimal assignment to the variables in the presence of

that could arise from the nature of the data or from dothe constraints on the binary relations between variables

main or task specific conditions. For example, in part-ofand the relation types.

speech tagging, a sentence must have at least one verbrhe key insight to this solution comes from re-

and cannot have three consecutive verbs. These facts Gafht techniques developed for approximation algo-

be used as constraints. In named entity recognition, “n@thms (Chekuri et al., 2001). Following this work, we

entities can overlap” is a common constraint used in vainodel inference as an optimization problem, and show

ious works (Tjong Kim Sang and De Meulder, 2003).  how to cast it as a linear program. Using existing numer-
_Efficient solutions to problems of these sort have beefa| packages, which are able to solve very large linear

given when the constraints on the predictorss#gquen- programming problems in a very short titnenference

tial (Dietterich, 2002). These solutions can be catesan pe done very quickly.

gorized into the following two frameworksLearning Our approach could be contrasted with other ap-

global modelgrains a probabilistic model under the con-

Stl’aintS imposed by the domain. Examples include Varia' lFor examp|ey (CPLEX, 2003) is able to solve a linear pro-

tions of HMMs, conditional models and sequential variagramming problem of 13 million variables within 5 minutes.



proaches to sequential inference or to general Markov The rest of the paper is organized as follows. Section 2

random field approaches (Lafferty et al., 2001; Taskar éormally defines our problem and section 3 describes the

al., 2002). The key difference is that in these approachespmputational approach we propose. Experimental re-

the model is learned globally, under the constraints imsults are given in section 4, followed by some discussion

posed by the domain. In our approach, predictors do nand conclusion in section 5.

need to be learned in the context of the decision tasks,

but rather can be learned in other contexts, or incorp®@ The Relational Inference Problem

rated as background knowledge. This way, our approach

allows the incorporation of constraints into decisions in Ve consider the relational inference problem within the

dynamic fashion and can therefore support task specifieasoning with classifierparadigm, and study a spe-

inferences. The significance of this is clearly shown irtific but fairly general instantiation of this problem, moti

our experimental results. vated by the problem of recognizing named entities (e.g.,
We develop our models in the context of natural lanpersons, locations, organization names) and relations be-

guage inferences and evaluate it here on the problem wieen them (e.g. workor, locatedin, live_in). We con-

simultaneouslyecognizing named entities and relationssider a seV which consists of two types of variabl®'s=

between them. £ UR. The first set of variable§ = {F, Es, -, E,}
) . N rangesL¢. The value (called “label”) assignedf € £
1.1 Entity and Relation Recognition is denotedfs, € Le. The second set of variables

This is the problem of recognizing thdll (KFJ, Os- R = {Rij}{1<ij<n;izj) IS Viewed as binary relations
wald) relation in the sentencel® V. Oswal d was over&. Specifically, for each pair of entitiels; and £,
murdered at JFK after his assassin, i # j, we useR;; andR;; to denote the (binary) relations
R U KFJ..." This task requires making several (E:, E;) and (E;, E;) respectively. The set of labels of
local decisions, such as identifying named entities in theelations isC and the label assigned to relatif; € R
sentence, in order to support the relation identificatioris fr,; € Lr-
For example, it may be useful to identify that Oswald Apparently, there exists some constraints on the labels
and KFJ argpeople and JFK is docation This, in turn, of corresponding relation and entity variables. For in-
may help to identify that thkill action is described in the stance, if the relation iéve_in, then the first entity should
sentence. At the same time, the relatidhconstrains its be aperson and the second entity should béoaation
arguments to beeople(or at least, not to béocations) The correspondence between the relation and entity vari-
and helps to enforce that Oswald and KFJ are likely tables can be represented by a bipartite graph. Each rela-
be people while JFK is not. tion variableR;; is connected to its first entity; , and
In our model, we first learn a collection of “local” pre- second entityz;. We use\'! and/\/? to denote the entity
dictors, e.g., entity and relation identifiers. At decisiorvariables of a relatio?;;. Specifically,E; = N*(R;;)
time, given a sentence, we produce a global decision thand E; = N2(R;;).
optimizes over the suggestions of the classifiers that areIn addition, we define a set of constraints on the out-
active in the sentence, known constraints among theoomes of the variables il. C' : L¢ x Lr — {0,1}
and, potentially, domain or tasks specific constraints rekonstraint values of the first argument of a relaticit.
evant to the current decision. is defined similarly and constrains the second argument
Although a brute-force algorithm may seem feasible relation can take. For exampléyofn.in, person is
for short sentences, as the number of entity variabli@ C' but not in C? because the first entity of relation
grows, the computation becomes intractable very quicklyorn.in has to be @ersonand the second entity can only
Givenn entities in a sentence, there &%n?) possible be alocation instead of aperson Note that while we
relations between them. Assume that each variable (edefine the constraints here as Boolean, our formalisms
tity or relation) can take labels (“none” is one of these in fact allows for stochastic constraints. Also note that
labels). Thus, there af&” possible assignments, whichwe can define a large number of constraints, such as
is too large even for a smail. CE . Lr x Lr — {0,1} which constrain types of re-
When evaluated on simultaneous learning of namel@tions, etc. In fact, as will be clear in Sec. 3 the language
entities and relations, our approach not only providefor defining constraints is very rich — linear (in)equaktie
a significant improvement in the predictors’ accuracypver).
more importantly, it providesoherentsolutions. While We exemplify the framework using the problem of si-
many statistical methods make “stupid” mistakes (i.emultaneous recognition of named entities and relations in
inconsistency among predictions), that no human evaentences. Briefly speaking, we assume a learning mech-
makes, as we show, our approach improves alsqulaé  anism that can recognize entity phrases in sentences,
ity of the inference significantly. based on local contextual features. Similarly, we assume



a learning mechanism that can recognize the semantic re-Since we are seeking the most probable global assign-

lation between two given phrases in a sentence. ment that satisfies the constraints, therefore, the overall
We seek an inference algorithm that can produce a cgost function we optimize, for a global labelirfgof all

herent labeling of entities and relations in a given sernvariables is:

tence. Furthermore, it follows, as best as possible the

recommendation of the entity and relation classifiers, but  C(f) = Z cu(fu)

also satisfies natural constraints that exist on whether spe ugy

cific entities can be the argument of specific relations, + Z [d" (fri;» fE) + d*(fri,» f5;)] @)
whether two relations can occur together at the same Ri;ER

time, or any other information that might be available at
the inference time (e.g., suppose it is known that enti: .
ties A and B represent the same location; one may like A CompUtat'onal Approach to
incorporate an additional constraint that prevents an in- Relational Inference

ference of the type: “C lives in A; C does not live in B"). yntortunately, it is not hard to see that the combinatorial
We note that a large number of problems can be modsyoplem (Eq. 1) is computationally intractable even when
eled this way. Examples include problems such as chuniacing assumptions on the cost function (Kleinberg and
ing sentences (Punyakanok and Roth, 2001), coreferenggqos. 1999). The computational approach we adopt is
resolution and sequencing problems in computational by, develop dinear programming(LP) formulation of the
ology. In fact, each of the components of our prOble"broblem, and then solve the correspondintgger lin-
here, the separate task of recognizing named entities g, programming(ILP) problem. Our LP formulation is
sentences and the task of recognizing semantic relatioggsed on the method proposed by (Chekuri et al., 2001).
between phrases, can be modeled this way. Howevefince the objective function (Eq. 1) is not a linear func-
our goal is specifically to consider interacting problemsion, in terms of the labels, we introduce new binary vari-
at different levels, resulting in more complex constraintgpjes to represent different possible assignments to each

among them, and exhibit the power of our method.  griginal variable; we then represent the objective functio
The most direct way to formalize our inference prob—g 3 linear function of these binary variables.

lem is via the formalism of Markov Random Field (MRF) | gt 1.1 be a{0,1}-variable, defined to be if and
theory (Li, 2001). Rather than doing that, for compupnly if variable w is labeledi, whereu € £,i € L¢ or
tational reasons, we first use a fairly standard transfof; ¢ R ; ¢ £r. For example;;p, 5y = 1 when the
mation of MRF to a discrete optimization problem (segape| of entity £ is 2, % Rys3y =0 when the label of re-
(Kleinberg and Tardos, 1999) for details). Specificallyjation R, is not 3. Letr (., .5 0,y be a{0, 1}-variable
under weak assumptions we can view the inference prothdicating whether relatio]rﬂ’;j is assigned labet and
lem as the following optimization problem, which aimsits first argumentf;, is assigned label;. For instance,
to minimize the objective function that is the sum of the‘r{Rn’l_ElQ} — 1 means the label of relatioR, is 1
following two cost functions. and the label of its first argument;, is 2. Similarly,
T{R,;rE, e} = 1indicates thatR;; is assigned label
and its second argumen;, is assigned label,. With
these definitions, the optimization problem can be repre-
sented as the following ILP problem (Figure 1).
Equations (2) and (3) require that each entity or rela-
tion variable can only be assigned one label. Equations
(4) and (5) assure that the assignment to each entity or

Constraint cost: the cost imposed by breaking con-relation variable is consistent with the assignment to its
straints between neighboring nodes. The specific coBgighboring variables. (6), (7), and (8) are the integral
function we use is defined as follows: Consider two enconstraints on these binary variables. _
tity nodesE;, E; and its corresponding relation nogte; There are several advantages of representing the prob-
that is, E; = N*(R;;) andE; = N?(R;;). The con- lem in an LP formulation. First of all, linear (in)equalisie
straint cost indicates whether the labels are consistedte fairly general and are al_)le_z to represent many types
with the constraints. In particular, we usé:(fz,, fr,.) of constraints (e.g., the decision time constraint in the
is 0if (fr, . fr,) € C'; otherwised' (fz,, fr. ) i 0o 2. €Xperiment in Sec. 4). More importantly, an ILP prob-
Similarly, we used? to force the consistency of the sec-lem at this scale can be solved very quickly using current
ond argument of a relation. commercial LP/ILP packages, like (XpreSS'MP, 2003) or
(CPLEX, 2003). We introduce the general strategies of
2In practice, we use a very large number (€94°). solving an ILP problem here.

Assignment cost: the cost of deviating from the assign-
ment of the variable¥ given by the classifiers. The spe-
cific cost function we use is defined as follows: LLdte
the label assigned to variables V. If the marginal prob-
ability estimation igp = P(f, = ), then the assignment
costey, (1) is —log p.



min Z Z cp(e) r(pey + Z Z cr(r) - T{Rrry
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Tpey = 3 T(rppe VEEE and VRe{R:E=N'(R) orR:E=N?(R)} (4)
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T(rs} = Y T{arpey VYRER and VE = N'(R)orE = N*(R) (5)
ecLle
T{E,e} S {0, 1} VE € S,e S [,g (6)
T{R,r} € {0, 1} VReR,r € Lr (7)
TirrEe €{0,1}  VReR,r€Lr, Ec&ecLe 8)
Figure 1: Integer Linear Programming Formulation
3.1 Linear Programming Relaxation (LPR) 3.2 Branch & Bound and Cutting Plane

To solve an ILP problem, a natural idea israx the Branch and bounds the method that divides an ILP prob-

with: routine to generate dual (upper and lower) bounds to re-
duce the search space, and finds the optimal solution as
well. When LPR finds a non integer solution, it splits the

Tigey =20 VE €& ee Le ©) problem on the non integer variable. For example, sup-
(R} =0 VReR,r € L (10) pose variable;; is fractional in an non integer solution to
T(Rrme; >0 VRER,r € Lg, the ILP problemmin{cz : z € S,z € {0,1}"}, whereS
Ecé&ecle (11) is the linear constraints. The ILP problem can be splitinto

two sub LPR problemsnin{cz : x € Sn{z; = 0}} and
min{cz : x € SN{x; = 1}}. Since any feasible solution

If LPR returns an integer solution, then it is also theProvides an upper bound and any LPR solution generates
optimal solution to the ILP problem. If the solution is & lower bound, the search tree can be effectively cut.
non integer, then at least it gives a lower bound to the Another strategy of dealing with non integer points,
value of the cost function, which can be used in modiwhich is often combined witbranch & bound is called
fying the problem and getting closer to deriving an op<utting plane When a non integer solution is given by
timal integer solution. A direct way to handle the nonLPR, itadds a new linear constraint that makes the non in-
integer solution is calledounding which finds an inte- teger pointinfeasible, while still keeps the optimal ireeg
ger point that is close to the non integer solution. Unsolution in the feasible region. As a result, the feasible
der some conditions of cost functions, which do not holdegion is closer to the ideal polyhedron, which is the con-
here, a well designed rounding algorithm can be showwex hull of feasible integer solutions. The most famous
that the rounded solution is a good approximation to theutting plane algorithm is Gomory’s fractional cutting
optimal solution (Kleinberg and Tardos, 1999; Chekuri eplane method (Wolsey, 1998), which can be shown that
al., 2001). Nevertheless, in general, the outcomes of thumly finite number of additional constraints are needed.
rounding procedure may not even be a legal solution tbloreover, researchers develop different cutting plane al-
the problem. gorithms for different types of ILP problems. One exam-



ple is (Wang and Regan, 2000), which only focuses oannotated for named entities and relations. In order to
binary ILP problems. effectively observe the interaction between relations and

Although in theory, a search based strategy may neeshtities, we picked 1437 sentences that have at least one
several steps to find the optimal solution, LPR alwaysictive relation. Among those sentences, there are 5336
generates integer solutions in our experiments. This phentities, and 19048 pairs of entities (binary relations): E
nomenon may link to the theory ahimodularity tity labels include 168persons 1968locations 978or-

. ) ganizationsand 705others Relation labels include 406

3.3 Unimodularity locatedin, 394 work for, 451 orgBasedin, 521 live_in,
When the coefficient matrix of a given linear program268kill, and 1700%one Note that most pairs of entities
in its standard form isinimodular it can be shown that have no active relations at all. Therefore, relatimme
the optimal solution to the linear program is in fact intessignificantly outnumbers others. Examples of each rela-
gral (Schrijver, 1986). In other words, LPR is guaranteetion label and the constraints between a relation variable

to produce an integer solution. and its two entity arguments are shown as follows.
Definition 3.1 A matrix A of rankm is calledunimodu- Relatio_n Entityl | Entity2 Example
lar if all the entries ofA are integers, and the determinant |Ocatke;iln loc loc (B'l(ll\CI;eV\tl Yorl\ljl,_ Us) f

- 00 +1 - work_for per org ill Gates, Microso
of every square submatrix & of orderm is in 0,+1,-1. orgBasedn org loc (HP, Palo Alto)
Theorem 3.1 (Veinott & Dantzig) Let A be an(m,n)- live_in per loc (Bush, US)
integral matrix with full row rankm. Then the polyhe- kill per per (Oswald, JFK)
dron {x|x > 0; Ax = b} is integral for each integral In order to focus on the evaluation of our inference
vectorb, if and only if A is unimodular. procedure, we assume the problemsefjmentatior{or

Theorem 3.1 indicates that if a linear programming?hrase detection(Abney, 1991; Punyakanok and Roth,
problem is in its standard form, then regardless of thd001) is solved, and the entity boundaries are given to us
cost function and the integral vectbr the optimal so- @s input; thus we only concentrate on their classifications.
lution is an integer if and only if the coefficient matrxx ~ We evaluate our LP based global inference procedure
is unimodular. against two simpler approaches and a third that is given

Although the coefficient matrix in our problem is not more information at learning timeBasic only tests our
unimodular, LPR still produces integer solutions & entity and relation classifiers, which are trained indepen-
the (thousands of cases) we have experimented with. THI§Ntly using only local features. In particular, the reati
may be due to the fact that the coefficient matrix sharedassifier does not know the labels of its entity arguments,
many properties of a unimodular matrix. As a resu|t, mosqnd the entlty classifier does not know the labels of rela-
of the vertices of the polyhedron are integer points. Antions in the sentence either. Since basic classifiers are
other possible reason is that given the cost function wésed in all approaches, we describe how they are trained
have, the optimal solution is always integer. Because &fere. . -
the availability of very efficient LP/ILP packages, we de- For the entity classifier, one set of features are ex-

fer the exploration of this direction for now. tracted from words within a size 4 window around the
target phrase. They are: (1) words, part-of-speech tags,
4 Experiments and conjunctions of them; (2) bigrams and trigrams of

the mixture of words and tags. In addition, some other

We describe below two experiments on the problem o5y res are extracted from the target phrase, including:
simultaneously recognizing entities and relations. In the ,
symbol explanation

first, we view the task as a knowledge acquisition task =2 ReTfirstch : qi alized
- let the system read sentences and identify entities cap | the first character of a word s capitalize

we let t Y \ s <l 3 acap | all characters of a word are capitalized
and relations among them. Given that this is a difficult incap | some characters of a word are capitalized
task which may require quite often information beyond | suffix | the suffix of a word is “ing”, “ment”, etc.
the sentence, we consider also a “forced decision” task/| bigram | bigram of words in the target phrase
in which we simulate a question answering situation —| €N | number of words in the target phrase

. . » placé | the phrase is/has a known place’s name

we ask the system, say, “who killed whom” and evaluate . ) i
. identifvi v th lati di prof the phrase is/has a professional title (e.g. Lt.)
|t_on i ent|f_y|r_19 correctly the relation an ! its grguments, namé | the phrase is/has a known person’s name
given that it is known that somewhere in this sentence
this relation is active. In addition, this evaluation extsb
the ability of our approach to incorporate task specifi
constraints at decision time.

Our experiments are based on the TREC data set 3we collect names of famous places, people and popular ti-
(which consists of articles from WSJ, AP, etc.) that weles from other data sources in advance.

For the relation classifier, there are three sets of fea-
dures: (1) features similar to those used in the entity clas-
sification are extracted from the two argument entities of



Pattern Example

arg , arg San Jose, CA

arg ,---a---arg prof | John Smith, a Starbucks manager

in/at arg in/at/, arg Officials in Perugia in Umbria province said-
arg prof arg CNN reporter David McKinley - -

arg, --- native of- - - arg, | Elizabeth Dole is a native of Salisbury, N.C.
arg, --- based in/at arg | Leslie Kota, a spokeswoman for K mart based in Troy, Michd sai

Table 1: Some patterns used in relation classification

the relation; (2) conjunctions of the features from the twan general NLP problems. Since only theadicteden-
arguments; (3) some patterns extracted from the senteritty labels are available in testing, learning on the predic
or between the two arguments. Some features in categdigns of the entity classifier presumably makes the rela-
(3) are “the number of words between amgnd arg ”, tion classifier more tolerant to the mistakes of the entity
“whether arg and arg are the same word”, or “afgs classifier. In fact, we also observe this phenomenon em-
the beginning of the sentence and has words that consygtically. When the relation classifier is trained using the
of all capitalized characters”, wheegg, andarg, rep- true entity labels, the performance is much worse than
resent the first and second argument entities respectivelysing the predicted entity labels.
In addition, Table 1 presents some patterns we use. LP, is our global inference procedure. It takes as in-

The learning algorithm used is a variation of the Win-put the constraints between a relation and its entity argu-
now update rule incorporated in SNoW (Roth, 1998ments, and the output (the estimated probability distribu-
Roth and Yih, 2002), a multi-class classifier that is speciftion of labels) of the basic classifiers. Note th&é may
ically tailored for large scale learning tasks. SNoW learnshange the predictions for either entity labels or relation
a sparse network of linear functions, in which the targetmbels, whilepipelinefully trusts the labels of entity clas-
(entity classes or relation classes, in this case) are+epesfier, and only the relation predictions may be different
sented as linear functions over a common feature spadeom the basic relation classifier. In other word® is
While SNoW can be used as a classifier and predicts uable to enhance the performance of entity classification,
ing a winner-take-all mechanism over the activation valugvhich is impossible fopipeline
of the target classes, we can also rely directly on the raw The final approachDmniscience tests the conceptual
activation value it outputs, which is the weighted lineaiipper bound of this entity/relation classification problem
sum of the active features, to estimate the posteriors. [it also trains the two classifiers separately as lihsic
can be verified that the resulting values are monotonigpproach. However, it assumes that the entity classifier
with the confidence in the prediction, therefore provide &nows the correct relation labels, and similarly the rela-
good source of probability estimation. We use softmaxon classifier knows the right entity labels as well. This
(Bishop, 1995) over the raw activation values as condiadditional information is then used as features in training
tional probabilities. Specifically, suppose the number ofind testing. Note that this assumption is totally unrealis-
classes i1, and the raw activation values of classs  tic. Nevertheless, it may give us a hint that how much a
act;. The posterior estimation for clasgs derived by the global inference can achieve.
following equation.

, 4.1 Results
eactz

pi = W Tables 2 & 3 show the performance of each approach in
tsjsn Fs_; using 5-fold cross-validation. The results show that
Pipeline, mimics the typical strategy in solving com- LP performs consistently better thasasicand pipeling

plex natural language problems — separating a task intwth in entities and relations. Note tha does not apply
several stages and solving them sequentially. For exarearning at all, but still outperformgipeling which uses
ple, a named entity recognizer may be trained using a diéntity predictions as new features in learning. The results
ferent corpus in advance, and given to a relation classifieff theomniscientlassifiers reveal that there is still room
as a tool to extract features. This approach first trains gar improvement. One option is to apply learning to tune
entity classifier as described in thasicapproach, and a better cost function in thieP approach.
then uses the prediction of entities in addition to other One of the more significant results in our experiments,
local features to learn the relation identifier. Note thatve believe, is the improvement in tiqeiality of the deci-
although the true labels of entities are known here whesions. As mentioned in Sec. 1, incorporating constraints
training the relation identifier, this may not be the caséelps to avoid inconsistency in classification. It is in-



Approach person organization location
Rec. Prec. F | Rec. Prec. F | Rec. Prec. F
Basic| 89.4 89.2 89.3 869 914 89.1 68.2 909 77.9
Pipeline| 89.4 89.2 89.3 86.9 914 89.1 68.2 909 779
LP | 90.4 90.0 90.2 885 91.7 90.1 715 91.0 80.1
Omniscient| 94.9 935 94.2 923 96.5 94.4 883 934 90.8

Table 2: Results of Entity Classification

Approach locatedin work_for orgBasedn
Rec. Prec. F | Rec. Prec. F | Rec. Prec. F
Basic| 54.7 43.0 48.2 421 516 46.4 36.1 849 50.6
Pipeline| 51.2 51.6 51.4 41.4 55.6 47.5 369 76.6 49.9
LP | 53.2 595 56.2 404 729 52.0 36.3 90.1 51.7
Omniscient| 64.0 54.5 58.9 50.5 69.1 58.4 50.2 76.7 60.7

Approach live_in kill
Rec. Prec. F | Rec. Prec. F
Basic| 39.7 616 483 821 736 77.6
Pipeline| 42.6 62.2 50.6 83.2 76.4 79.6
LP | 415 68.1 516 813 822 817
Omniscient| 57.0 60.7 58.8 82.1 74.6 78.2

Table 3: Results of Relation Classification

teresting to investigate how often such mistakes happét The results exhibit that our expectations are correct.
without global inference, and see how effectively thdn fact, we believe that in natural situations the number
global inference enhances this. of constraints that can apply is even larger. Observing

For this purpose, we define tiggiality of the decision the algorithm performs on other, specific, forced deci-
as follows. For an active relation of which the label isSion tasks verifies that LP is reliable in these situations.
classified correctly, if both its argument entities are als@'S Shown in the experiment, it even performs better than
predicted correctly, we count it ascaherentprediction. Omnisciencewhich is given more information at learning
Quality is then the number ofoherentpredictions di- time, but cannot adapt to the situation at decision time.
vided by the sum ofoherentandincoherentpredictions. . .

Since thebasic and pipeline approaches do not have a5 Discussion

global view of the labels of entities and relations, 5%y presented an linear programming based approach
to 25% of the predictions are incoherent. Therefore, thg,, global inference where decisions depend on the out-
quality is not always good. On the other hand, our globglomes of several different but mutually dependent classi-
inference procedure, LP, takes the natural constrairts infigrs, Even in the presence of a fairly general constraint

account, so it never generates incoherent predictions. dfrycture, deviating from the sequential nature typically
the relation classifier has the correct entity labels as feaygied, this approach can find the optimal solution effi-
tures, a good learner should learn the constraints as wellgngly.

As aresult, the quality admniscienis almost as good as  contrary to general search schemes (e.g., beam

LP. search), which do not guarantee optimality, the linear pro-
Another experiment we did is tHerced decisiortest, gramming approach provides an efficient way to finding
which boosts theF; of “kill” relation to 86.2%. Here the optimal solution. The key advantage of the linear
we consider only sentences in which the “kill” relationprogramming formulation is its generality and flexibility;
is active. We force the system to determine which of tha particular, it supports the ability to incorporate class
possible relations in a sentence (i.e., which pair of erfiers learned in other contexts, “hints” supplied and de-
tities) has this relation by adding a new linear equalitycision time constraints, and reason with all these for the
This is a realistic situation (e.g., in the context of quesbest global prediction. In sharp contrast with the typi-
tion answering) in that it adds an external constraint, natally used pipeline framework, our formulation does not
present at the time of learning the classifiers and it evablindly trust the results of some classifiers, and therefore
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of entity/relation recognition and, at the same time, corj. |afferty, A. McCallum, and F. Pereira. 2001. Con-
rect possible coreference resolution errors. Another ex- ditional random fields: Probabilistic models for seg-
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