
Systematic Verb Stem Generation for Arabic ∗

Jim Yaghi
DocRec Ltd.,

34 Strathaven Place, Atawhai,
Nelson, New Zealand.
jim@docrec.com

Sane M Yagi
Department of English,
University of Sharjah,
Sharjah, U.A.E.

saneyagi@yahoo.com

Abstract

Performing root-based searching, concordancing,

and grammar checking in Arabic requires an

efficient method for matching stems with roots and

vice versa. Such mapping is complicated by the

hundreds of manifestations of the same root. An

algorithm based on the generation method used by

native speakers is proposed here to provide a map-

ping from roots to stems. Verb roots are classified

by the types of their radicals and the stems they

generate. Roots are moulded with morphosemantic

and morphosyntactic patterns to generate stems

modified for tense, voice, and mode, and affixed

for different subject number, gender, and person.

The surface forms of applicable morphophonemic

transformations are then derived using finite state

machines. This paper defines what is meant by

‘stem’, describes a stem generation engine that the

authors developed, and outlines how a generated

stem database is compiled for all Arabic verbs.

1 Introduction

Morphological parsers and analysers for Arabic are

required to dissect an input word and analyse its

components in order to perform even the simplest

of language processing tasks. The letters of the

majority of Arabic words undergo transformations

rendering their roots unrecognisable. Without the

root, it is difficult to identify a word’s morphose-

mantic template, which is necessary for pinpointing

its meaning, or its morphosyntactic pattern, which

is essential for realising properties of the verb,

such as its tense, voice, and mode, and its subject’s

number, gender, and person. It is fundamental that

an analyser be able to reverse the transformations

a word undergoes in order to match the separated

root and template with the untransformed ones in its

database. Unfortunately, defining rules to reverse

transformations is not simple.

∗ The authors wish to thank the anonymous reviewers of this

article as their suggestions have improved it significantly.

Research in Arabic morphology has primarily fo-

cused on morphological analysis rather than stem

generation.

Sliding window algorithms (El-Affendi, 1999)

use an approximate string matching approach of

input words against lists of roots, morpholog-

ical patterns, prefixes, and suffixes. Algebraic

algorithms (El-Affendi, 1991), on the other hand,

assign binary values to morphological patterns and

input words, then perform some simple algebraic

operations to decompose a word into a stem and

affixes. Permutation algorithms (Al-Shalabi and

Evens, 1998) use the input word’s letters to generate

all possible trilateral or quadrilateral sequences

without violation of the original order of the letters

which is then compared with items in a dictionary of

roots until a match is found. Linguistic algorithms

(Thalouth and Al-Dannan, 1990; Yagi and Harous,

2003) remove letters from an input word that belong

to prefixes and suffixes and place the remainder

of the word into a list. The members of this list

are then tested for a match with a dictionary of

morphological patterns.

The primary drawback of many of these tech-

niques is that they attempt to analyse using the infor-

mation found in the letters of the input word. When

roots form words, root letters are often transformed

by replacement, fusion, inversion, or deletion, and

their positions are lost between stem and affix let-

ters. Most attempts use various closest match algo-

rithms, which introduce a high level of uncertainty.

In this paper, we define Arabic verb stems such that

root radicals, morphological patterns, and transfor-

mations are formally specified. When stems are

defined this way, input words can be mapped to cor-

rect stem definitions, ensuring that transformations

match root radicals rather than estimate them.

Morphological transformation in our definition

is largely built around finite state morphology

(Beesley, 2001) which assumes that these trans-

formations can be represented in terms of regular

relations between regular language forms. Beesley

(2001) uses finite state transducers to encode the

intersection between roots, morphological patterns,

and the transformation rules that account for mor-

phophonemic phenomena such as assimilation,

deletion, epenthesis, metathesis, etc.

In this paper, a description of the database re-

quired for stem generation is presented, followed by

a definition of stem generation. Then the database

together with the definition are used to implement a

stem generation engine. This is followed by a sug-

gestion for optimising stem generation. Finally, a

database of generated stems is compiled in a format

useful to various applications that the conclusion al-

ludes to.

In the course of this paper, roots are represented

in terms of their ordered sequence of three or four

radicals in a set notation, i.e., {F,M,L,Q}. When

the capitalised Roman characters F, M, L, and Q

are used, they represent a radical variable or place

holder. They stand for First Radical (F), Medial

Radical (M), Last Radical in a trilateral root (L), and

Last Radical in a quadrilateral root (Q).

For readability, all Arabic script used here is fol-

lowed by an orthographic transliteration between

parentheses, using the Buckwalter standard1. Buck-

walter’s orthographic transliteration provides a one-

to-one character mapping from Arabic to US-ASCII

characters. With the exception of a few charac-

ters, this transliteration scheme attempts to match

the sounds of the Roman letters to the Arabic ones.

The following list is a subset of the less obvious

transliterations used here: � (@), Ù (Y), َ (a), ِ (i),
ُ (u), ْ (o), and ّ (~).

2 Stem Generation Database

Template

entry_id

TemplatesList->string_id
RootType
Pattern
Variant
Voice
Tense
Transform->transform_id
Affixes->affix_id

MainDictionary

stem_id

RootsList->root_id
entry->entry_id

RootsList

root_id

F
M
L
R

TemplateList

string_id

string

Figure 1: The stem generation database tables and

their relations.

1The complete table of orthographic transliteration may be

found at http://www.qamus.org/transliteration.htm

Arabic stems can be generated if lists of all roots

and all morphological patterns are provided. It is

necessary that this data be coupled with a database

that links the roots with their morphological patterns

(or templates) so that only valid stems are gener-

ated for each root. The roots in this database may

be moulded with morphosemantic and morphosyn-

tactic patterns to generate intermediate form stems.

The stemsmay then be transformed into final surface

forms with a number of specific morphophonemic

rules using a finite state transducer compiling lan-

guage.

Figure 1 shows a summary of the stem generation

tables and their relations. The RootsList table con-

tains all verb roots from the popular Arabic dictio-

nary, Al-Waseet, (Mustapha et al., 1972), with F,M,

L, and Q representing the table fields for up to four

radicals per root. A root identifier is used to link

this table to the Template table. The Template table

lists all morphosemantic and morphosyntactic pat-

terns used to generate stems from roots of a certain

type. This table also specifies the syntactic proper-

ties of stems (voice and tense) generated by using the

template entry. The MainDictionary table links the

RootsList and Template tables together and specifies

which entries apply to which roots.

Stems generated with these tables are unaffixed

stems. The affix id field links each entry to a subject

pronominal affix table that uses transformation rules

generating affixed stems. Although object pronom-

inal affixes are not dealt with in this paper, they are

generally agglutinating in nature and therefore cause

no morphophonemic alterations to a stem. They

can be added for generation or removed for analysis

without affecting the stem at all.

Affixation and transformation rules are both

specified using PERL regular expressions (Friedl,

2002). Regular expressions (Regexp) is an alge-

braic language that is used for building finite state

transducers (FSTs) that accept regular languages. In

the next section, Regexp is used to performmorpho-

phonemic transformations and to generate affixed

forms of stems. If generated stems are to be useful

for root extraction and morphological analysis, it is

essential at every stage of generation to be able to

track exactly which letters are members of the root

radical set, which belong to the template, and what

transformations occur on the untransformed stem

producing the final surface form.

3 Definition of Stem Generation

In order to be useful in analysis applications, Arabic

stems need to be in a surface form which will only

undergo agglutinating changes for any further mor-

phological modification. Stems should be defined in

terms of the root radicals,morphosemantic and mor-

phosyntactic template letters, and morphophonemic

alterations. By doing so, inversing stem transforma-

tions becomes trivial. We require the automatic stem

generator to always be aware of the origin of each of

the letters in stems it generates and to be able to dis-

tinguish between letters in the original radical set or

in the template string. The stem generator may then

be used to compile a complete list of all affixed stems

from database roots while retaining all transforma-

tion information. The resulting list of stems may

then be turned into a searchable index that holds the

complete morphological analysis and classification

for each entry.

Since originally Arabic words can have a maxi-

mum of four root radicals, a root radical set R is

defined in terms of the ordered letters of the root as

follows:

R = {rF, rM, rL, rQ} (1)

In the database, pattern, root, variant, and voice-

tense ids identify a particular morphological pattern

s. Templates are used to generate a stem from a root.

The text of s is defined in terms of the letters and di-

acritics of the template in sequence (x1...xl) and the

radical position markers or place holders (hF, hM,

hL, and hQ), that indicate the positions that letters

of the root should be slotted into:

s = x1x2...hF...hM...hL...hQ...xn (2)

Stem Generator (SG) uses regular expressions as

the language for compiling FSTs for morphophone-

mic transformations. Transformation rules take into

account the context of root radicals in terms of their

positions in the template and the nature of the tem-

plate letters that surround them. Transformations

are performed using combinations of regular expres-

sion rules applied in sequence, in amanner similar to

how humans are subconsciously trained to process

the individual transformations. The resulting tem-

plate between one morphophonemic transformation

and the next is an intermediate template. However,

in order to aid the next transformation, the trans-

formed radicals are marked by inserting their place

holders before them. For example, hF �َ hM�َ hL Êَ
(FraMsaLma) is an intermediate template formed

by the root radical set R ={�, �, Ê} ({r, s, m})

and the morphological pattern s = hF َ hM َ hL َ
(FaMaLa).

To create the initial intermediate template i0 from

the radical set R and morphological pattern s, a

function Regexp(String, SrchPat, ReplStr) is

defined to compile FSTs from regular expressions.

The function accepts in its first argument a string

that is tested for a match with the search pattern

(SrchPat) in its second argument. If SrchPat

is found, the matching characters in String are

replaced with the replace string (ReplStr). This

function is assumed to accept the standard PERL

regular expression syntax.

A function, CompileIntermediate(R, s), ac-

cepts the radical set R and morphological pattern

s to compile the first intermediate template i0. A

regular expression is built to make this transforma-

tion. It searches the morphological pattern text for

radical place holders and inserts their respective

radical values after them. Since Regexp performs
substitutions instead of insertions, replacing each

marker with itself followed by its radical value is

effectively equivalent to inserting its radical value

after it. Let p be a search pattern that matches all

occurrences of place holders hF, hM, hL, or hQ

in the morphological pattern, then an initial inter-

mediate form i0 may be compiled in the following

manner:

i0 = CompileIntermediate(R, s)

= Regexp(s, p, pRp)

= {x1...hFrF...hMrM...hLrL...hQrQ...xn}

(3)

Let T = {t1...tm} be the transformation rules ap-
plied on each intermediate template to create subse-

quent intermediate templates. Transformation rules

are defined as:

tj = (SrchPatj , ReplStrj) (4)

A second function Transform(i, t) is required to
perform transformations. A subsequent intermedi-

ate template ij+1 is the recursive result of transform-

ing the current intermediate template ij with the next

rule tj+1. Each transformation is defined as:

ij+1 = Transform(ij , tj+1) for 0 ≤ j < m

= Regexp(ij , SrchPatj+1, ReplStrj+1)

(5)

At any point in the transformation process, the

current transformed state of radicals (R′) and tem-

plate string (s′)may be decomposed from the current

intermediate template as follows:

CompileIntermediate−1(ij) = (R′, s′) (6)

To turn final intermediate template im into a

proper stem, a regular expression is built that

deletes the place holders from the intermediate

template. To do this with a regular expression, the

place holders matched are replaced with the null

string during the matching process as follows:

Regexp(im, p, null) (7)

Basic stems are only modified for tense and voice.

Additional morphosyntactic templates or affixation

rules further modify proper stems for person, gen-

der, number, and mode. Affixation rules are regu-

lar expressions like transformation rules. However,

these rules modify final intermediate templates by

adding prefixes, infixes, or suffixes, or modifying or

deleting stem letters. They require knowledge of

the radical positions and occasionally their morpho-

phonemic origins. Adding affixes to a stem operates

on the intermediate template which retains the nec-

essary information.

Let a be the affixation rule that is being applied to

a certain intermediate template:

a = (SrchPat, ReplStr) (8)

Now using the function Transform that was

defined earlier, affixes are added to im to produce

the intermediate affixed template im+1:

im+1 = Transform(im, a)

= Regexp(im, SrchPat, ReplStr)

(9)

To convert for output im+1 to an affixed stem, one

may remove place holders using the following:

Regexp(im+1, p, null) (10)

With this definition, generated stems are de-

scribed by intermediate templates. Intermediate

templates retain knowledge of the current state of

template and radical letters without losing the abil-

ity to recall their origins. This algorithm, therefore,

would avoid guesswork in the identification of root

radicals. Automatic rule-based stem generation

and analysis are both facilitated by this feature of

intermediate templates.

4 Stem Generation Engine

A stem generation engine may be built on the ba-

sis of the definition just advanced. The three com-

ponents, Stem Transformer, Affixer, and Slotter, ap-

plied in sequence, make up SG. Stem Transformer

applies the appropriate transformation rules to the

morphological pattern, Affixer adds specific affixes

to the transformed template; and Slotter applies the

radicals to the transformed affixed template to pro-

duce the final affixed stem.

SG begins with a stem ID from the MainDic-

tionary table as input to Stem Transformer (See Fig-

ure 1). The root and entry associated with the stem

ID are used to identify the radicals of the root, the

morphological pattern string, a list of transformation

rules, and an affix table ID.

i transform_ruletemplate_string

F M L R

Stem Transformer

Transformed
Intermediate StemDecompose

Intermediate Stem Transform

Compose

th

template_string F M L R

i=0...n

final when i=n

when i<n

final when i=n

search_patternreplace_string

Figure 2: Stem Transformer

Stem Transformer applies transformation rules

that are localised to the root radicals and letters

of the template in the contexts of one another. To

prepare the template and root for transformation, the

engine begins by marking radicals in the template.

Stem Transformer is applied incrementally using

the current radical set, the template string, and one

transformation rule per pass, as in Figure 2. The out-

put of each pass is fed back into StemTransformer in

the form of the jth-rule-transformed template string

and radicals, along with the (j+1)th transformation

rule. When all rules associated with the template are

exhausted, the resultant template string and radicals

are output to the next phase.

To illustrate, assume the morphological pattern

s =mِ hF ْ uَ hM َ hL َ (AiFotaMaLa), the radical set
R ={�, º, �} ({@,k,r}), and the transformation rule
set T = {1, 12}.

Stem Transformer generates a proper stem using

the following steps:

Equation 3 above creates the initial intermediate

template when passed the radical set and morpho-

logical template, thus producing:

i0 = CompileIntermediate(R, s)

= mِ hF �ْ uَ hM ºَ hL �َ
(AiF@taMkaLra)

The first transformation rule t1 = 1, t1 ∈ T is a

regular expression that searches for au (t) following

hF and replaces u (t) with a copy of rF. To trans-

form i0 into i1 with rule t1, Equation 5 is used, thus

producing:

i1 = Transform(i0, t1)

= mِ hF �ْ �َ hM ºَ hL �َ
(AiF@o@aMkaLra)

Next, a gemination rule t2 = 12, t2 ∈ T is applied

to i1. The gemination regular expression searches

for an unvowelled letter followed by a vowelled du-

plicate and replaces it with the geminated vowelled

letter. Once more, Equation 5 is used to make the

transformation:

i2 = Transform(i1, t2)

= mِ hF �H hM ºَ hL �َ
(AiF@~aMkaLra)

To obtain the proper stem from the intermediate

template, the final intermediate template i2 may be

substituted into Equation 7:

Stem = Regexp(i2, p, null)

= m�ِH»َ�َ
(Ai@~akara)

To summarise, the final output of Stem Trans-

former is a root moulded into a template and a

template-transformed radical set. These outputs

are used as input to the affixation phase which

succeeds stem transformation. Affixer, applied

iteratively to the product of Stem Transformer,

outputs 14 different subject-pronominally affixed

replace_string (affix)

F M L R

Affixer

Transformed
Intermediate StemDecompose

Intermediate Word Transform

Compose
Generic Intermediate

Stem Match

template_string F M L R

final final

from Stem Transformer

template_string

Figure 3: The Affixer Phase

morphosyntactic forms for every input except

the imperative which only produces 5. There are

9 different tense-voice-mode combinations per

subject pronominal affix, so most roots produce 117

affixed stems per dictionary entry. Affixer is run

with different replace strings that are specific to the

type of affix being produced. It modifies copies of

the transformed stem from the previous phase, as in

Figure 3. Using the example cited shortly before,

Affixer is passed the last intermediate template im
and the affix regular expression a. In this example,

a is a regular expression that searches for hLrL and

replaces it with hLrLَ uْ (LrLato); this corresponds

to the past active third person feminine singular

affix.

Now applying Equation 9 produces:

i3 = Transform(i2, a)

= mِ hF �H hM ºَ hL �َ uْ
(AiF@~aMkaLrato)

In the last stage of stem generation, Slotter re-

places the place holders in the transformed template

with the transformed radical set, producing the final

form of the affixed stem. For the example, the result

of applying Equation 10 is:

Regexp(i3, p, null) = m�ِH»َ�uَْ
(Ai@~akarato)

Transform

F M L R

Slotter

from Affixer

template_string

Transform

Transform

template_string

replace R literal with R value

replace L literal with L value

template_string

replace M literal with M value

Transform

template_string

replace F literal with F value

Affixed Word

final

Figure 4: The Slotter Phase

5 Optimisation

Data produced for the use of SG was designed

initially with no knowledge of the actual patterns

and repetitions that occur with morphophonemic

and affix transformation rules. In fact, SG is made

to create stems this way: A root is added to a

morphosemantic template, then morphosyntactic

templates are applied to it, inducing in some pat-

terns morphophonemic transformation. However,

while this may be useful in many language teaching

tools, it is extremely inefficient. The original data

was used to discover patterns that would allow

stems to be created in an optimal manner.

Following the classification in Yaghi (2004), there

are 70 verb root types associated with 44 theoreti-

cally possible morphological patterns. There is an

element of repetition present in the classification. In

addition, the Template table lists sequences of rules

that operate on morphological patterns in a manner

similar to how native speakers alter patterns phone-

mically. These rules could be composed into a sin-

gle FST that yields the surface form.

For example, in the previous section, the mor-

phophonemic transformation rule set T = {1, 12}
could have been written into one rule. In its non-

optimised form the rule duplicates rF in place of

u (t) creating intermediate form mِ hF �ْ �َ hM ºَ hL �َ
(AiF@o@aMkaLra) and then deletes the first of the

duplicate letters and replaces it with a gemination di-

acritic that is placed on the second repeat letter. The

resulting surface form is m�ِH»َ�َ (Ai@~akara). Instead,

one rule could achieve the surface form by replac-

ing the letteru (t) in the template with a geminated

� (@) yielding the same result.

Compiling separate regular expressions for each

transformation rule is costly in terms of processing

time especially when used with back-references, as

SG does. Back-references group a sub-pattern and

refer to it either in the search pattern or substitute

string. Such patterns are not constant and are re-

quired to be recompiled for every string they are

used with. It is desirable, therefore, to minimise the

number of times patterns are compiled. To optimise

further, the transformation may be made on the mor-

phological pattern itself, thus producing a sound sur-

face form template. This procedure would eliminate

the need to perform morphophonemic transforma-

tions on stems.

Each template entry in the Template table (see

Figure 1) is given a new field containing the surface

form template. This is a copy of the morphological

pattern with morphophonemic transformations ap-

plied. A coding scheme is adopted that continues

to retain letter origins and radical positions in the

template so that this will not affect affixation. Any

transformations that affect the morphological pat-

tern alone are applied without further consideration.

The coding scheme uses the Roman charactersF,M,

L, andQ to represent place holders in the templates.

Each place holder is followed by a single digit in-

dicating the type of transformation that occurs to

the radical slotted in that position. The codes have

the following meanings: 0=no alteration, 1=dele-

tion, 2=substitution, 3=gemination. If the code used

is 2, then the very next letter is used to replace the

radical to which the code belongs.

Take for example, the Template table entry for the

root type 17 (all roots with F=× (w) and L=Ý (y)), its
morphological pattern mِ hFْuَ hM َ hL َ (AiFotaMaLa),
and its variant (ID 0). The morphophonemic

transformation rules applied to the template are

T={20,12,31,34,112}. These rules correspond to

the following:

• 20=change rF to a duplicate of the next letter

u (t)

• 12=geminate duplicate letters

• 31=delete diacritic after theÝ (y) in positionhL

• 34=convert Ý (y) to m (A)

• 112=convert m to Ù (Y)

Surface Form mِ rF2uH rM0َ rL2Ù (Ai F2t~a M0a L2Y)

Affix rLÝْ uُ Êَ m (L2yotumaA)

Combined Result mِ rF2uH rM0َ rL2Ýْ uُ Êَ m (Ai F2t~a M0a L2yotumaA)

Table 1: Surface form template aligned with an affix entry rule.

The surface form template can be rewritten as

mِ hF2uH hM َ hL2Ù (AiF2t~aM0aL2Y). This can be

used to form stems such as mِvH�َÙ (Ait~adaY) by slot-

ting the root {×, �, Ý} ({w,d,y}).
The affix tables use a similar notation for coding

their rules. Every affix rule indicates a change to be

made to the surface form template and begins with a

place holder followed by a code 0 or 2 unless the rule

redefines the entire template in which case the entry

begins with a 0. Radical place holders in affix rules

define changes to the surface form template. These

changes affect the template from the given radical

position to the very next radical position or the end

of the template, whichever is first.

Affix rules with code 0 following radical place

holders signify that no change should be made to

that section of the surface form template. However,

a code 2 after a place holder modifies the surface

form template in that position by replacing the letter

that follows the code with the rest of that segment of

the rule. Affix rules using code 2 after place holders

override any other code for that position in the sur-

face form template because affixation modifies mor-

phophonemically transformed stems.

Creating affixed stems from templates and

affixes formatted in this way becomes far more

optimal. If a surface form template was specified

as mِ rF2uH rM0َ rL2Ù (AiF2t~aM0aL2Y) and it

was to be combined with the affix rule rL2Ýْ uُ Êَ m
(L2yotumaA) then SG simply needs to align the

affix rule with the surface form template using the

place holder symbol in the affix rule and replace

appropriately as in Table 1.

With the resulting affixed surface form template

SGmay retain the radicals of the original root where

they are unchanged, delete radicals marked with

code 1 and 3, and substitute letters following code

2 in place of their position holders. If the example

above is used with the root {×, �, Ý} ({w, d, y}),

the final stem is: mِvH�ÚْwÌَُn (Ait~adayotumaA, mean-

ing "the two of you have accepted compensation for

damage").

To use the original regular expression transfor-

mations would take an average of 18000 seconds

to produce a total of 2.2 million valid stems in the

database. With the optimised coding scheme, the

time taken is reduced to a mere 720 seconds; that is

4% of the original time taken.

6 Generated Stem Database Compiler

Figure 5: Output from the Stem Generation CGI

Once the dictionary database has been completed

and debugged, an implementation of SG generates

for every root, template, and affix the entire list of

stems derived from a single root and all the pos-

sible template and affix combinations that may ap-

ply to that root entry. The average number of dic-

tionary entries that a root can generate is approxi-

mately 2.5. Considering that each entry generates

117 different affixed stems, this yields an average of

approximately 300 affixed stems per root. However,

some roots (e.g., {º,u,o} ({k,t,b})) produce 13

different entries, which makes approximately 1,500

affixed stems for each of such roots.

The generated list is later loaded into a B-Tree

structured database file that allows fast stem search

and entry retrieval.

A web CGI was built that uses the Stem Genera-

tion Engine to produce all affixed stems of any given

root. A section of the results of this appears in Fig-

ure 5.

7 Conclusions

In this paper, we have discussed our attempt at imi-

tating the process used by Arabic speakers in gener-

ating stems from roots. We formulated a definition

of the process, facilitating an encoding of Arabic

stems. The encoding represents stems in terms of

their components while still allowing a simple map-

ping to their final surface forms. A stem’s compo-

nents are a root, morphosemantic and morphosyn-

tactic templates, and any morphophonemic alter-

ations that the stem may have underwent. In do-

ing so, the problem has been reduced to the much

smaller task of obtaining stems for the words sub-

ject to analysis, and then matching these against the

surface forms of the pre-analysed stems. The encod-

ing retains most of the information essential to stem

generation and analysis, allowing us to trace the var-

ious transformations that root radicals undergowhen

inflected. Root extractors and morphological anal-

ysers can match an input word with a defined verb

stem, then use the information in the definition to de-

termine with certainty the stem’s root and morpho-

logical pattern’s meaning. The authors intend to use

a similar strategy to define stems for Arabic nouns.

Mapping from words to defined stems is now

much easier. The stem generation algorithm here

attempts to produce a comprehensive list of all

inflected stems. Any verb may be found in this

list if some simple conjoin removal rules are first

applied. Conjoins are defined here as single letter

conjunctions, future or question particles, emphasis

affixes, or object pronominal suffixes that aggluti-

nate to a verb stem. Because conjoins may attach

to a verb stem in sequence and without causing

any morphological alteration, extracting stems

from Arabic words becomes similar to extracting

stems from English words. In fact, many of the

Arabic word analysis approaches reviewed in the

introduction to this paper would yield more accurate

results if applied to stem extraction instead of root

extraction. It would become possible to use for this

purpose conventional linguistic, pattern matching,

or algebraic algorithms.

The dictionary database described here can be

used to form the core of a morphological analyser

that derives the root of an input word, identifies its

stem, and classifies its morphosemantic and mor-

phosyntactic templates. An analyser based on these

principles may be used in many useful applications,

some of which are detailed in Yaghi (2004). Exam-

ple applications include root, lemma based, and ex-

act word analysis, searching, incremental searching,

and concordancing.

References

S. S. Al-Fedaghi and F. S. Al-Anzi. 1989. A

New Algorithm to Generate Arabic Root-Pattern

Forms. In Proceedings of the 11th National Com-

puter Conference and Exhibition, pages 391–400,

Dhahran, Saudi Arabia,March.

Riyad Al-Shalabi and Martha Evens. 1998. A

Computational Morphology System for Arabic.

In Proceedings of the COLING/ACL98, pages

66–72,Montrɴeal, Quɴebec, Canada, August.

Kenneth R Beesley. 2001. Finite-State Morpho-

logical Analysis and Generation of Arabic at Xe-

rox Research: Status and Plans in 2001. In ARA-

BIC Language Processing: Status and Prospects,

Toulouse, France, July. Arabic NLP Workshop at

ACL/EACL 2001.

Mohammed A. El-Affendi. 1991. An Algebraic Al-

gorithm for Arabic Morphological Analysis. The

Arabian Journal for Science and Engineering,

16(4B).

Mohammed A. El-Affendi. 1999. Performing Ara-

bicMorphological Search on the Internet: ASlid-

ing Window Approximate Matching Algorithm

and its Performance. Technical report, CCIS Re-

port King Saud University.

Jeffery E. F. Friedl. 2002. Mastering Regular Ex-

pressions. O’Reilly, 2nd edition, July.

Lama Hamandi, Rached Zantout, and Ahmed Gues-

soum. 2002. Design and Implementation of an

Arabic Morphological Analysis System. In Pro-

ceedings of the International Conference on Re-

search Trends in Science and Technology 2002,

pages 325–331, Beirut, Lebanon.

IbrahimMustapha,Ahmed H.Al-Zayat,Hamid Ab-

delQadir, and Mohammed Ali Al-Najjar, editors.

1972. Al-Moajam Al-Waseet. Cairo Arab Lan-

guage Academy, Cairo, Egypt.

B. Thalouth and A. Al-Dannan. 1990. A Compre-

hensive Arabic Morphological Analyzer Genera-

tor. In Pierre Mackay, editor, Computers and the

Arabic Language. Hemisphere Publishing, New

York.

Jim Yaghi. 2004. Computational Arabic Verb Mor-

phology: Analysis and Generation. Master’s the-

sis, University of Auckland.

Sane M. Yagi and Saad Harous. 2003. Arabic Mor-

phology: An Algorithm and Statistics. In Pro-

ceedings of the 2003 International Conference on

Artificial Intelligence (IC-AI 2003), Las Vegas,

Nevada.

