

Synchronous Dependency Insertion Grammars
A Grammar Formalism for Syntax Based Statistical MT

Yuan Ding and Martha Palmer
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA

{yding, mpalmer}@linc.cis.upenn.edu

Abstract

This paper introduces a grammar formalism
specifically designed for syntax-based sta-
tistical machine translation. The synchro-
nous grammar formalism we propose in
this paper takes into consideration the per-
vasive structure divergence between lan-
guages, which many other synchronous
grammars are unable to model. A Depend-
ency Insertion Grammars (DIG) is a gen-
erative grammar formalism that captures
word order phenomena within the depend-
ency representation. Synchronous Depend-
ency Insertion Grammars (SDIG) is the
synchronous version of DIG which aims at
capturing structural divergences across the
languages. While both DIG and SDIG have
comparatively simpler mathematical forms,
we prove that DIG nevertheless has a gen-
eration capacity weakly equivalent to that
of CFG. By making a comparison to TAG
and Synchronous TAG, we show how such
formalisms are linguistically motivated. We
then introduce a probabilistic extension of
SDIG. We finally evaluated our current im-
plementation of a simplified version of
SDIG for syntax based statistical machine
translation.

1 Introduction
Dependency grammars have a long history and

have played an important role in machine translation
(MT). The early use of dependency structures in ma-
chine translation tasks mainly fall into the category
of transfer based MT, where the dependency struc-
ture of the source language is first analyzed, then
transferred to the target language by using a set of
transduction rules or a transfer lexicon, and finally
the linear form of the target language sentence is
generated.

While the above approach seems to be plausible,
the transfer process demands intense human effort in
creating a working transduction rule set or a transfer
lexicon, which largely limits the performance and
application domain of the resultant machine transla-
tion system.

In the early 1990s, (Brown et. al. 1993) intro-
duced the idea of statistical machine translation,
where the word to word translation probabilities and
sentence reordering probabilities are estimated from
a large set of parallel sentence pairs. By having the
advantage of leveraging large parallel corpora, the
statistical MT approach outperforms the traditional
transfer based approaches in tasks for which ade-
quate parallel corpora is available (Och, 2003).
However, a major criticism of this approach is that it
is void of any internal representation for syntax or
semantics.

In recent years, hybrid approaches, which aim at
applying statistical learning to structured data, began
to emerge. Syntax based statistical MT approaches
began with (Wu 1997), who introduced a polyno-
mial-time solution for the alignment problem based
on synchronous binary trees. (Alshawi et al., 2000)
extended the tree-based approach by representing
each production in parallel dependency trees as a
finite-state transducer. (Yamada and Knight, 2001,
2002) model translation as a sequence of operations
transforming a syntactic tree in one language into
the string of the second language.

The syntax based statistical approaches have
been faced with the major problem of pervasive
structural divergence between languages, due to both
systematic differences between languages (Dorr,
1994) and the vagaries of loose translations in real
corpora. While we would like to use syntactic in-
formation in both languages, the problem of non-
isomorphism grows when trees in both languages are
required to match.

To allow the syntax based machine translation
approaches to work as a generative process, certain
isomorphism assumptions have to be made. Hence a
reasonable question to ask is: to what extent should
the grammar formalism, which we choose to repre-
sent syntactic language transfer, assume isomor-
phism between the structures of the two languages?

(Hajic et al., 2002) allows for limited non-
isomorphism in that n-to-m matching of nodes in the
two trees is permitted. However, even after extend-
ing this model by allowing cloning operations on
subtrees, (Gildea, 2003) found that parallel trees
over-constrained the alignment problem, and
achieved better results with a tree-to-string model

using one input tree than with a tree-to-tree model
using two.

At the same time, grammar theoreticians have
proposed various generative synchronous grammar
formalisms for MT, such as Synchronous Context
Free Grammars (S-CFG) (Wu, 1997) or Synchro-
nous Tree Adjoining Grammars (S-TAG) (Shieber
and Schabes, 1990). Mathematically, generative
synchronous grammars share many good properties
similar to their monolingual counterparts such as
CFG or TAG (Joshi and Schabes, 1992). If such a
synchronous grammar could be learnt from parallel
corpora, the MT task would become a mathemati-
cally clean generative process.

However, the problem of inducing a synchronous
grammar from empirical data was never solved. For
example, Synchronous TAGs, proposed by (Shieber
and Schabes, 1990), which were introduced primar-
ily for semantics but were later also proposed for
translation. From a formal perspective, Syn-TAGs
characterize the correspondences between languages
by a set of synchronous elementary tree pairs. While
examples show that this formalism does capture cer-
tain cross language structural divergences, there is
not, to our knowledge, any successful statistical
learning method to learn such a grammar from em-
pirical data. We believe that this is due to the limited
ability of Synchronous TAG to model structure di-
vergences. This observation will be discussed later
in Section 5.

We studied the problem of learning synchronous
syntactic sub-structures (parallel dependency treelets)
from unaligned parallel corpora in (Ding and Palmer,
2004). At the same time, we would like to formalize
a synchronous grammar for syntax based statistical
MT. The necessity of a well-defined formalism and
certain limitations of the current existing formalisms,
motivate us to design a new synchronous grammar
formalism which will have the following properties:

1. Linguistically motivated: it should be able to
capture most language phenomena, e.g. compli-
cated word orders such as “wh” movement.

2. Without the unrealistic word-to-word isomor-
phism assumption: it should be able to capture
structural variations between the languages.

3. Mathematically rigorous: it should have a well
defined formalism and a proven generation ca-
pacity, preferably context free or mildly context
sensitive.

4. Generative: it should be “generative” in a
mathematical sense. This property is essential
for the grammar to be used in statistical MT.
Each production rule should have its own prob-
ability, which will allow us to decompose the
overall translation probability.

5. Simple: it should have a minimal number of
different structures and operations so that it will
be learnable from the empirical data.

In the following sections of this paper, we intro-
duce a grammar formalism that satisfies the above
properties: Synchronous Dependency Insertion
Grammar (SDIG). Section 2 gives an informal look
at the desired capabilities of a monolingual version
Dependency Insertion Grammar (DIG) by address-
ing the problems with previous dependency gram-
mars. Section 3 gives the formal definition of the
DIG and shows that it is weakly equivalent to Con-
text Free Grammar (CFG). Section 4 shows how
DIG is linguistically motivated by making a com-
parison between DIG and Tree Adjoining Grammar
(TAG). Section 5 specifies the Synchronous DIG
and Section 6 gives the probabilistic extension of
SDIG.

2 Issues with Dependency Grammars

2.1 Dependency Grammars and Statistical MT

According to (Fox, 2002), dependency represen-
tations have the best phrasal cohesion properties
across languages. The percentage of head crossings
per chance is 12.62% and that of modifier crossings
per chance is 9.22%. Observing this fact, it is rea-
sonable to propose a formalism that handles lan-
guage transfer based on dependency structures.

What is more, if a formalism based on depend-
ency structures is made possible, it will have the
nice property of being simple, as expressed in the
following table:

 CFG TAG DG
Node# 2n 2n n

Lexicalized? NO YES YES
Node types 2 2 1*

Operation types 1 2 1*
(*: will be shown later in this paper)

Figure 1.

The simplicity of a grammar is very important for
statistical modeling, i.e. when it is being learned
from the corpora and when it is being used in ma-
chine translation decoding, we don’t need to condi-
tion the probabilities on two different node types or
operations.

At the same time, dependency grammars are in-
herently lexicalized in that each node is one word.
Statistical parsers (Collins 1999) showed perform-
ance improvement by using bilexical probabilities,
i.e. probabilities of word pair occurrences. This is
what dependency grammars model explicitly.

2.2 A Generative Grammar?

Why do we want the grammar for statistical MT
to be generative? First of all, generative models have
long been studied in the machine learning commu-
nity, which will provide us with mathematically rig-
orous algorithms for training and decoding. Second,
CFG, the most popular formalism in describing
natural language phenomena, is generative. Certain
ideas and algorithms can be borrowed from CFG if
we make the formalism generative.

While there has been much previous work in
formalizing dependency grammars and in its appli-
cation to the parsing task, until recently (Joshi and
Rambow, 2003), little attention has been given to the
issue of making the proposed dependency grammar
generative. And in machine translation tasks, al-
though using dependency structures is an old idea,
little effort has been made to propose a formal
grammar which views the composition and decom-
position of dependency trees as a generative process
from a formal perspective.

There are two reasons for this fact: (1) The
“pure” dependency trees do not have nonterminals.
The standard solution to this problem was intro-
duced as early as (Gaifman 1965), where he pro-
posed adding syntactic categories to each node on
the dependency tree. (2) However, there is a deeper
problem with dependency grammar formalisms, as
observed by (Rambow and Joshi 1997). In the de-
pendency representation, it is hard to handle com-
plex word order phenomena without resorting to
global word order rules, which makes the grammar
no longer generative. This will be explored in the
next subsection (2.3).

2.3 Non-projectivity

Non-projectivity has long been a major obstacle
for anyone who wants to formalize dependency
grammar. When we draw projection lines from the
nodes in the dependency trees to a linear representa-
tion of the sentence, if we cannot do so without hav-
ing one or more projection lines going across at least
one of the arcs of the dependency tree, we say the
dependency tree is non-projective.

A typical example for non-projectivity is “wh”
movement, which is illustrated below.

Figure 2.

Our solution for this problem is given in section
4 and in the next section we will first give the formal

definition of the monolingual Dependency Insertion
Grammar.

3 The DIG Formalism

3.1 Elementary Trees

Formally, the Dependency Insertion Grammar is
defined as a six tuple),,,,,(RSBALC . C is a set
of syntactic categories and L is a set of lexical
items. A is a set of Type-A trees and B is a set of
Type-B trees (defined later). S is a set of the start-
ing categories of the sentences. R is a set of word
order rules local to each node of the trees.

Each node in the DIG has three fields:

A Node consists of:
1. One lexical item
2. One corresponding category
3. One local word order rule.

We define two types of elementary trees in DIG:
Type-A trees and Type-B trees. Both types of trees
have one or more nodes. One of the nodes in an
elementary tree is designated as the head of the ele-
mentary tree.

Type-A trees are also called “root lexicalized
trees”. They roughly correspond to the α trees in
TAG. Type-A trees have the following properties:

Properties of a Type-A elementary tree:

1. The root is lexicalized.
2. The root is designated as the head of the

tree
3. Any lexicalized node can take a set of

unlexicalized nodes as its arguments.
4. The local word order rule specifies the

relative order between the current node
and all its immediate children, including
the unlexicalized arguments.

Here is an example of a Type-A elementary tree
for the verb “like”. Note that the head node is
marked with (@).

Please note that the placement of the dependency
arcs reflects the relative order between the parent
and all its immediate children.

Figure 3

Type-B trees are also called “root unlexicalized
trees”. They roughly correspond to β trees in TAG
and have the following properties:

Properties of a Type-B elementary tree:

1. The root is the ONLY unlexicalized node
2. One of the lexicalized nodes is desig-

nated as the head of the tree
3. Similar to Type-A trees, each node also

have a word order rule that specifies the
relative order between the current node
and all its immediate children.

Here is and example of a Type-B elementary tree for
the adverb “really”

Figure 4

3.2 The Unification Operation

We define only one type of operation: unification
for any DIG derivation:

Unification Operation:

When an unlexicalized node and a head
node have the same categories, they can
be merged into one node.

This specifies that an unlexicalized node cannot
be unified with a non-head node, which guarantees
limited complexity when a unification operation
takes place.
After unification,
1. If the resulting tree is a Type-A tree, its root

becomes the new root;
2. If the resulting tree is a Type-B tree, the root

node involved in the unification operation be-
comes the new root.

Here is one example for the unification operation
which adjoins the adverb “really” to the verb “like”:

Figure 5

Note that for the above unification operation the
dependency tree on the right hand side is just one of
the possible resultant dependency trees. The strings
generated by the set of possible resultant depend-
ency trees should all be viewed as the language

)(DIGL generated by the DIG grammar.

Also note that the definition of DIG is preserved
through the unification operation, as we have:

1. (Type-A) (unify) (Type A) = (Type-A)
2. (Type-A) (unify) (Type B) = (Type-A)

3. (Type-B) (unify) (Type B) = (Type-B)

3.3 Comparison to Other Approaches

There are two major differences between our de-
pendency grammar formalism and that of (Joshi and
Rambow, 2003):
1. We only define one unification operation,

whereas (Joshi and Rambow, 2003) defined two
operations: substitution and adjunction.

2. We introduce the concept of “heads” in the DIG
so that the derivation complexity is significantly
smaller.

3.4 Proof of Weak Equivalence between DIG
and CFG

We prove the weak equivalence between DIG and
CFG by first showing that the language that a DIG
generates is a subset of one that a CFG generates,
i.e.)()(CFGLDIGL ⊆ . And then we show the
opposite is also true:)()(DIGLCFGL ⊆ .

3.4.1)()(CFGLDIGL ⊆

The proof is given constructively. First, for each
Type-A tree, we “insert” a “waiting for Type-B tree”
argument at each possible slot underneath it with the
category B. This process is shown below:

Figure 6

Then we “flatten” the Type-A tree to its linear
form according to the local word order rule, which
decides the relative ordering between the parent and
all its children at each of the nodes. And we get:

}.{}{
}.{}{}.{}.{ 100

Hnji

HHH

CBNTwCNTw
CBNTwCNTwCBNTCANT

LL

L→

 nww L0 is the strings of lexical items
 }.{ HCANT is the nonterminal created for

this Type-A tree, and HC is the category of the
head (root).

 }{ jCNT is the nonterminal for each category
 }.{ HCBNT is the nonterminal for each “Type-

B site”
Similarly, for each Type-B tree we can create
“Type-B site” under its head node. So we have:

nHiHR wCBNTwCBNTwCRBNT }.{}.{}.{ 0 LL→
Then we create the production to take arguments:

}.{}{ CANTCNT →
And the production rules to take Type-B trees:

}.{}.{}.{ CBNTCRBNTCBNT →
}.{}.{}.{ CRBNTCBNTCBNT →

Hence, a DIG can be converted to a CFG.

3.4.2)()(DIGLCFGL ⊆

It is known that a context free grammar can be con-
verted to Greibach Normal Form, where each pro-
duction will have the form:

*aVA → , where V is the set of nonterminals
We simply construct a corresponding Type-A

dependency tree as follows:

Figure 7

4 Compare DIG to TAG
A Tree Adjoining Grammars is defined as a five

tuple),,,,(SAINTΣ , where Σ is a set of terminals,
NT is a set of nonterminals, I is a finite set of fi-
nite initial trees (α trees), A is a finite set of auxil-
iary trees (β trees), and S is a set of starting
symbols. The TAG formalism defines two opera-
tions, substitution and adjunction.

A TAG derives a phrase-structure tree, called the
“derived tree” and at the same time, in each step of
the derivation process, two elementary trees are
connected through either the substitution or adjunc-
tion operation. Hence, we have a “derivation tree”
which represents the syntactic and/or logical relation
between the elementary trees. Since each elementary
tree of TAG has exactly one lexical node, we can
view the derivation tree as a “Deep Syntactic Repre-
sentation” (DSynR). This representation closely re-
sembles the dependency structure of the sentence.

Here we show how DIG models different opera-
tions of TAG and hence handles word order phe-
nomena gracefully.

We categorize the TAG operations into three dif-
ferent types: substitution, non-predicative adjunction
and predicative adjunction.

 Substitution
We model the TAG substitution operation by

having the embedded tree replaces the non-terminal
that is in accordance with its root. An example for
this type is the substitution of NP.

Figure 8a Substitution in TAG

Figure 8b Substitution through DIG unification

 Non-predicative Adjunction
In TAG, this type of operation includes all ad-

junctions when the embedded tree does not contain a
predicate, i.e. the root of the embedded tree is not an
S. For example, the trees for adverbs are with root
VP and are adjoined to non-terminal VPs in the ma-
trix tree.

Figure 9a Non-predicative Adjunction in TAG

Like[V]@

[N]John[N]really[adv]@

[V] Like[V]@

[N]John[N] really[adv]
Figure 9b Non-predicative Adjunction through DIG

unification

 Predicative Adjunction
This type of operation adjoins an embedded tree

which contains a predicate, i.e. with a root S, to the
matrix tree. A typical example is the sentence: Who
does John think Mary likes?

This example is non-projective and has “wh”
movement. In the TAG sense, the tree for “does
John think” is adjoined to the matrix tree for “Who
Mary likes”. This category of operation has some
interesting properties. The dependency relation of
the embedded tree and the matrix tree is inverted.
This means that if tree T1 is adjoined to T2, in non-
predicative adjunction, T1 depends on T2, but in
predicative adjunction, T2 depends on T1. In the
above example, the tree with “like” depends on the
tree with “think”.

Figure 10a “Wh” movement through TAG

(predicative) adjunction operation

Our solution is quite simple: when we are con-
structing the grammar, we invert the arc that points
to a predicative clause. Despite the fact that the re-
sulting dependency trees have certain arcs inverted,
we will still be able to use localized word order rules
and derive the desired sentence with the simple uni-
fication operation. As shown below:

Figure 10b “Wh” movement through unification

Since TAG is mildly context sensitive, and we
have shown in Section 3 that DIG is context free, we
are not claiming the two grammars are weakly or
strongly equivalent. Also, please note DIG does not
handle all the non-projectivity issues due to its CFG
equivalent generation capacity.

5 Synchronous DIG

5.1 Definition

(Wu, 1997) introduced synchronous binary trees
and (Shieber, 1990) introduced synchronous tree
adjoining grammars, both of which view the transla-
tion process as a synchronous derivation process of
parallel trees. Similarly, with our DIG formalism,
we can construct a Synchronous DIG by synchroniz-
ing both structures and operations in both languages
and ensuring synchronous derivations.

Properties of SDIG:
1. The roots of both trees of the source and

target languages are aligned, and have the
same category

2. All the unlexicalized nodes of both trees
are aligned and have the same category.

3. The two heads of both trees are aligned
and have the same category.

Synchronous Unification Operation:
By the above properties of SDIG, we can

show that unification operations are synchro-
nized in both languages. Hence we can have
synchronous unification operations.

5.2 Isomorphism Assumption

So how is SDIG different from other synchro-
nous grammar formalisms?

As we know, a synchronous grammar derives
both source and target languages through a series of
synchronous derivation steps. For any tree-based
synchronous grammar, the synchronous derivation
would create two derivation trees for both languages
which have isomorphic structure. Thus a synchro-

nous grammar assumes certain isomorphism be-
tween the two languages which we refer to as the
“isomorphism assumption”.

Now we examine the isomorphism assumptions
in S-CFG and S-TAG:
 For S-CFG, the substitutions for all the non-

terminals need to be synchronous. Hence the
isomorphism assumption for S-CFG is isomor-
phic phrasal structure.

 For S-TAG, all the substitution and adjunction
operations need to be synchronous, and the
derivation trees of both languages are isomor-
phic. The derivation tree for TAG is roughly
equivalent to a dependency tree. Hence the
isomorphism assumption for S-TAG is an iso-
morphic dependency structure.

As shown by real translation tasks, both of those
assumptions would fail due to structural divergences
between languages.

On the other hand SDIG does NOT assume word
level isomorphism or isomorphic dependency trees.
Since in the SDIG sense, the parallel dependency
trees are in fact the “derived” form rather than the
“derivation” form. In other words, SDIG assumes
the isomorphism lies deeper than the dependency
structure. It is “the derivation tree of DIG” that is
isomorphic.

The following “pseudo-translation” example il-
lustrates how SDIG captures structural divergence
between the languages. Suppose we want to translate:
 [Source] The girl kissed her kitty cat.
 [Target] The girl gave a kiss to her cat.

Figure 11

Note that both S-CFG and S-TAG won’t be able
to handle such structural divergence. However,
when we view each of the two sentences as derived
from three elementary trees in DIG, we can have a
synchronous derivation, as shown below:

6 The Probabilistic Extension to SDIG and
Statistical MT

The major reason to construct an SDIG is to have
a generative model for syntax based statistical MT.
By relying on the assumption that the derivation tree
of DIG represents the probability dependency graph,
we can build a graphical model which captures the
following two statistical dependencies:
1. Probabilities of Elementary Tree unification (in

the target language)
2. Probabilities of Elementary Tree transfer (be-

tween languages), i.e. the probability of two
elementary trees being paired

ET-f3

ET-f1

ET-f2

ET-f4

ET-e3

ET-e1

ET-e2

ET-e4

Figure 12

The above graph shows two isomorphic deriva-
tion trees for two languages. ET stands for elemen-
tary trees and dotted arcs denote the conditional
dependence assumptions). Under the above model,
the best translation is:)()|(maxarg* ePefPe

e
= ;

And ∏=
i

ii eETfETPefP))(|)(()|(; also we

have ()∏=
i

ii eETParenteETPeP))((|)()(.

Hence, we can have PSDIG (probabilistic syn-
chronous Dependency Insertion Grammar). Given
the dynamic programming property of the above
graphical model, an efficient polynomial time
Viterbi decoding algorithm can be constructed.

7 Current Implementation
To test our idea, we implemented the above syn-

chronous grammar formalism in a Chinese-English
machine translation system. The actual implementa-
tion of the synchronous grammar used in the system
is a scaled-down version of the SDIG introduced
above, where all the word categories are treated as
one. The reason for this simplification is that word
category mappings across languages are not straight-
forward. Defining the word categories so that they
can be consistent between the languages is a major
goal for our future research.

The uni-category version of the SDIG is induced
using the algorithm in (Ding and Palmer, 2004),
which is a statistical approach to extracting parallel
dependency structures from large scale parallel cor-
pora. An example is given in Figure 12. We can
construct the parallel dependency trees as shown in
Figure 13a. The expected output of the above ap-

proach is shown in Figure 13b. (e) stands for an
empty node trace.
 [English] I have been here since 1947.
 [Chinese] Wo 1947 nian yilai yizhi zhu zai zheli.

 I year since always live in here

Figure
13a.

Input

Figure 13b. Output

(5 parallel elementary tree pairs)

We build a decoder for the model in Section 6 for
our machine translation system. The decoder is
based on a polynomial time decoding algorithm for
fast non-isomorphic tree-to-tree transduction (Un-
published by the time of this paper).

We use an automatic syntactic parser (Collins,
1999; Bikel, 2002) to produce the parallel unaligned
syntactic structures. The parser was trained using the
Penn English/Chinese Treebanks. We then used the
algorithm in (Xia 2001) to convert the phrasal struc-
ture trees into dependency trees.

The following table shows the statistics of the
datasets we used. (Genre, number of sentence pairs,
number of Chinese/English words, type and usage).

Dataset Xinhua FBIS NIST
Genre News News News
Sent# 56263 21003 206
Chn W# 1456495 522953 26.3 average
Eng W# 1490498 658478 32.5 average
Type unaligned unaligned multi-reference
Usage training training testing

Figure 14

The training set consists of Xinhua newswire
data from LDC and the FBIS data. We filtered both
datasets to ensure parallel sentence pair quality. We
used the development test data from the 2001 NIST
MT evaluation workshop as our test data for the MT
system performance. In the testing data, each input
Chinese sentence has 4 English translations as refer-
ences, so that the result of the MT system can be
evaluated using Bleu and NIST machine translation
evaluation software.

 1-gram 2-gram 3-gram 4-gram
NIST: 4.3753 4.9773 5.0579 5.0791
BLEU: 0.5926 0.3417 0.2060 0.1353

Figure 15
The above table shows the cumulative Bleu and

NIST n-gram scores for our current implementation;
with the final Bleu score 0.1353 with average input
sentence length of 26.3 words.

In comparison, in (Yamada and Knight, 2002),
which was a phrasal structure based statistical MT
system for Chinese to English translation, the Bleu
score reported for short sentences (less than 14
words) is 0.099 to 0.102.

Please note that the Bleu/NIST scorers, while
based on n-gram matching, do not model syntax dur-
ing evaluation, which means a direct comparison
between a syntax based MT system and a string
based statistical MT system using the above scorer
would favor the string based systems.

We believe that our results can be improved us-
ing a more sophisticated machine translation pipe-
line which has separate components that handle
specific language phenomena such as named entities.
Larger training corpora can also be helpful.

8 Conclusion
Finally, let us review whether the proposed SDIG

formalism has achieved the goals we setup in Sec-
tion 1 of this paper for a grammar formalism for Sta-
tistical MT applications:
1. Linguistically motivated: DIG captures word-

order phenomena within the CFG domain.
2. SDIG dropped the unrealistic word-to-word

isomorphism assumption and is able to capture
structural divergences.

3. DIG is weakly equivalent to CFG.
4. DIG and SDIG are generative grammars.
5. They have both simple formalisms, only one

type of node, and one type of operation.

9 Future Work
We observe from our testing results that the cur-

rent simplified uni-category version of SDIG suffers
from various grammatical errors, both in grammar
induction and decoding, therefore our future work
should focus on word category consistency between
the languages so that a full-fledged version of SDIG
can be used.

10 Acknowledgements
Our thanks go Aravind Joshi, Owen Rambow,

Dekai Wu and all the anonymous reviewers of the
previous versions of the paper, who gave us invalu-
able advices, suggestions and feedbacks.

References
Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas.

2000. Learning dependency translation models as col-
lections of finite state head transducers. Computational
Linguistics, 26(1): 45-60.

Daniel M. Bikel. 2002. Design of a multi-lingual, paral-
lel-processing statistical parsing engine. In Proceedings
of HLT 2002.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics of
statistical machine translation: parameter estimation.
Computational Linguistics, 19(2): 263-311.

Michael John Collins. 1999. Head-driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia.

Yuan Ding and Martha Palmer. 2004. Automatic Learn-
ing of Parallel Dependency Treelet Pairs, in Proceed-
ings of The First International Joint Conference on
Natural Language Processing (IJCNLP-04).

Bonnie J. Dorr. 1994. Machine translation divergences: A
formal description and proposed solution. Computa-
tional Linguistics, 20(4): 597-633.

Heidi J. Fox. 2002. Phrasal cohesion and statistical ma-
chine translation. In Proceedings of EMNLP-02, pages
304-311

Daniel Gildea. 2003. Loosely tree based alignment for
machine translation. In Proceedings of ACL-03

Jan Hajic, et al. 2002. Natural language generation in the
context of machine translation. Summer workshop final
report, Center for Language and Speech Processing,
Johns Hopkins University, Baltimore.

Aravind Joshi and Owen Rambow. 2003. A formalism of
dependency grammar based on Tree Adjoining Gram-
mar. In Proceedings of the first international confer-
ence on meaning text theory (MTT 2003), June 2003.

Aravind K. Joshi and Yves Schabes. Tree-adjoining
grammars and lexicalized grammars. In Maurice Nivat
and Andreas Podelski, editors, Tree Automata and Lan-
guages. Elsevier Science, 1992.

Franz Josef Och. 2003. Minimum Error Rate Training in
Statistical Machine Translation. In Proceedings of
ACL-03), pages 160-167.

Owen Rambow and Aravind Joshi. 1997. A formal look
at dependency grammars and phrase structures. In Leo
Wanner, editor, Recent Trends in Meaning-Text Theory,
pages 167-190.

S. M. Shieber and Y. Schabes. 1990. Synchronous Tree-
Adjoining Grammars, Proceedings of the 13th COLING,
pp. 253-258, August 1990.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):3-403.

Fei Xia. 2001. Automatic grammar generation from two
different perspectives. Ph.D. thesis, University of Penn-
sylvania, Philadelphia.

Kenji Yamada and Kevin Knight. 2001. A syntax based
statistical translation model. In Proceedings of ACL-01

Kenji Yamada and Kevin Knight. 2002. A decoder for
syntax-based statistical MT. In Proceedings of ACL-02

