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Abstract context tham-gramswhich restrict their context to

Automata induction and typed feature theory are de& domain of fixed length (the-1 preceding units).
scribed in a unified framework for the automatic A Phonotactic automaton describes language-

acquisition of feature-based phonotactic resourceSPeCific constraints. Therefore, in order to develop
The viability of this data-driven procedure is il- multilingual p_honotactlc resources, phonotactic au-
lustrated with examples taken from a corpus ofiomata for different languages must be produced.
syllable-labelled data. Phonotactic automata for German gnd English have

already been constructed for the Time Map model
1 Introduction using manual techniques (Carson-Berndsen, 1998,
Carson-Berndsen and Walsh, 2000). Since manual

This paper combines two hitherto distinct areas of;, g ction of phonotactic automata is time con-

research, namely automata mductlor_l _and typed feasIuming and laborious, more recently focus has been
ture theory, for the purposes of acquiring phonotacy| e’ on combining manual and automatic tech-

tic_resources for use in speech technology. In orde iques in order to reduce the level of required hu-
to illustrate the methodology a small annotated datf?nan linguistic expertise. This will become more im-

set for Italian has been ghoéenowever, given an-  ortant when lesser-studied languages are addressed
notated data, the techniques can be applied to a hen an expert may not always be available. The

language thus s_upporting language docum?ntatiof'échniques presented here are regarded as support
at the phonotactic level and _gventually buﬂdm_g UPtools for language documentation which allow in-

a catalogue of reusable multilingual phonotactic régances to be made based on generalisations found
sources. in an annotated data set. The linguist is free to ac-

_There are numerous ways in which phonotactiGogt or reject the suggestions made by the system.
information has been represented for use in speech |, \vhat follows. a technique is described in

technology applications ranging from phrase sttucyhich phonotactic automata are acquired automat-

ture rules ton-grams In this paper, the feature- e,y given annotated data for a language. While
based phonotactic automaton of the Time Mapis technique describes all forms found in the data,

model (Carson-Berndsen, 1998) is used as the repi;q ired automata cannot be considered complete
resentational device. A phonotactic automaton degince the data is likely to be sparse (in this paper

scribes all permissible sound combinations of a lany,q ijjustrate this using a small data sample). How-

guage within the domain of a syllable in terms of ever, by combining phonotactic automata with a

a finite state automaton, describing not only ac+, e feature classification of sounds encountered
tual lexicalised syllables but also idiosyncratic gaps, the data, it is possible to highlight not only dis-

which would be considered well-formed by a na- g ional similarities, but also phonetic similarities

tive speaker of a language. The advantage of thi§ioh can be used to predict gaps in the represen-
representation of phonotactic constraints in the cong,tion  These can be presented to a user (at least a
text of speech recognition is that it allows out- | :ive speaker of a language) who can accept or re-

of-vocabulary items (new words) to be classifiedg . these. Accepted forms are then integrated into
as well-formed if they adhere to the constraints; o phonotactic automaton.

Furthermore, since the phonotactic automaton con-

strains with respect to the syllable domain, it pro-2  Automatic Acquisition of Phonotactic
vides a more flexible and linguistically motivated Automata

We use phonemically annotated data from the EUROMlTh? approach described in this Se_Ction is one alter-
Multilingual European Speech Database. native to a fully manual construction of phonotac-



tic automata whereby they are rapidly acquired au- | /ven/| /ran/ | /ben/| /men/| /twa/
tomatically and at a low cost. Given a corpus of |/kan/|/non/| /ton/| /fjo/ | /ran/
well-formed syllables for the language in question, | /djo/ | /stol | /ste/| /tsa/ | Iplo/
it is assumed here that the phonotactics for the lan-
guage is implicit in the syllables themselves and can
be automatically extracted by examining each syl-
lable structure in turn. An extracted phonotactics

is assumed to describe at least the syllables in thﬁ1e language it describes. ALERGIA proceeds by

corpus and is also assumed to be an approximatiog) ging a Prefix Tree AutomatoPTA) from the
of t_he complete phonotactlcs_ for the language Tromstrings inS. The PTA is a deterministic automa-
which the data was drawn. Since the phonotactics itly, \yith a single path of state-transitions from its
question are finite-state structures and the data avai inique start state for each unique prefix which oc-
able for acquiring phonotactics is a corpus of poSi-, ;< jn g Also, the PTA has a single acceptance
tive examples of well-formed syllable structures, the

h ad dh : I ! path, i.e. path of state-transitions from the start
approach adopted here Is to apply a regular gramg4iq 1o some final state, for each unique string in
matical inference procedure which can learn fro

itve d | The field of oal inf Mg where an initial subset of the transitions in ac-
positive data alone. The field of grammatical Infer- o i e naths for strings are shared if those strings
ence has yielded many important Iearna_1b|||ty r.eSUIt%ave a common prefix. Thus, common prefixes are
for different language classes. A full discussion Ofessentially merged giving the PTA its tree shape.

these results is beyond the scope of this paper hoWr,o pTa fors accepts exactly the strings and

ever see Belz (2000, Chapter 3) for a concise SUMz,qp giate of the PTA is associated with a unique

mary and discussion and Angluin and Smith (1983)prefix of S. ALERGIA also assigns each transi-

for a survey style introduction to the field. Suffice tion in the PTA a frequency count dependent on the
to say tha_t since the formal language Of W?”fforme.dnumber of prefixes it which share that transition.
syllables in a given natural language is finite, it 'SSimiIarIy, each state has an assigned frequency de-

possible to learn the structure of a regular grammagaqent on the number of strings frafwhich are

l.e. the required phonotactic automaton from posi-,.centeq (or equivalently, generated) at that state.
tive data alone i.e. the corpus of well-formed sylla-

The PTA for the Italian syllables of table 1 is shown
bles. . . . ._._In figure 1. Note that final states are denoted by
The choice of regular inference algorithm is in 4o, hje gircles and the single start state is state
fact arbl'grary. Many algorl'thms hgve been devel'figure 1 final stat@6 has a frequency of 2 since the
oped which can perform this learning task. For theyq gccurrences of the syllablea n/ terminate at
purposes of this paper however the ALERGIA (Car-ys sate. All other final states have a frequency of

rasco and Oncina, 1999) regular inference algorithmy g - exactly one syllable terminates at each final

is used. This algorithm as applied to the problem ofgiate - Al other states have a frequency of 0. Simi-

inferring phonotactic automata is described in deta”larly the transition from state to statel3 has a fre-
elsewhere (Kelly, 2004b) . Here, the workings of 4 ,ancy of 3 since three of the syllables in the train-
the algorithm are described by example. Note thaj,y set hegin witht/and the transitions from state
ALERGIA in fact treats any positive data sample ; 17 and from statel7 to 18 have a frequency of

as having been generated by a stochastic procesg.qince o syllables begin with the segment com-

Thus, leared automata are in fact stochastic alsination /s t. The frquencies associated with the

tomata i.e. automata in which both states and trangiates and transitions of the PTA can be used to as-
sitions have associated probabilities, however tradi

> x . X ““'Sociate a stochstic language with each state. The
tional automata can be obtained by simply ignoringsey of 4cceptance paths from a given state determine

these probabilities. Table 1 shows a small subsel,e et of strings in its associated language and the
of the Italian data set consisting of 14 well-formed robability for a given string in the language is eas-

ltalian syllables each consisting of 3 segments anly gerived from the frequencies of the states and
tra?ﬁcrffgsglrf _thfe SAMPAI phqtrrlletlczt allpha%et transitions on the acceptance path for that string.
inferen rithm in- . .
put aesample set ofe peos(i:;)vzI gs?rin@é(rgp?:siit— ALERC'."A uses thg PTA as the. starting po!n_t fqr
ing well-formed syllables in this case) together with constructing a canonical, €. minimal determl_nlstltf,
automaton forS. The canonical automaton is iden

a confidence valuex and outputs a determinis- tified b rforming an ordered rch of th )
tic stochastic automatord which is minimal for €d by perio g an ordered search of the au
tomata derivable from the PTA by partitioning and

2http:/ivww.phon.ucl.ac.uk/home/sampa/ merging subsets of states of the PTA. Using the stan-

Table 1: Training set of Italian syllables.
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Figure 2: Canonical Automaton for the PTA in fig-
ure 1.

driven, the quality of the resulting phonotactics will
be dependent on the quality and completeness of the
syllable corpus. Thus, firstly the corpus must have
high quality annotations. Fortunately, the need for
high quality annotations in corpora is now recog-
nised and has become an essential part of speech
technology research and we assume here that high
Figure 1: Prefix Tree Automaton for the syllables in quality annotations are available. Secondly, if valid
table 1. sound combinations are not detailed in the train-
ing corpus then they may never be represented in

dard order on the prefixes associated with the statd§€ l€arned phonotactics. In order to be complete
of the PTA, pairs of states are subsequently examt€ learned automaton must moa valid sound
ined to determine if they generate a similar stochascombinations, however. In this case, generalisation
tic language within a statistical significance boundt€chniques must be applied in conjunction with the
dependent on the supplied confidence valuelf mfere_nce algor_lthm in order to |d_ent|fy and rectify

a pair of states are deemed to statistically generat@@Ps in the training corpus. This ensures that the
the same language then they are merged into a Si,ﬁa_cqglred phonof[actlcs describes as close an approx-
gle state and the state-transitions of the automatotination as possible to the complete phonotactics for
are altered to reflect this merge. The canonical authe language. One such approach to generalisation
tomaton is identified when no more state merges ar@/hich operates independently of the chosen regular

possible. Figure 2 shows the canonical automatofiference algorithm is described in Kelly (2004a).
derived from the PTA in figure 1. An alternative technique is discussed in section 3.

Since automata are derived from training sets of Finally, note that learned automata represent the
syllables through the use of a language indepenfirst stage in the development of multilingual phono-
dent regular inference algorithm, the procedure delogical resources calledultilingual Time Maps
scribed above is generic and language independerTMs) (Carson-Berndsen, 2002). An MTM ex-
However, the procedure is of course dependent otends the single tape model of a phonotactic au-
the existence of a corpus of training syllables fortomaton to a multitape transducer whereby the dif-
the language in question and since it is entirely datderent transition tapes detail linguistic information

e 11
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of varying levels of granularity and related to the ateness declarations (Bird and Klein, 1994).

original segment label. An MTM might have in-  The interaction of finite-state automata and typed
dividual tapes detailing the segment, the phonologfeature structures is depicted in figure 3. Transitions
ical features associated with that segment, the avare exhaustively defined over a set of type labels
erage duration of the segment in a particular sylwhich are characterised by a unigue position in the
labic position etc. In particular, the segment tape ofunderlying type hierarchy. This hierarchy is key to
the learned phonotactic automata can be augmentabe compilation of well-formed segment definitions
with additional tapes detailing feature type labelswhich are achieved by unification of partial feature
associated with the segments. These additional typstructures. In the simplest case, only atomic types
label tapes are discussed in more detail in the folappear on the arcs which means that types corre-

lowing section. spond to singleton sets. This can be achieved for

a phonemically annotated corpus (just like the cor-

3 Phonotactic Automata and Typed pus in figure 1) by replacing all occurrences of a
Feature Structures phoneme with its appropriate atomic type label.

Lexical knowledge representation in computational 7000

. . type00
phonology has already made extensive use of in
heritance hierarchies to model lexical generalisa:
t|0ns ranglng from h|gher |eve| prosoc“c Categones[\mlceless] typezs ype33 [frlcatlve]
to the phonological segment. In contrast to the ap: : ‘ :
proach presented in this section, the work describe( ;. oioee ’/‘ . [ ltricative
in (Cahill et al., 2000) is set in an untyped fea- ericorive; | SLOREZ.  [BPSETT L entan)
ture system using DATR to define inheritance net-
works with path-value equations (Evans and Gaz- [ tspeod | | typeos || typeot || type0s |

dar, 1996). The merits of applying a type discipline WX
even to untyped feature structures is considered il

Wintner and Sarkar (2002) from a general perspec [tricative a ]
tive and in Neugebauer (2003b) with special refer- | lebiodental &
ence to phonological lexica. | voiceless)

Previous proposals to cast phonological structure
in a typed feature system can be found in Birdrigure 3: Example of the type-augmented automa-
and Klein (1994) and Walther (1999). However, ton for [traf].
there are two major differences with regard to our
work. First, while types may denote sets of seg- The semantics of the type system assumed here
ments, we go beyond the idea of sets as arc labels iare extremely simple: the denotation of a parent
finite-state automata (Bird and Ellison, 1994; Eis-type in the directed acyclic graph that constitutes a
ner, 1997; van Noord and Gerdemann, 2001) whichiype hierarchy is defined as the union of the deno-
says that boolean combinations of finitely-valuedtation of its children, whereas a type node without
features can be stored as a set on just one arc, rathehildren denotes a unique singleton seit{laci et
than being multiplied out as a disjunctive collectional., 1989). Complex type formulae — as constructed
of arcs. This choice has no theoretical consequencdsy logical AND — are implicitly supported for the
but is merely a convenience for grammar develop-case of intersections since the greatest lower bound
ment (Bird and Ellison, 1994). The difference in condition (Carpenter, 1992) is assumed: its the for-
our approach consists in the hierarchical orderingnal definition (also known ameej states that in
of types (or sets) which relates each arc label ta bounded complete partial order that is an inheri-
any other type in a given phonological typed featuretance hierarchy, two types are either incompatible or
system; such type-augmented automata have be@ompatible. While in the first case, type constraints
formally defined in Neugebauer (2003c). Secondare shared, in the latter case we require them to have
inheritance of type constraints is assumed to gova unique highest common descendant. As suggested
ern all subsegmental feature information (Neugedin the LKB system (Copestake, 2002), these types
bauer, 2003b). Since here the crucial inheritancavill in our approach be generated automatically if a
relationships are induced automatically, we elabotype hierarchy does not conform to this condition.
rate on work by Walther (1999) where a complexThese types — such gtbtype2in figure 3 — do not
hand-crafted type hierarchy for internal segmentahave their own local constraint description and thus
structure is mentioned instead of simple appropri-do not rely on purely linguistic motivation.



A useful application of the greatest lower bound [voiceless]
condition seems to be the possibility that we can re-
fer to a set of compatible types simply by reference
to their common descendant. As indicated by the
hierarchical structure which is built ovéype09in
figure 3, atomic types encode maximal information
whereas non-atomic types characteristically contain
only partial information. Thus, by defining transi- [labiodental]
tions over types such dagpe34we might elegantly
capture phonotactic generalisations over a subset of
fricative sounds. This naturally raises the question
as to how the hierarchies are actually determined;

a suitable algorithm is described below, a detailed _ _ , )
specification is provided in Neugebauer (2003a). Figure 4: Induction of subsumption hierarchies.

Given a set of phonological feature bundles, an
inheritance hierarchy may be generated in the folper nodes, the total tree ordermust relate to the
lowing way. For each feature which is defined for apartial lattice ordek in the following way:o; < o2
linguistic object (here: a phoneme) we compute thémplies o; < o0,. This is how recently inserted
corresponding extent or set description. The algonodes are greater than the actual set description with
rithm then inserts these set descriptions into a latticéespect to< and will be considered latér.
and looks them up at the same time: it asks for the Once we have computed all set descriptions, we
smallest description that is greater than a singletofinally assign types and type constraints to all nodes
seto with respect to the total ordex used inside in the hierarchy. Therefore, the set of feature struc-
the tree. Every fully specified feature structure fortures which constituted the starting point of our al-
a given phoneme will deliver such a singleton setgorithm has now been computed into a data struc-
given that no two segments have been defined usintyre which supersedes the previous level of infor-
the identical feature structure. mation in terms of a type inheritance network. The

The algorithm can be employed to recursivelylast step consists of the insertion of greatest lower
compute all set descriptions of a feature system bypounds thus generating a well-formed lattice. Fig-
starting from the smallest set description of the lat-ure 5 visualises the final type inheritance hierarchy
tice. We need the lattice structure to encode thdOr an ltalian corpus containing 22 phonemes, each
inheritance relationships between sets; in the concorresponding to a unique atomic typgreod, ...,
text of lattice computation we will refer to these setstyP€23. While the types numbered 23 to 39 are
in terms of nodes. Every set descriptioas two ~ generated by our set-theoretic algorithm, the great-
lists associated with it: the list' of its upper nodes €St lower bounds (the glb-types) are required by the
and the listo, of its lower nodes. One node may formal characteristics of our type system.
be shared by two different set descriptions as their Any of the non-atomic types may be used to ex-
upper node. While the algorithm processes each d?ress generalisations over sets of phonological seg-
those two set descriptions, their shared upper nod@ents since each partial feature structure subsumes
must be detected in order to configure the relation&ll compatible fully specified segment entries. Ad-
ships correctly. To this end, all set descriptions areditionally, non-atomic nodes may be associated with
stored in a search tre€. Every time the algo- constraints which define appropriateness declara-
rithm finds a node it searches for it in the trBgo  tions for linguistic signs of a particular type. For
find previously inserted instances of that set descripexample, all segments are at least characterised with
tion. If the description is found, the existing lists respect to four attributes (phonation, manner, place
of nodes are updated; otherwise the previously un@nd phonetic symbol). The next section sketches
known set description is entered into the tree. Figurétn application of typed feature structures addressing
4 demonstrates this procedure for the feature bundle—; , -

L. . . Just computing the (ordered) set descriptions turns out to
{fncat've’_Iap'Odema_d’Vo'celegs_s Once the Sm_a”eSt be more effective since no hierarchy has to be computed. Com-
set description [labiodental] is not able to includeputing set descriptions as well as their hierarchical structure

one of segments which are successively added to itkes twice as long for the same input when the algorithm is
a new upper node is created. used. This is also due to memory usage: while the computation
L . of all set descriptions is only based on a single predecessor, the

To make sure that all set descriptions that are inintegration of a lattice algorithm stores all set descriptions in a

serted into the tree are also considered for their uppersistent search tree.

[fricative]
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t 33y//ﬁglbtype1 \]322 o | ~ype_10 press generalisations. To ensure that automata are
itype. &4 i - ! . ..
PPPeE [ | | learned over types the segments in the training data
! — { .
' ' gbypettr must be replaced with type labels that correspond to

{

| /lglotypes’

,“typeisow ’ | g ‘,ﬁt e 20 \;,‘typeﬁ singleton sets containing onIy_the original segment.
| \V}’glbtypezﬁjﬁ g f}:‘: I For example, the syllable a n/ in table 1 would be
If \ / ’ W / ; ;
/ ,\z}glbtypeswtypefog d(,‘ D oyporal replaced bytype_zOS type01 typelONote thatlnthl_s
! tye 29, otypest 1 Pe-03 I/ i 1 case the transitions of the learned automaton will be
/ il Irtype 18 i « labelled with type labels rather than segments
typeioo(\/\ ,";' j0lotype7 il o6 0o i (r / ;\,type706 ‘o‘ ) . .
}t 28!;»rf;glbtypeg%typej . j«.//‘ / x‘ In the first case, the type hierarchy allows more
| e S /i | ’,’ ..
| pe- /&;zjglbtypeiﬂ ifpe.17 f;ff/—f’? [ type_os | compact automata to be constructed by examining
\ I | jaibtype1@/ I ﬂ the set of transitions emanating from each state of
”\ ﬂ’l/‘,,glbtype10 /! i I | -
\ Bl ype32f YR IO L e 12 e 16 the learned automaton. If each of the transitions em-
k I i/ ;/ — ) - . . .
‘] P2 e 2'f1- e 81 I/ [yee anating from a given statg have the same destina-
\ PR B e o5 r’ tion states, then the type labels on each transition
| / | _type 38 type 01 |
/ s | are examined to determine if they have a common
39« WPe22 — ancestor node in the hierarchy. If a common an-
“type_21

cestor exists and if no other type label is the child
of that parent other than those appearing on the set
Figure 5: Complete generated type hierarchy. of transitions then they can be replaced by a sin-
gle transition froms; to s, labelled with the parent

data sparseness in automatically learned phonotaéyPe. The topmost diagram of figure 6 illustrates a

tic automata. small section of the learned automaton for the full
Italian data set. In this case there are two transi-
4 Examples tions from state22 to state35, one labelled with

The integrated approach utilising both automata infyPe15and the other labelled wittype06 Refer-

duction and typed feature theory as presented ifind to the hierarchy infigure 5, a common parent of
the previous sections requires a phonemically anyP&l3andtype06s type30and the only children of

notated corpus. Each phoneme is then mapped toPe30aretypelSandtype06 Therefore these two
canonical feature bundle which is based on the pholf@nsitions can be replaced by the single transition
netic characteristics specified in the Internationaf@Pelled withtype30
Phonetic Alphabet (IPA); the features used in Fig- Note that replacements of the kind described
ure 3 serve as an example. Our set-theoretic algmbove serve only to produce more compact au-
rithm operates on these feature structures thus déemata and do not extend the coverage of the au-
riving a type inheritance network for the corpus intomaton. However, it is possible to use the type
guestion. Note that phonemes and features are naierarchy to achieve a more complete phonotactics.
corpus-specific but rather a subset of a languageFhe middle diagram of figure 6 shows another small
independent set of linguistic descriptions that is thesection of the learned automaton for the full Italian
IPA. As a result, we obtain a representation of ourdata set. Referring again to the hierarchy in figure 5,
annotation alphabet (phoneme and feature labels)can be seen thaype29is a parent ofypeldwhich
which exclusively refers to (sets of) linguistic ob- labels the transition from stafeto stater and is also
jects via their corresponding types. This is exempli-a parent otypel8which labels the transition from
fied in figure 3 for an individual sound and in figure state0 to states. Similarly, type25s a common par-
5 for the full corpus. ent oftype06andtypeOlwhich label the transitions
Once the complete type hierarchy has been gerfrom state7 to statel 7 and staté to state25 respec-
erated the inheritance relationships described can ke/ely. Finally, type35is a common parent aypel0
used to construct more compact finite-state strucandtypel4which label the transitions from stat@
tures than the automata learned over the originatio state35 and state5 to state35. If each type label
data set. In addition, the linguistic generalisationds replaced by its common parent then both transi-
described by the hierarchy can be used to addred®ns from state) are labelled withtype29 Also,
data sparseness in the training corpus. To illustratéhe paths emanating from the destination states of
this, the automata are learned over type labels rathehese transitions (statésand 7) are both labelled
than segments. Since all transitions of the learneavith type25 In this case staté and stater can be
automata will now be labelled with types the infor- merged into a single state. A similar state merging
mation in the feature hierachy can be used to exean be performed for statéz and35 resulting in a



new automaton as shown in figure 6. This processynthesis based on a combination of data-driven and
yields a more general phonotactics sitygee29ac-  user-driven techniques.

tually denotes the segment get m, b} andtype25

denotes the s€, i, e, E}. Thus, the segmepthas Acknowledgements

been effectively introduced as a new onset consoThis material is based upon works supported by
nant cluster that can precede any vowel in the sethe Science Foundation Ireland under Grant No.
denoted bytype25 Also, as a result of introducing 02/IN1/ 1100. The opinions, findings and conclu-
type25the additional vowel$ and £ have been in-  sions or recommendations expressed in this mate-
troduced as new vowel clusters. Note however thatial are those of the authors and do not necessarily

type35denotes exactly the s¢in, n} and sononew reflect the views of Science Foundation Ireland.
coda clusters are introduced.
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