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Abstract 

 We investigate an aspect of the relationship between parsing and corpus-based methods in NLP that has 

received relatively little attention: coverage augmentation in rule-based parsers.  In the specific task of 

determining grammatical relations (such as subjects and objects) in transcribed spoken language, we show 

that a combination of rule-based and corpus-based approaches, where a rule-based system is used as the 

teacher (or an automatic data annotator) to a corpus-based system, outperforms either system in isolation.  

 
 

1 Introduction 

Corpus-based methods in natural language processing have advanced rapidly in the past decade.  

Their relevance to parsing and natural language analysis is vast, including lexical and structural 

disambiguation, and even purely data-driven parsers.  In this paper we investigate an aspect of the 

relationship between parsing and corpus-based methods in NLP that has received relatively little 

attention: coverage augmentation in rule-based parsers.  While probabilistic grammars have been 

widely used for disambiguation in rule-based parsers, it is less common to find data-driven methods 

designed to remedy the lack of grammatical coverage of a system.  Although coverage issues are 

largely inexistent in modern treebank-trained statistical parsers, rule-based parsers driven by hand-

written grammars are still widely used in a variety of applications, as they often provide for deeper 

linguistic analysis (i.e. in the form of detailed feature-structures) and are also easier to tune for high 

levels of accuracy on the data for which they were developed.  Obtaining very broad coverage with 

such grammars is, however, a well-known problem (Sagae, Lavie & MacWhinney, 2001; Black, 

Lafferty & Roukos, 1992). 

 The specific task in our experiments is the identification of grammatical relations (GRs), such as 

subjects, objects and adjuncts, in transcripts of conversational language.  The data used in our 

experiments were taken from the CHILDES database (MacWhinney, 2000) and consists of utterances 

spoken by parents to their children.  Certain characteristics of this task make it particularly suitable 

for the illustration of the issues in discussion.  First, a large corpus of domain-specific data annotated 

with grammatical relations is not available for training a data-driven system.  Second, analysis of 

spontaneous conversational language is known to be a challenging area for rule-based parsers in 

terms of coverage.  Our approach involves a high-precision rule-based parser, which is used as a 



teacher for a simple system comprised of data-driven NLP tools.  The combination of the knowledge 

encompassed in the grammar-driven system and domain-specific unlabelled data allows us to train a 

corpus-based system which, although less accurate than the original rule-based parser, does not suffer 

from the brittleness associated with hand-written grammars.  We show that even a very simple 

combination of the two systems results in precision and recall of grammatical relations that are 

superior to those of either system in isolation. 

2 Identifying Grammatical Relations 

Because precision and recall of constituent bracketing are often used as parser evaluation metrics, it is 

common to envision a description of the syntactic constituent structure of sentences as the output of a 

parser.  However, different kinds of parsers analyze sentences in different ways and with different 

purposes, and a diagram representing constituent structures is often not the most appropriate type of 

output.  Carroll, Briscoe and Sanfillipo (1998) propose that precision and recall of grammatical 

relations be used for parser evaluation, and describe some advantages of using grammatical relations 

over other evaluation metrics.  Our use of GRs is motivated by the crucial role of such information in 

the measurement of syntactic complexity in the field of child language research, through schemes 

such as IPSyn (Scarborough, 1990) and LARSP (Fletcher & Garman, 1988). 

2.1 Using a Rule-Based Parser for Grammatical Relations 

The starting point of our experiments was the system described in (Sagae, Lavie & MacWhinney, 

2001) for syntactic analysis of data from the CHILDES database.  The main part of this system is 

composed of a robust rule-based parser called LCFlex (Rosé & Lavie, 2001), and a handcrafted 

domain-specific unification grammar.  LCFlex’s robustness comes from strategies designed 

specifically for parsing spoken language, such as word skipping and limited constituent insertion.   

 The output of this rule-based system is a syntactic feature structure corresponding to the input 

sentence.  Extracting GRs from the feature structure produced by LCFlex is simple: there is a 

grammatical relation between the head word of each sub-structure and the head word of the outer 

structure containing the sub-structure in question.  Each grammatical relation is named after the 

syntactic function of the sub-structure in relation to its outer structure.  This process is illustrated in 

figure 1. 

 A central challenge in this work was the trade-off between the grammar’s coverage of the corpus, 

and the accuracy of the analyses produced by the parser.  The well-known problem of grammatical 

coverage found in high precision rule-based parsers is accentuated in spoken language, because of the 

common deviations from traditional rules of grammar found in casual verbal interactions.  In addition 

to the conversational characteristics commonly found in sentences in casual spoken language 

(vocatives and communicators, elided subjects, false starts), the language found in the CHILDES 

database also features the absence of auxiliaries in places where their use is clearly intended.  



Providing coverage for casual language with conversational features requires that a grammar should 

handle syntactic constructions found in “standard” language, as well as the many variations found 

mostly in spoken language.  By increasing grammar coverage with the addition of rules, more 

ambiguity is introduced, causing the search for the correct analysis to be more difficult.  This trade-

off between recall and precision was addressed in the rule-based system with a constraint relaxation 

approach, supported by robustness features of the parser, and implemented as a multi-pass parsing 

strategy.  The first passes were designed to provide the least amount of ambiguity, while sacrificing 

coverage.  When these failed, coverage was increased with the introduction of robust parsing methods 

that permitted word skipping, word insertion, and part-of-speech ambiguity. At each pass, only the 

sentences for which the system fails to find an analysis are identified and sent for reparsing in further 

passes. Each pass thus provides for an increasing amount of coverage (at the expense of accuracy).  

The system attempts to parse a sentence until either an analysis is found, or it decides that the 

likelihood of finding a correct analysis by further constraint relaxation is too low to consider, in 

which case it reports a failed parse. 

 Using a strict evaluation metric for complete feature structure matches, the rule-based system 

achieved 78.5% accuracy (or 90.2% accuracy, if only sentences for which an analysis was reported 

are considered), according to the original evaluation in (Sagae, Lavie & MacWhinney, 2001).  Of 

these complete feature structure matches, 36.5% (or 21% of all sentences) were obtained only after 

 
Syntactic Feature Structure (simplified): 
 
 
   Subject   Word:  I 
   Category:  PRONOUN 
  
   Object    Determiner    Word:  the 
       Category: DETERMINER 
 
   Word:  dog 
   Category:  NOUN 
 
   Predicate:   see 
   Word:      saw 
   Tense:      PAST 
   
 
Grammatical Relations: 
 
                                  Object                             
                                                               
                                                               
                   Subject            Determiner                             
                                                               
                                                               
               I       saw       the       dog  
 

Figure 1: Syntactic feature structure and corresponding grammatical relations 



the introduction of one or more robustness techniques for handling spoken language.  Because the 

system was evaluated on complete matches only, these results cannot be mapped directly into 

precision and recall figures of grammatical relations.  However, because about 12% of the test 

sentences received no analysis due to parse failure, it is clear that recall of grammatical relations was 

sub-optimal, in spite of high precision. 

2.2 A Simple Data-Driven System for Grammatical Relations 

As an alternative to the rule-based parser that suffers from coverage limitations that can result in 

complete parsing failure, we designed a simple and robust data-driven method for extracting GRs 

without the need of manually annotated training material.  A key observation is that while the rule-

based parser can occasionally fail to parse, the analyses found when parsing succeeds are of high 

precision.  We can therefore use the rule-based parser in order to automatically create a large volume 

of labeled training data for a data-driven approach.  We first parse a large corpus of in-domain data 

using the rule-based parser.  Text that is successfully parsed by the rule-based parser is then used to 

create “labeled” examples for training the data-driven approach.  One obvious weakness of this idea 

is that we are training the data-driven approach solely on material that can already be parsed by the 

rule-based parser, and it is thus questionable whether the resulting trained data-driven parser can 

learn how to correctly parse data that the original rule-based parser was unable to parse.   Our 

conjecture was that for the task of extracting GRs, we could in fact develop a data-driven approach 

that extends the coverage of the rule-based parser using the above approach. 

 A simple data-driven system for assigning GRs to words was built as follows.   We trained an off-

the-shelf part-of-speech tagger with part-of-speech/GR-label pairs, instead of the usual word/part-of-

speech-tag pairs.   The GR labels associated with the words in the training data were extracted from 

the analyses generated by the rule-based parser.  Because valuable information contained in the 

words themselves is lost in the assignment of GR tags to part-of-speech tags alone, the output of this 

tagger is further refined by an error-driven transformation-based learning strategy that takes the 

actual words into account, implemented using the fnTBL toolkit (Ngai & Florian, 2001). 

 While the above GR “tagger” can assign grammatical relation labels to words, we still have to 

determine the target of the directional link established by the grammatical relation indicated by the 

label.  To accomplish this, the raw text input sentence was also parsed using a statistical parser 

(Charniak, 2000) trained on the Penn Treebank (Marcus et al., 1993), yielding an approximation of 

the skeletal constituent structure (parse tree) of the sentence.  A slightly modified version of the 

“treebank constituent head table” originally designed by Magerman (1995) is then used to determine 

the heads of constituents in the parse tree.  By stipulating that there is a directional link from every 

word in a constituent (except for the head) to the head of the constituent, and applying that notion to 

the entire parse-tree, we determine a set of unlabeled dependency links for the sentence.  The 



combination of the unlabeled links and the GR labels results in our target output of grammatical 

relations. 

2.3 Identifying Grammatical Relations with Rule-Based and Data-Driven Methods 

Once we have established a corpus-based procedure that makes GR assignments to every input 

sentence, regardless of whether or not it can be parsed by the rule-based system, we can attempt to 

determine how much a system trained on the output of rule-based parser can improve the precision 

and recall of GRs obtained with the rule-based system alone.  Although several ways of combining 

the outputs of the rule-based and data-driven systems can be imagined, based on the strengths and 

weaknesses of each system in identifying specific GRs, we combined the two systems in a very 

simple way: the output of the data-driven system is used when parsing with the rule-based system 

fails.  This should serve as a lower bound on the possible improvements in recall and f-measure.  It is 

also worth noting that we make no claim that the corpus-based system we used in our experiments 

provides the best results we could achieve training on the output of the LCFlex-based system.  It is, 

rather, a simple combination of readily available off-the-shelf NLP tools, and serves to illustrate how 

corpus-based techniques may be used to improve the performance of a rule-based system.  A well 

developed statistical system for identifying GRs would surely perform better, and the design of such a 

system is planned as future work. 

3 Results and Discussion 

To evaluate the systems described in section 2, we took an unused portion of the CHILDES database 

consisting of 505 words (118 sentences) as a test set, hand-labeled it with four grammatical relations 

(subject, object, adjunct, and predicate nominal), and obtained GR assignments for this test set using 

three different setups: running the rule-based system alone, the data-driven system alone, and the 

combination of the two systems.  The number of instances of each GR in the test set is shown in table 

1.  Each setup was evaluated on precision and recall of the four GRs.  The results can be seen in 

tables 2, 3, and 4, respectively (F-score is the harmonic mean of precision and recall). 

 While the rule-based system does achieve reasonably high precision in the recognition of these 

grammatical relations, its overall F-score (harmonic mean of precision and recall) is somewhat low 

Grammatical Relation 
 

Number of instances in test set 

Subject 76 

Object 50 

Adjunct 51 

Predicate nominal 16 

Table 1: Number of instances of each GR in the test set 



due to the lack of recall caused by parse failures, where no grammatical relation information is 

generated.  Conversely, while the simple corpus-based system has better recall measures on two of 

the four GRs tested, its precision is lower than the rule-based system’s on all four GRs.  Of the 118 

sentences in the test set, the rule-based system failed on 20, or 16.9%.  Table 5 shows the number of 

instances of each GR in the 20 test sentences for which the rule-based parser failed to report an 

analysis.  The performance of the data-driven system on those 20 sentences can be seen in table 6. 

 The combination of the two systems produced improved recall (and F-scores) on three out of the 

four GRs tested.  The exception was the predicate nominal relation, with which the corpus-based 

system clearly had problems, most likely due to the relatively lower frequency of that relation.  Note 

that while there are only three instances of that relation in the 20 sentences where the output of the 

data-driven parser is used, overall precision drops significantly from what the rule-based system 

produces.  This is due to the data-driven system erroneously finding a number of instances of the 

predicate nominal relation.  The use of a validation set could determine if a situation such as this 

occurs, so that the sharp decline in precision (which caused the decline in F-score) is avoided.  It 

remains to be seen how the use of a larger amount of unlabelled data, a more comprehensive 

manually annotated test set, and a development set would affect the overall performance of the 

 

Grammatical Relation 
 

Precision Recall F-score 

Subject 0.93 0.68 0.79 

Object 0.78 0.56 0.65 

Adjunct 0.77 0.75 0.76 

Predicate nominal 0.91 0.67 0.77 

Table 2: Results using only the rule-based system. 
 
 

Grammatical Relation 
 

Precision Recall F-score 

Subject 0.75 0.74 0.74 

Object 0.67 0.64 0.65 

Adjunct 0.69 0.43 0.53 

Predicate nominal 0.24 0.33 0.28 

Table 3: Results using the statistical system 
 
 

Grammatical Relation 
 

Precision Recall F-score 

Subject 0.84 0.84 0.84 

Object 0.78 0.72 0.75 

Adjunct 0.77 0.80 0.79 

Predicate nominal 0.77 0.67 0.71 

Table 4: Results using the rule-based/data-driven combination 
 



combined system.  However, the results as they stand already show that this combination of the rule-

based and data-driven systems outperforms either system in isolation. 

4 Related Work 

Carroll and Briscoe (2002) present a wide-coverage parser that outputs grammatical relations, and 

discuss the trade-off between precision and recall of grammatical relations, as well as useful ways to 

manipulate such trade-off to achieve high precision at the expense of recall.  This trade-off is also 

observed in our experiments.  However, our angle on this issue focuses on the combination of 

systems with different precision/recall behavior, to achieve a higher combined F-score. 

 Blaheta and Charniak (2000) discuss the assignment of Penn Treebank (Marcus et al., 1993) 

function tags to constituent structure trees.  They use a statistical approach to assign tags (similar in 

many ways to grammatical relations) to parse tree nodes.  Our corpus-based model also uses parse 

trees, but only to determine that a GR exists between two words.  The work of Gildea and Palmer 

(2002) has shown that the use of constituent structure information is useful in determining predicate-

argument structure.  While their work involved propositions of a more semantic nature, we believe 

their results to be applicable to the identification of grammatical relations. 

5 Conclusions and Future Work 

We have presented a way to combine rule-based and data-driven NLP techniques in the extraction of 

grammatical relations.  We have shown that starting with a rule-based system, we can use unlabeled 

data and a corpus-based system to improve recall (and F-score) of grammatical relations.  While the 

Grammatical Relation 
 

Number of instances in test set 

Subject 20 

Object 14 

Adjunct 8 

Predicate nominal 3 

Table 5: Number of instances of each GR in failed sentences 

 

Grammatical Relation 
 

Precision Recall F-score 

Subject 0.60 0.60 0.60 

Object 0.80 0.57 0.67 

Adjunct 0.75 0.37 0.50 

Predicate nominal 0.00 0.00 0.00 

Table 6: Results using the data-driven system on failed sentences 



experiment presented included a sub-optimal corpus-based system and only a very simple 

combination scheme, the results were conclusively positive.  As future work, we plan to develop a 

statistical model of GRs, including both links and labels, expand our systems to recognize a wider 

range of GRs, and explore different ways of combining results from multiple systems. 
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