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Abstract

We show that a well-known algorithm to compute the intersection of a context-free language
and a regular language can be extended to apply to a probabilistic context-free grammar and
a probabilistic finite automaton, provided the two probabilistic models are combined through
multiplication. The result is a probabilistic context-free grammar that contains joint information
about the original grammar and automaton.

1 Introduction

One of the foundations of the theory of tabular context-free parsing was established by [4].
They showed that the intersection of a context-free language Lg and a regular language L
was again a context-free language. Their proof consisted in an effective construction of a
context-free grammar Gn generating Lg N L from a context-free grammar G generating Lg
and a finite automaton M accepting L.

By taking the finite automaton M to be of a special kind, accepting only a single string,
this result anticipated many of the early tabular parsing algorithms, such as CKY parsing [2],
Earley’s algorithm [16] and the algorithm for tabular simulation of pushdown automata from
[19, 6]. Techniques for parsing of word graphs used in speech recognition systems [3] are based
on the same theoretical framework.

A very useful property of the construction by [4] is that the resulting grammar G, is structured
similarly to the original grammar G. More precisely, G encodes the set of all parse trees, formed
according to G, of strings in LgN L, and individual parse trees can be extracted in an effective
manner.

In this article we investigate the extension of the construction to probabilities. We show
that for two probability distributions pg and paq on strings, one described by a probabilistic
context-free grammar G and one described by a probabilistic finite automaton M, there is a
probability distribution pn defined by pn(w) = % - pg(w) - pam(w), for an appropriate constant
C, such that pn is described by a probabilistic context-free grammar G~. Moreover, each
derivation dn in Gn can be related to a derivation d in G and a computation ¢ in M, such
that pn(dn) = % - pg(d) - pam(c), where the probability functions pn, pg, pas on derivations or
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computations are related to probability functions pn, pg, paq on strings in a natural way, as will
become clear in the sequel.

Our work is motivated by the increasing interest in models that combine submodels of context-
free power dealing with global structure and submodels of finite-state power dealing with local
constraints within short sequences of words or parts of speech, as exemplified by [21, 23, 5, 25].
A different but related way to combine constraints on structure and constraints on words is the
lexicalization of context-free models [13, 11, 10].

There are two aspects of our approach that together distinguish it from others. First, we
assume that probabilistic grammar G and probabilistic finite automaton M are developed
independently; the probabilities can be determined e.g. by supervised or unsupervised learning
[22]. When we combine G and M into Gn, we do not use any additional training material.
Training G and M separately may avoid the scarce data problem that could result from training
a combined model Gn directly.

Secondly, the resulting grammar G has elegant properties such as properness and consistency.
These can be useful for identifying ‘optimal’ derivations, i.e., those with the highest probability.
Typical algorithms for this that rely on techniques such as best-first parsing [9] and beam search
[8] build derivations incrementally, connecting parts of derivations into larger parts if they seem
promising to eventually grow into the optimal derivation, or one that approximates it. In order
to estimate how promising partial derivations are, it may be advantageous to have the set of
all derivations encoded in the form of a single, normalized model such as Gn.

Our construction of Gn out of G and M heavily relies on renormalization of probabilistic
context-free grammars, by means of an algorithm that has been described before but, as far as we
know, never in a very explicit form. The existence of renormalization was stated on p. 149 of [12],
but the construction itself and the proof of correctness were embedded into the more general,
but less transparent treatment of Gibbs distributions. Also [1] treated renormalization, but only
inside the proof of their Lemma 5, and crucial aspects were not made explicit. Furthermore
their proof was incomplete.

The paper is organized as follows. After giving standard definitions in Section 2, we present
an algorithm to renormalize probabilistic context-free grammars in Section 3, with proofs of
correctness. Section 4 discusses the combination of a probabilistic (or more generally, weighted)
context-free grammar and a probabilistic (or weighted) finite automaton. An application to
computation of infix probabilities is discussed in Section 5. A different way of combining

probabilistic grammatical models is investigated in Section 6.

2 Preliminaries

Many of the definitions on weighted and probabilistic context-free grammars are based on [26, 7]
and the definitions on weighted and probabilistic finite automata are based on [24, 29].

A weighted context-free grammar (WCFG) G is a 5-tuple (X, N, S, R, u), where X and N are
two finite disjoint sets of terminals and nonterminals, respectively, S € N is the start symbol,
R is a finite set of rules, each of the form A — «, where A € N and e € (¥ UN)*, and p is a
function from rules in R to non-negative real numbers.

In what follows, symbol a ranges over the set X, symbols w, v range over the set X*, symbols
A, B range over the set N, symbol X ranges over the set XU N, symbols a, (3, range over the



set (X' U N)*, symbol 7 ranges over the set R, and symbols d, e range over the set R*. With
slight abuse of notation, we treat a rule 7 = (A — «) € R as an atomic symbol when it occurs
within a string dme € R*. The symbol e denotes the empty string. String concatenation is
represented by operator - or by empty space.

For a fixed WCFG G, we define the relation = on triples consisting of two strings «, 5 €
(Y UN)* and a rule 7 € R by: a = 3 if and only if a is of the form wA§ and § is of the form
w~yd, for some w € X* and § € (X UN)*, and 7 = (A — 7). A left-most derivation (in G) is a
string d = 7y - - - T, m > 0, such that ag ZyB...2 Qo for some ag, ..., am € (X UN)*;
d = € is always a left-most derivation. In the remainder of this paper, we will let the term
‘derivation’ refer to ‘left-most derivation’, unless specified otherwise. If g = --- = qy,, for
some ag, ..., am € (YU N)*, then we say that d = 71 - - - 7, derives a,, from ap and we write
g 4 Qm; d = € derives any g € (X U N)* from itself.

For o, € (Y¥UN)* and d = my -+ - € R*, m > 0, we define p(a 4 B) =TI, wim) if
a2 3 and pla 4 B) = 0 otherwise. The weight pu(w) of a string w € X* is defined to be
S an(S 2 w).

A WCFG G = (X, N, S, R, u) that is such that u is a function from R to real numbers in
the range [0, 1] is said to be a probabilistic context-free grammar (PCFG). A PCFG is said to
be proper if -, (A L a) =1 for all A € N, ie., if the weights of all rules 7 = (A — «)
with left-hand side A sum to 1. A WCFG is said to be convergent if 37, ,, n(S £ w) < oo.

A WCFG is said to be consistent if >7, , n(S 4 w) = 1. Consistency implies that the
WCFG defines a probability distribution on the set of terminal strings. Although consistency
is often considered in the context of PCFGs, we may also consider consistent WCFGs that are
not PCFGs. There is a practical sufficient condition for consistency that is decidable [7].

A WCEFG is said to be reduced if for each nonterminal A there are dy,ds € R*, wy,ws € X*
and # € (¥ UN)* such that u(S A w1 AB) - p(w1 AB & wiwe) > 0. In words, if a WCFG is
reduced, then for each nonterminal A, there is at least one derivation d;ds with weight strictly
larger than 0 that derives a string wjws from S and that includes some rule with left-hand side
A. A WCFG that is not reduced can be turned into one that is reduced and that assigns the
same weights to strings, provided in the original WCFG we have ) p(w) > 0. This reduction
consists in removing from the grammar any nonterminal A for which the above conditions do
not hold, together with any rule that contains such a nonterminal; see [2] for reduction of
context-free grammars, which is very similar.

A weighted finite automaton (WFA) M is a 6-tuple (X, Q, qo. g5, T, V), where X' and @ are
two finite disjoint sets of terminals and states, respectively, qo, gy € @) are the initial and final
states, respectively, T is a finite set of transitions, each of the form r = s, where r, s € Q and
a € ¥, and v is a function from transitions in 7" to non-negative real numbers.!

In what follows, symbols ¢, 7, s range over the set (), symbol 7 ranges over the set T, and
symbol ¢ ranges over the set T*.

For a fixed WFA, we define a configuration to be an element of @ x X*, and we define the

7
relation F on triples consisting of two configurations and a transition 7 € 1" by: (r,w) F (s, w’)

1That we only allow one final state is not a serious restriction with regard to the set of strings we can
process; only when the empty string is to be recognized could this lead to difficulties. Lifting the restriction
would encumber the presentation with treatment of additional cases, without affecting however the validity of
the main results.



if and only if w is of the form aw’, for some a € ¥, and 7 = (r +% s). A computation (in M) is

T

1 T2 Tm
a string ¢ = 71+ Ty, m > 0, such that (rg,wo) & (r1,w1) F <+« F (rm, wp), for some (rq,wp),
T1 Tm
oy (Frmswm) € Q x X*; ¢ = e is always a computation. If (ro,wg) F -+ F (7, wy,) for some
c
(roywo)y -y (Fmywm) € @ x X* and ¢ = 71 -+ -7y, € T, then we write (rg, wo) &b (rm, wm).

C

We say that ¢ recognizes w if (go, w) F (gf, €).

For (¢, w), (s,v) € @ x X* and ¢ = 11 -+ Ty, € T* we define v((g, w) - (s,v)) =1~ v(m)
if (¢, w) - (s,v), and v((q,w) - (s,v)) = 0 otherwise. The weight v(w) of a string w € X* is
defined to be Y. v((qo, w) - (qf,€)).

A WFA M = (X, Q, qo, qf, T, v) that is such that v is a function from 7" to real numbers

in the range [0,1] is said to be a probabilistic finite automaton (PFA). A WFA is said to be

C

convergent if 3° ., v((qo, w) = (qf,€)) < o0.

There are no essential differences between PFAs and Hidden Markov Models (HMMs) [22].
Although the term ‘Hidden Markov Model’ and its common definition are used more frequently
in areas such as language modelling, we have chosen to base our study on PFAs, since they
have slight notational advantages over HMMs for describing the algorithms to be developed in

the following sections.

3 Renormalization

For much of the results elaborated here, a sketch was presented inside the proof of Lemma 5

from [1]. Similar results, embedded in a discussion of Gibbs distributions, are due to [12].

Lemma 1 For each WCOFG G = (X, N, S, R, 1) that is reduced and convergent and for each
a € (XUN)*,

0 < Z,u(oz:céw) < 0.
d,w

Proof. Let o = X;---X,,, where X1,...,X,, € (¥ UN) and 0 < m. Then

Z,u(oz 4 w) Z H (X % w;)

d,w A1,y W1 ey Wiy 1<4<mM
d:
= H E N(Xi = wi).
1§7,§m di,wi

Assume that >-,  p(a £ w) = oo. Then there is at least one i, 1 < ¢ < m, such that
> ds s WX 4 w;) = oo. Since G is reduced, there are ej,e € R*, v1,v € X* and § € (YUN)*
such that (S 2 v1X;8) - p(v1 X8 = viv) > 0.

Let es,e3 and vs,v3 be such that eses = e, vovs = v, X; = vy, and B =2 v3. Since
w1 X8 = viv) > 0, also u(f8 = v3) > 0. Note that if X; & w;, for some d; and w;, then
S S s, Hence,

ZM(S 4 w) > Z u(S e1dges V1W;v3)
d,w

d; wg

= (S B uiXif) > u(Xi Zowi) - p(B 2 vs)

diyw;
= OQ.



This is in contradiction with convergence of G. Therefore, >, , p(a £ w) < 00.

Now assume that >, pi(« 4 w) = 0. Then there is at least one i such that »Z, . pu(X; &
w;) = 0 and p(X; & w;) = 0, for all d; and w;. This means that there are no eq, e, vy, v and
such that (S £ v X;3) - u(v1X;3 = viv) > 0. This is in contradiction with the assumption
that G is reduced. Therefore, >, , p(c 4 w)>0. =

In the remainder of this section, let G = (X, N, S, R, p) be a fixed reduced and convergent
WCFG.

Definition 2 We define the WCFG R(G) to be (X, N, S, R, p), where p is defined by

() - g a2 w)
S 1A S )

p(m) =

for each rule m = (A — o) € R.

We refer to the application of R to a WCFG as renormalization.

Lemma 3 R(G) is reduced.

Proof. This follows directly from the definition of R and Lemma 1. =
Lemma 4 R(G) is a proper PCFG.

Proof. Let A be a nonterminal in N. Then,

p() - ¥ g e 2 w)
w—(%;a) S (A S )
S (1A B @) g 1la S w)
S (A S W)
5 i H(A 2 )

S (A S )

dopAda) =

Since the definition of p implies that p(w) is non-negative for each rule m, it follows that
0<p(r)=p(A>a)<1foreachruler = (A —a). =

Lemma 5 For each § € (Y UN)*, each d € R* and each w € X*,

d
pphw) = —HO=w) 1)

S (B S )

Proof.  The proof is by induction on pairs (|d|, | 3]), containing the length |d| of d and the length
8] of 3, where we define (|d1],[51]) < (Id2|,|B2l) iff [di] < [da], or |di| = |d2| and |B1] < [Ba].

First note that by Lemma 1, the denominator in (1) is a finite positive number. Secondly,
note that if d does not derive w from 3, then both p(3 4 w) and p(f 4 w) are 0, and the
result follows. Otherwise, we distinguish the following three cases.

Case 1. Assume 3 =€ or 3 =a € X. Then we must have d = € and w = 3, and p(f 4 w)
d
and “(ﬁ—éwi are both 1.

/

Zd’,w’ p(B=w’)



Case 2. Assume 3 = (3132, for some (31 # € and ff3 # €. Then there must be di,ds € R* and
wy, wy € X* such that d = dids, w = wyws, and % wy and (o % ws. Using the induction

hypothesis twice, we obtain:

p(B2w) = pBiEw) pBE wy)

— (B 4 w1) ) (B & wy)
2oy M = W) 2y (52 % ws)
u(B =2 w)

S g (B % )

Case 3. Assume 3 = A € N. This means that d = wdy for some rule 7 = (A — «) and

derivation dy. By using the definition of p and the induction hypothesis, we obtain:

p(Agéow) = p(A:@a)-p(aigw)
A a) S S e") e 8w
2w (A < w') > % w”)

pAS a) - plo % w)
S (A S )
(A ™ w)

e (A S 0

Corollary 6 R(G) is consistent.

Proof. Due to Lemma 5,

d (S < w)
ZP(S Sw) = Z &
dw dw Doqr WS = W)

S (S 2 w)

S 1S S )

Recapitulating the preceding results, applying Lemma 5 for 8 = .S, we obtain the following.
Theorem 7 For each WCFG G = (X, N, S, R, p) that is reduced and convergent, R(G) =
(X, N, S, R, p) is a reduced, proper and consistent PCFG, and p(S 4 w) = % (S 4 w), for
each d and w, where C =3 ;. (S LY w').

It follows that renormalization preserves the ratios between weights of derivations. Amongst
other things, this implies that for each string, the derivation with the highest weight according
to G equals the most probable derivation according to R(G). For parsing algorithms that rely
on properness and consistency, the renormalized grammar may be more suitable however than
the original one.

Properness and consistency may play a role in parsers that use a priority queue to guide
the parsing process. The ranking that parsing items obtain in this queue may be based on
the weights computed from the applied rules. When such weights are renormalized, they may
reflect the probability of parsing items more accurately, and thereby guide the parsing process

more effectively.



It is interesting to consider renormalization for the special cases of WCFGs G that are proper
but not consistent, or consistent but not proper. In the latter case, C' =1 in Theorem 7, and

therefore we obtain:

Corollary 8 For each WCFG G = (X, N, S, R, u) that is reduced and consistent, R(G) =
(X, N, S, R, p) is a reduced, proper and consistent PCFG, and p(S 4 w) = u(S 4 w), for
each d and w.

This means that the expressive power of proper and consistent PCFGs is no more restricted
than that of WCFGs that are consistent but not necessarily proper. Both subformalisms of the
WCFGs can describe the same set of probability distributions on derivations and on strings.?

We still need to explain how to compute the values of expressions of the form dw uw(A 4 w),
which we need to compute the probabilities of rules in Definition 2. Although we cannot hope
to obtain closed-form expressions in general, we can approximate these values.®> The required
definitions, presented below, have been adopted from [7].

First, for each A € N let m 4 be the number of rules in R with left-hand side A, and let the
i-th rule m4 5, 1 <4 < my, be of the form A — X ;.- Xima,;, where ma ; is the length of the
right-hand side of my4 ;.

Now, define py(a) =1 for each a € X' and integer k > 0, and let ug(A) = 0 for each A € N.
Now define for £ =0,1,2,... and each A € N:

e (A) = 3 (prad - [T me(Xi):

1<i<ma 1<j<ma;

If the grammar is convergent, then the value of ui(A) for & = 0,1,2,... converges to
Yo H(A 4 w), and for sufficiently large k, this can be taken as a suitable approximation of
Y odw MA 4 w). Further, note that >, u(a 4 w) =1foreacha € ¥ and ), plajo 4 w)
=Yg il 4 W) 3 g a2 4 w) for each o,y € (X UN)*.

4 Weighted intersection

In this section we investigate an extension of the construction from [4] that computes the in-
tersection of a context-free language and a regular language. We will refer to this extended
construction as weighted intersection (of a weighted context-free language and a weighted reg-
ular language). The input consists of a WCFG G = (X, N, S, R, u) and a WFA M = (X, @,
o, q¢, T, v); note that we assume, without loss of generality, that G and M share the same set
of terminals Y.

The output of the construction is WCFG G = (X, Nn, Sn, Rn, tn), where Nn = Q x (X' U
N) x Q, S~ = (g0, S, qs), and Rn consists of the set of rules that is obtained as follows.

e For each rule 7 = (A — X1 --- X)) € R, m > 0, and each sequence of states rq,...,rm € Q,
let the rule 7 = ((ro, A, 7m) — (ro, X1,71) -+ (rmn—1, Xim, m)) be in Rn, and let pn(mn) =

w(m); for m = 0, Rn contains a rule mn = ((rg, 4, 79) — €) for each state 7.

2We owe this observation to fruitful discussions with Detlef Prescher.

3We can compute the exact values if the grammar is non-recursive however, and in fact, for the use of
renormalization to be discussed in the following section, the grammar may well be non-recursive for many
practical applications.



e For each transition 7 = (r +% s) € T, let the rule 7~ = ((r,a,8) — a) be in Rn, and let

pin (7)) = v(7).

Note that for each rule (rg, A, ) — (ro, X1,71) * - ("m—1, Xim, "m ) from Ry there is a unique
rule A — Xj --- X,,, from R from which it has been constructed by the above. Similarly, each
rule (r,a, s) — a uniquely identifies a transition r +% 5. This means that if we take a derivation
dn in Gn, we can divide it into a sequence hi(dn) of rules from G and a sequence hz(dn) of

transitions from M, where h; and hg are string homomorphisms that we define point-wise as:

hi(mn) = © it mn = ((ro, 4, rm) — (ro, X1,71) < ("m—1, Xin,Tm)) and 7 = (A — X7 --- X))

e if mn=((r,a,s) — a)

7 if 1 = ((r,a,s) — a) and 7 = (r +% )

€ if TN = ((7.07 A: Tm) - (TO; X17 7.1) e (Tmfla Xma Tm))

hg(’f(m)

We define h(dn) = (h1(dn), ha(dn)). It can be easily seen that if h(dn) = (d, ¢) and Sn & w,
then for the same w we have S = w and (qo, w) - (qf,€). Conversely, if for some w, d and ¢
we have § = w and (qo, w) - (gf,€), then there is a derivation dn such that h(dn) = (d,¢) and
Sn %9 w.

We also define Dg(w) = {d | S %+ w}, Das(w) = {c | (d0,w) - (a7, )}, D(w) = {dr, | S %
w}. The following can now be stated without further proof:

Lemma 9 By restricting its domain, h becomes a bijection from Dn(w) to Dg(w) x D (w),

h1gm) ) ha(dn)

for each w € X*. Furthermore, pn(Sn g w) = p(S w) - v((qo,w) F  (g5.€)), for each

w € X* and dn € Dn(w).
If we are only interested in the weights assigned to strings, then we can use the following;:

Lemma 10 For each w € X*, we have pn(w) = p(w) - v(w).

Proof. Due to the existence of h, with the properties stated in Lemma 9:

i) = Y pa(Sa B w) = S s L w) - S vl(@ow) F (g5.6) = plw) - v(w). w
dn d c

Before we can apply renormalization to G, we need to ensure convergence:

Lemma 11 If G and M are convergent, then so is Gn.

Proof. 1f G and M are convergent, then:

Sun(snBw) = 3 (T asEw) Y vl w) - (ar.6))
w d c

dn,w

< S uSEw) Y vl w) F (a7.9) < oo, m
d,w

c,w

We now come to the main result of this paper, which can be seen as a probabilistic extension
of the aforementioned theorem by [4]:

Theorem 12 For any convergent WCOFG G = (X, N, S, R, u) and convergent WFA M = (X,
Q. qo, qf, T, v) such that Y-, (u(w) - v(w)) > 0, there are:

(1) a reduced, proper and consistent PCFG G/, = (X, N/, Sn, Rh, ph),

(ii) a function h defined by h(dn) = (hi(dn), ha(dn)), where hy and ha are two string homo-
morphisms, such that by restricting the domain of h, it becomes a bijection from Dn(w) to
Dg(w) X Dayg(w), for each w € X*,



(iii) a constant C,

" dg 1 ha(dn) ha(dn) / \x
such that p/\(Sn = w) = 5 - (S =" w)-v((q,w) F (q,€)), for each dn € (R}))* and

we X,
Proof. By the construction at the beginning of this section, we can obtain a WCFG G =
(X, Nn, Sn, Rn, pn) and a function h with the properties stated in Lemmas 9 and 11. Since
Y ow(w) - v(w)) > 0, also Y pn(w) > 0 by Lemma 10. This means G can be reduced; let
the reduced grammar be G/, = (X, N/, Sn, R, u~). We can now apply Theorem 7 to obtain
a renormalized PCFG G = (X, N/, Sn, RA, ut), with the required properties. m

Our results carry over to weighted intersection of probabilistic tree-adjoining grammars [27]
and WFAs. We can also extend our results in a trivial way to weighted intersection of a pair

of WCFGs, one of which is non-recursive; apart from renormalization, this is shown by [14].

5 Infix probabilities

One may apply the construction from Section 4 also when its input grammar G is a WCFG but
its input automaton M is a (non-weighted) finite automaton, or when G is a (non-weighted)
context-free grammar and M is a WFA. This is possible by treating a finite automaton as a
WFA of which all transitions have weight 1, and a context-free grammar as a WCFG of which all
rules have weight 1. For an application of weighted intersection of a WFA and a (non-recursive)
context-free grammar, see [20].

Let us now investigate the case more closely that we have an input WCFG G = (X, N, S, R,
w) and an input automaton M = (X, Q, qo, g5, T, 1), where 1 is defined by 1(7) = 1 for all

C

7 € T. Now, 1(w) equals the number of computations ¢ in M such that (go,w) - (g¢,€). We
can define the language accepted by M as L(M) = {w | 1(w) > 1}.

If M is unambiguous, i.e., if there is at most one computation that recognizes a given string
w, then 1(w) can only be 0 or 1, and thereby the equation pun(w) = p(w)-1(w), from Lemma 10,
implies that pun(w) = p(w) for w € L(M) and pn(w) = 0 for w ¢ L(M). Let us remark that a
sufficient condition for M to be unambiguous is that M is deterministic.

Now consider the class of problems where we need to compute >, , u(w), for a certain
WCFG G with weight function p and a certain regular language L. From the above, it is clear
that this problem can be solved if we can do the following;:

(i) construct an unambiguous M with weight function 1 such that L = L(M); and

(ii) compute ) pin(w), which by (i) equals >, o, p(w).

One instance of the above problem is the computation of prefix probabilities [17]. The prefiz
probability in a PCFG § of a string v € X is defined as >, . p(w), where L, = {vw | w €
X*}. One can compute prefix probabilities as indicated above, by constructing an unambiguous
M accepting L,,, which is trivial.

Similarly, the infiz probability in G of a string v € X* is defined by [15] as > ; p(w),
where L, = {wjvwy | w1, wy € X*}. To obtain an unambiguous M accepting L,, we can
straightforwardly apply the technique from [18]. This can be generalized to the island probability

in G of a list of strings v1,v2,...,0, € X*, defined by [15] as > u(w), where

WELy) vg,...,0m
J— *
Loy vg,ryo = {WoU1W * + + Uy Wiy | Wo, Wi, e .oy Wiy € X*}

The computation of quantity >, pn(w) in (ii) requires some discussion. Polynomial time



algorithms have been presented by [17, 30] for its computation in the case of prefix probabilities.
However, it has been conjectured by [15] that no similarly efficient solution exists for the problem
of infix probabilities, even assuming that the WCFG G is fixed, as is the case for many practical

applications.

6 Related work

The results from Section 4 imply that for a PCFG G with probability function pg and a PFA
M with probability function pyq we can find a PCFG G with probability function pn such that:

p(w) = & - pg(w) - paelw),
for each string w, where C'is a constant determined by G and M.

A different combination of context-free and finite-state models (to be exact, N-gram models)
is proposed by [5], using linear interpolation. This results in a probability distribution p; on
strings given by:

p+(w) = A-pg(w) + (L= A) - pam(w),
for a certain constant A between 0 and 1 that can be freely chosen.

This probability function p; on strings can be described as a PCFG G, with probability
function py on rules, which is constructed as follows. First, rewrite PFA M to a PCFG
Gm that describes the same probability distribution on strings as M. (This is possible since
the Chomsky hierarchy carries over to probabilistic models [26].) Now we define the set of
nonterminals of G as the disjoint union of the sets of nonterminals from G and Gaq plus the
new nonterminal S, which becomes the start symbol of G,. The set of rules of G is defined
as the union of the sets of rules from G and G, which keep the probabilities as determined by

pg and paq, plus the following two rules, with their probabilities between brackets:

Sy =58 (A
S. = Sum (1-N),
where Sg is the start symbol of G and Sy, is the start symbol of Gay.

However, a grammar G, constructed in this way does not, in general, have the kind of
favourable properties we saw in Theorem 12. In particular, a derivation in G, encodes either a
derivation in G or a computation in M, but not both.

This has implications for the problem of finding an ‘optimal’ string w € X*. If we may assume
that G and M are unambiguous, then we may find a string w that maximizes pn(w) by finding
the derivation dn in G that maximizes pn(d). However, there is no obvious way to find a string
w that maximizes p; (w) without doing exhaustive parsing, computing all strings generated by
G and all strings generated by Gaq separately, and summing A - pg(w) and (1 — A) - pa(w) for
each string w that is generated by either G or Guq. This seems difficult even when these two
grammars are unambiguous. It is not clear however whether this problem is as difficult as some

of the problems discussed by [28].

7 Conclusions

We have shown how a PCFG and a PFA can be combined into a new PCFG in a constructive

way, and we have stated and proven correct a number of useful properties of this construction.



Although it seems to have been ignored in the existing literature, this construction forms a

theoretical basis for much of the ongoing work on probabilistic parsing.
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