
PARSING DOMAIN ACTIONS WITH PHRASE-LEVEL 
GRAMMARS AND MEMORY-BASED LEARNERS 

 

Chad Langley and Alon Lavie 
Language Technologies Institute 

Carnegie Mellon University 
Pittsburgh, PA 15213 

{ clangley|alavie} @cs.cmu.edu 
 

 

Abstract 

In this paper, we describe an approach to analysis for spoken language translation that combines 

phrase-level grammar-based parsing and automatic domain action classification. The job of the 

analyzer is to transform utterances into a shallow semantic task-oriented interlingua representation. The 

goal of our hybrid approach is to provide accurate real-time analyses and to improve robustness and 

portability to new domains and languages. 

 

1 Introduction 

Interlingua-based approaches to machine translation (MT) are very attractive for systems that support 

multiple languages. An interlingua defines a language independent representation of the content of 

utterances. For each source language, an analyzer must convert input utterances into the interlingua 

representation. Likewise, for each target language, a generator must convert the interlingua into target 

language output. Translation is performed by connecting a source language analyzer with a target 

language generator. 

The analyzer is clearly a critical component in interlingua-based translation systems. For 

human-to-human speech-to-speech translation systems, the analyzer must be robust to speech 

recognition errors, spontaneous speech, and ungrammatical inputs (Lavie, 1996). Furthermore, the 

analyzer should run in (near) real time. In addition to accuracy, speed, and robustness, the portability of 

the analyzer with respect to new domains and languages is important since porting translation systems 

to new domains or expanding existing coverage can be very time-consuming. 

While grammar-based parsing often provides very accurate analyses, it is generally not 

feasible to develop a grammar that completely covers a domain, and this problem is further 

exacerbated with spoken input, where disfluent input and deviations from the grammar are very 

common. Furthermore, a great deal of effort by human experts is generally required to develop a wide-

coverage grammar. On the other hand, machine learning approaches can generalize beyond training 

data and tend to degrade gracefully in the face of noisy input. Machine learning methods may, 

however, be less accurate than grammars on common in-domain input, and may require a large amount 

of training data in order to achieve adequate levels of performance. 

In this paper, we describe an analyzer that combines phrase-level grammar-based parsing and 

machine learning techniques in a way that leverages from the benefits of each. The analyzer uses a 



robust parser and phrase-level semantic grammars to extract low-level arguments from an utterance. 

Automatic classifiers are then used to segment the utterance and to assign high-level domain actions to 

each semantic segment. 

 

2 MT System Overview 

The analyzer that we describe is used for English and German in NESPOLE! (Lavie et al., 2002), a 

multilingual speech-to-speech machine translation system. The goal of NESPOLE! is to provide 

speech-translation for common users engaged in real-world e-commerce applications such as travel and 

tourism. NESPOLE! translates via an interlingua-based approach in four basic steps: (1) an automatic 

speech recognizer processes the spoken input; (2) the best-ranked text hypothesis from speech 

recognition is processed by the analyzer, producing an interlingua representation; (3) target language 

text is generated from the interlingua; and (4) the text is synthesized into speech. 

 

3 The Inter lingua 

The interlingua we use is called Interchange Format (IF) (Levin et al., 1998; Levin et al., 2000). The IF 

defines a shallow semantic representation for task-oriented utterances that abstracts away from 

language-specific syntax and idiosyncrasies while capturing the meaning of the input. Each utterance is 

divided into semantic segments called semantic dialog units (SDUs), and an IF is assigned to each 

SDU. An IF representation consists of four parts: a speaker tag, a speech act, an optional sequence of 

concepts, and an optional set of arguments. The representation takes the following form:     

<speaker  t ag>: <speech act > +<concept >*  ( <ar gument >* )  

The speaker tag indicates the role of the speaker in the dialog. The speech act captures the 

speaker’s intention. The concept sequence, which may contain zero or more concepts, captures the 

focus of an SDU. The speech act and concept sequence are collectively referred to as the domain action 

(DA). The arguments encode specific information from the utterance using a feature-value format. 

Argument values can be atomic or complex. The IF specification defines all possible components and 

describes how they can be validly combined. Several examples of utterances, with corresponding IF 

representations, are shown below. 

 

Thank you very much. 

  a: t hank 

Hello. 

  c : gr eet i ng ( gr eet i ng=hel l o)  

How far in advance do I need to book a room for the Al-Cervo Hotel? 

  c : r equest - suggest i on+r eser vat i on+r oom (  

   suggest - st r engt h=st r ong,  

   t i me=( t i me- r el at i on=bef or e,  t i me- di st ance=quest i on) ,  

   who=i ,  

   r oom- spec=( r oom,  i dent i f i abi l i t y=no,  l ocat i on=( obj ect - name=cer vo_hot el ) ) )  

 



4 The Hybr id Analysis Approach 

The hybrid analysis approach combines grammar-based parsing and machine learning techniques to 

transform spoken utterances into the Interchange Format representation. The speaker tag is configured 

by the system, and the analyzer must identify the domain action and arguments. The hybrid analyzer 

operates in three stages. First, semantic grammars are used to parse an utterance into a sequence of 

arguments. Next, the utterance is segmented into SDUs using memory-based learning (k-nearest 

neighbor) techniques. Finally, additional memory-based classifiers are used to identify the domain 

action (speech-act and sequence of concepts). 

 

4.1 Argument Parsing 

The first step in our analysis approach is to parse an utterance for arguments. Utterances are parsed 

with phrase-level semantic grammars using the SOUP parser (Gavaldà, 2000). 

 

4.1.1 The Parser  

SOUP is a stochastic, chart-based, top-down parser designed to provide real-time analysis of spoken 

language using context-free semantic grammars. SOUP provides several features that are useful for 

phrase-level argument parsing. One important feature provided by SOUP is word skipping. The 

amount of skipping allowed is configurable, and a list of words which cannot be skipped may be 

defined. Another critical feature for phrase-level parsing is the ability to produce analyses consisting of 

multiple parse trees. SOUP also supports modular grammar development (Woszczyna et al., 1998). 

Subgrammars designed for different domains or purposes can be developed separately and applied in 

parallel during parsing. Parse tree nodes are then marked with a subgrammar label. When an input can 

be parsed in multiple ways, SOUP can provide a ranked list of interpretations. In the version of the 

analyzer described here, word skipping is only allowed between parse trees, and only the best-ranked 

argument parse is used. 

 

4.1.2 The Grammars 

Four grammars are defined for argument parsing: an argument grammar, a pseudo-argument grammar, 

a cross-domain grammar, and a shared grammar. The argument grammar contains phrase-level rules 

for parsing arguments defined in the Interchange Format. Top-level argument grammar rules 

correspond to top-level arguments in the IF. The pseudo-argument grammar contains rules for parsing 

common phrases that are not covered by IF arguments. For example, all booked up, full, and sold out 

might be grouped into a class of phrases that indicate unavailability. The cross-domain grammar 

contains rules for parsing complete DAs that are domain-independent. For example, this grammar 

contains rules for greetings (Hello, Good bye, Nice to meet you, etc.). Finally, the shared grammar 

contains low-level rules that can be used by all other subgrammars. 

 



4.2 Segmentation 

The second stage of processing in our hybrid analysis approach is segmentation of the input into SDUs. 

In the IF representation, DAs are assigned at the level of SDUs. Speech turns, however, often consist of 

several SDUs, and thus must be segmented before assigning DAs. Figure 1 shows an example of an 

utterance with four arguments segmented into two SDUs. 

 

SDU1  SDU2  

greeting= disposition= visit-spec= location= 

hello i would like to take a vacation in val di fiemme 

Figure 1: Segmentation of an utterance into SDUs 

Since the input to the analyzer is text produced by an automatic speech recognizer, neither 

punctuation nor case information are explicitly represented, and speech recognition errors may be 

present. In addition to the word information surrounding a potential SDU boundary, which may be 

unreliable, the segmenter also uses information derived from the argument parse. The argument parse 

may contain trees for cross-domain DAs, which by definition cover a complete SDU. Thus, there must 

be an SDU boundary on both sides of a cross-domain tree, and the problem of segmenting an utterance 

can be divided into subproblems of segmenting the parts of the utterance not covered by a cross-

domain tree. Additionally, SDU boundaries cannot occur within parse trees. Thus, potential SDU 

boundary positions can be hypothesized only between parse trees and/or unparsed words. The 

segmenter also uses the root labels of argument parses. 

The segmenter in the version of the analyzer described here is implemented using TiMBL 

(Daelemans et al., 2002), a memory-based (k-Nearest-Neighbor) learning program. The segmenter first 

examines the grammar label for the roots of the parse trees on each side of a potential SDU boundary 

position. If either tree was constructed by the cross-domain grammar, an SDU boundary is inserted. 

Otherwise, the TiMBL segmentation classifier uses ten features based on the words and arguments 

surrounding the potential boundary to determine if an SDU boundary is present. 

The features used by the TiMBL classifier include the word and argument parse tree label 

immediately preceding and immediately following the potential boundary (w-1, w1, A-1, and A1). When 

an unparsed word occurs on either side of a potential boundary, a token indicating an unparsed word is 

used in place of a true argument label. In addition, the probabilities that a boundary follows the 

preceding word and argument label (P(w-1•) and P(A-1•)) and precedes the following word and 

argument label (P(•w1) and P(•A1)) are used as input features. These probabilities are computed based 

on counts from the training data (i.e., P(w-1•) = C(w-1•)/C(w-1)). The final two features are the number 

of words since the last boundary and the number of argument parse trees since the last boundary. 

The training data for the segmentation classifier are extracted from utterances that have been 

annotated with SDU boundaries and parsed using the phrase-level argument parser. A training example 

is created for each potential boundary position in the parsed data. Positive segmentation examples 

occur between SDUs, as marked in the data. Negative segmentation examples occur within an SDU. 



For example, in the utterance shown in Figure 1, the potential boundary position between “hello”  and 

“ i”  would be a positive segmentation example. The potential boundary position between “ to”  and 

“ take”  would be a negative segmentation example. 

 

4.3 Domain Action Classification 

The third stage of analysis is the identification of the DA for each SDU using automatic classification 

techniques. Following segmentation, a cross-domain parse tree may cover an SDU. In this case, 

analysis is complete since the parse tree contains the DA. Otherwise, automatic classifiers are used to 

assign the DA. 

The version of the analyzer described here uses two classifiers to determine the DA for non-

cross-domain SDUs. The first classifier identifies the speech act, and the second identifies the complete 

concept sequence. Both classifiers are implemented using TiMBL (Daelemans et al., 2002). Speech act 

classification is performed first. The speech act classifier takes as input a set of binary features that 

indicate whether each of the various argument labels and pseudo-argument labels is present in the 

argument parse forest of the SDU. No other features are used. Concept sequence classification is 

performed after speech act classification. The concept sequence classifier uses the same features as the 

speech act classifier with one extra feature: the speech act. 

The analyzer also uses the IF specification to aid classification and guarantee that a valid IF is 

produced. The speech act and concept sequence classifiers each provide a ranked list of possible 

classifications. When the combination of the top-ranked speech-act and the top-ranked concept 

sequence results in an illegal DA, the analyzer attempts to find an alternative legal DA. Each of the 

alternative concept sequences (in ranked order) is combined with each of the alternative speech acts (in 

ranked order). For each possible DA, the analyzer checks if all of the arguments found during parsing 

are licensed. If a legal DA is found that licenses all of the arguments, then the process stops. If not, one 

additional fallback strategy is used. The analyzer then tries to combine the best classified speech act 

with each of the concept sequences that occurred in the training data, sorted by frequency of 

occurrence. Again, the analyzer checks if each legal DA licenses all of the arguments and stops if such 

a DA is found. If this step also fails to produce a legal DA that licenses all of the arguments, the 

analyzer returns the best-ranked DA that licenses the most arguments. In this case, any arguments that 

are not licensed by the selected DA are removed since illegal arguments may cause a generation 

failure. The rationale behind this approach is that it is generally preferable to select a lower-ranking 

DA and retain as many arguments as possible, rather than selecting the top-ranked DA and losing some 

detailed information represented by the arguments. 

 

5 Evaluation 

We present the results from recent experiments to assess the performance of the segmenter and DA 

classifiers individually and of end-to-end translation using the analyzer. We conducted classification 

experiments using data from two domains: travel/tourism (vacation planning) and medical 



(doctor/patient diagnosis). The data for the classification experiments consisted primarily of domain 

specific dialogues that were collected monolingually. The data were manually transcribed, segmented 

into semantic dialogue units, and tagged with Interchange Format representations. 

 We also evaluated end-to-end translation performance on the travel/tourism domain. The test 

data for the end-to-end translation experiment consisted of 2 previously unseen dialogues. Our hybrid 

analyzer was used to segment the best hypothesis from automatic speech recognition into SDUs and 

label each SDU with an IF representation. Target language text was then generated from the IF 

representations. Thus, the results of the end-to-end evaluation reflect the combined performance of the 

recognizer, analyzer, and generator. 

 

5.1 Segmentation 

 English 
Travel 

German 
Travel 

English 
M edical 

German 
Medical 

Accuracy 0.9480 0.9513 0.9646 0.9393 
Precision+ 0.9571 0.9640 0.9341 0.9223 
Recall+ 0.9301 0.9358 0.9743 0.9559 
Training Examples 35417 45945 41889 7674 

Table 1: Segmentation classifier  per formance 

Table 1 shows the performance of the TiMBL segmentation classifier for English and German. The 

results reported in Table 1 were computed over the training data using the leave-one-out testing method 

provided by the TiMBL software. In the leave-one-out method, each example is held out from the 

training set and classified using all of the remaining examples for training. The segmentation classifier 

used the IB1 (k-NN) algorithm with 5 neighbors, unweighted voting, and Gain Ratio feature weighting 

(Daelemans et al., 2002). The Accuracy row shows the overall classification accuracy over all possible 

boundary positions. The Precision+  and Recall+  rows are computed only over positions where a 

boundary is present. 

 

5.2 Domain Action Classification 

 English 
Travel 

German 
Travel 

English 
M edical 

German 
Medical 

Accuracy 0.7001 0.6755 0.7814 0.6892 
Training Examples 8289 8719 3659 2294 

Table 2: Speech act classifier  per formance 

 English 
Travel 

German 
Travel 

English 
M edical 

German 
Medical 

Accuracy 0.6984 0.6719 0.6464 0.6997 
Training Examples 8289 8719 3659 2294 

Table 3: Concept sequence classifier  per formance 



Tables 2 and 3 show the performance of the TiMBL speech act and concept sequence classifiers for 

English and German. As in the segmentation experiment, the results were computed using the leave-

one-out method. The classifiers used the IGTREE algorithm (Daelemans et al., 2002). 

 

5.3 End-to-End Translation 

English WAR German WAR 
56.4% 51.0% 

Table 4: Speech Recognition Word Accuracy Rates

 English 
Output 

I talian 
Output 

SR Hypotheses 66.7% -- 

Translation from 
SR Hypotheses 

50.4% 50.2% 

Table 5: Acceptable end-to-end translation 
for  English travel input 

 

 German 
Output 

I talian 
Output 

SR Hypotheses 61.6% -- 

Translation from 
SR Hypotheses 

53.4% 51.7% 

Table 6: Acceptable end-to-end translation 
from German travel input

Table 4 shows the word accuracy rates on the test data for the automatic speech recognizers for English 

and German. Tables 5 and 6 show end-to-end translation results from the most recent evaluation of the 

NESPOLE! system for English and German input. The data used to train the segmentation and DA 

classifiers were the same as in the classification experiments. The English test set contained 110 

utterances consisting of 232 SDUs from 2 unseen dialogues. The German test set contained 246 

utterances consisting of 356 SDUs from 2 unseen dialogues. Translations were compared to human 

transcriptions and graded by 3 human graders using a 4-point scale with grades of perfect, ok, bad, and 

very bad. A grade of perfect or ok is considered Acceptable. A grade of bad or very bad is considered 

Unacceptable. For each source language, graders evaluated both “ translations”  of the input back into 

the source language and translations into Italian. The results shown in the table were produced using a 

majority vote among the 3 graders for each SDU. The translation for an SDU was considered 

Acceptable if at least 2 of the graders graded it as such. 

The row labeled SR Hypotheses shows the grades when the speech recognizer output is 

compared directly to human transcripts (i.e. when the SR output is treated as a translation back into the 

source language). As these grades show, recognition errors can be a major source of unacceptable 

translations. These SR grades provide a rough bound on the translation performance that can be 

expected when translating input from the speech recognizer since meaning lost due to recognition 

errors cannot be recovered by the analyzer. The row labeled Translation from SR Hypotheses shows 

the performance when the speech recognizer produces the input utterances. These grades reflect the 

combined performance of the speech recognizer, all of the analyzer components, and the generator. 

 



6 Related Work 

Lavie et al. (1997) developed a method for identifying SDU boundaries in a speech-to-speech 

translation system. The method combines acoustic information about silences and noises with a 

statistical model that uses three word-based bigram frequencies computed from a four-word window, 

in order to estimate the likelihood of an SDU boundary between each pair of words. Lexical cue 

phrases were then used to boost the likelihood estimate. 

Identifying SDU boundaries is similar to sentence boundary detection. Stevenson and 

Gaizauskas (2000) point out that text produced by a speech recognizer differs in important ways from 

standard text composed by humans. Unlike standard text, speech recognizer output typically contains 

no punctuation or case information. Furthermore, spoken language often contains phrases and sentence 

fragments. Finally, speech recognizer output may contain errors. Stevenson and Gaizauskas (2000) use 

TiMBL (Daelemans et al., 2000) to identify sentence boundaries in automatic speech recognizer 

output, and Gotoh and Renals (2000) use a statistical approach to identify sentence boundaries in 

automatic speech recognition transcripts of broadcast speech. 

Munk (1999) attempted to combine grammars and machine learning for DA classification. In 

Munk’s SALT system, a two-layer HMM was used to segment and label arguments and speech acts. 

Then a neural network identified the concept sequence for each speech act. Finally, semantic grammars 

were used to parse each argument segment. One problem with SALT was that the segmentation was 

often inaccurate and resulted in bad parses. Also, SALT did not use a cross-domain grammar or an 

interlingua specification. 

Cattoni et al. (2001) apply statistical language models to DA classification. A word bigram 

model is trained for each DA in the training data. To label an utterance, the DA with the highest 

likelihood is assigned. Arguments are identified using recursive transition networks. IF specification 

constraints are used to find the most likely valid IF. 

 

7 Discussion 

The experimental results indicate the promise of our hybrid analysis approach. The memory-based 

segmentation classifier provides reasonable performance on both domains for both English and 

German. The DA classification performance reported here was achieved using classifiers with a very 

simple feature set. We expect that the performance of the DA classifiers can be improved by including 

additional features. For example, the classifiers described here used only the label of the argument 

parse trees. Since pseudo-argument grammar trees may contain real IF arguments as subtrees, 

information may be gained by extracting any real arguments from the pseudo-argument trees. 

Additionally, word information or context information, such as the previous DA from each speaker 

may provide useful information for classification. Thus, we plan to examine the effects of richer 

feature sets on DA classification. 

We also plan to examine alternative definitions of the DA classification problem. For the 

work reported here, we chose to identify the speech act with one classifier and the complete concept 



sequence with another. However, it would also be possible to identify the complete DA with a single 

classifier or to use separate classifiers for each individual concept. Independent of the DA classification 

method, it would also be possible to apply a variety of alternative classification techniques (i.e. neural 

networks, language models, etc.). We will perform a comparison of the memory-based approach 

described here with other classification approaches. 

The primary motivation for developing this approach was to provide improved robustness and 

portability to new domains and languages. In order to build a translator for a new domain, the speech 

recognizer, interlingua, analyzer, and generator must be updated to cover the new domain. The effort 

required to port the analyzer is independent of the effort required to port the other components, 

assuming that the interlingua retains the same format and only adds new domain specific components. 

We expect that moving from a purely grammar-based parsing approach to this hybrid approach will 

help attain this goal by reducing grammar development effort and simplifying annotation requirements. 

In our approach, grammars must only be written for new domain specific arguments, and utterances 

must be tagged with domain actions in order to train new classifiers. 

We are currently working on evaluating the portability of our hybrid approach by expanding 

coverage into the medical doctor/patient diagnosis domain. Starting with the existing travel domain 

grammars, approximately 90 person-hours were spent expanding the English grammars to cover the 

medical domain. Approximately 50 person-hours were spent expanding the existing German 

grammars. In addition approximately 15 person-hours were spent segmenting and tagging the data with 

domain actions. As the results from the classification experiments show, the performance of the 

classifiers for the medical domain was similar to that of the travel domain. We are in the process of 

developing full grammars for the medical domain in order to assess the development effort required for 

writing full grammars and to compare the performance of the full grammar approach with our hybrid 

approach. 
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