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Abstract

Within a grammar formalism that treats syntax analysis as a global optimization problem,
methods are investigated to improve parsing performance by recombining the solutions of smaller
and easier subproblems. The robust nature of the formalism allows the application of this technique

with little change to the original grammar.

1 Introduction

Treating natural language parsing as a problem of constraint optimization (Freuder and Wallace,
1992) comes with a number of attractive computational properties. It requires formulating the
parsing problem as one of assigning values to variables, where values can be constructed in a
way as to describe relationships between the variables themselves. This possibility allows us to
interpret particular values as dependencies between word forms in a natural language utterance.
Constraints can then be defined which check local structural configurations for being admissible
and assign scores to them.

A parser based on these principles attempts to determine a structural description which is
optimal with respect to an assessment function accumulating local scores into a global measure

of well-formedness. Among the benefits of such an approach some are particularly noteworthy:

Fail-soft robustness: Symbolic grammars are combined with robust processing capabilities
typical for stochastic approaches. Due to their graded nature constraints are defeasible and
constraint violations can easily be handled as part of the normal decision procedure (Foth,
Menzel, and Schroder, submitted). In addition, constraint violations provide rich diagnostic
information about the structure under consideration. They can be used to guide the further

analysis or to explain expectation violations of different kinds.

Information fusion: Constraints offer an ideal interface to integrate possibly contradictory
information from different external sources in a graceful manner. This allows the parser to
include hypotheses from shallow processing components like a tagger or a chunker, even if
this information is uncertain (Foth and Hagenstrém, 2002). Confidence scores provided by
such components can not only be used to arbitrate in cases of conflict, but also to effectively

guide the optimization process towards the desired optimum (Schroder, 2002).



Multilevel disambiguation: Different description levels based on word-to-word relations
(e.g. for aspects of syntax, semantics, reference or information structure) can be treated
in a quasi-parallel manner. This contributes a kind of structural redundancy which allows
the analysis procedure to overcome partial conflicts or information deficits on one level using

information from another one (Schroder et al., 2000).

Anytime behaviour: A number of different solution methods for solving the optimization
problem is available, including both complete and heuristic ones. They all have in common
the ability to trade parsing quality against processing time. Even interruptible algorithms
have been devised which are able to provide a solution at an arbitrary point in time. While
trying to repair the shortcomings of an initial assumption they are able to supply results
of steadily increasing quality by carrying out local transformations, successively improving

consistency and coherence of a solution candidate (Foth, Menzel, and Schréder, 2002).

Weighted Constraint Dependency Grammar (WCDG) is a computational framework for in-
vestigating the potential of constraint optimization techniques for natural language parsing.
So far, however, parsing a sentence has always been treated as a global optimization problem.
Since constraint optimization is known to be NP hard, this incurs a serious efficiency problem.
Although its effects can be mitigated somehow by applying heuristic decisions together with the
fundamentally time-adaptive nature of the available solution procedures, most longer sentences

suffer from quite excessive runtime requirements.

To improve the general accuracy/time ratio in such cases this paper investigates different
possibilities to break down large parsing problems into smaller subtasks whose results can later
be recombined into a solution for the original problem. The rationale behind such an approach
is that many attachment problems which have to be solved when parsing a sentence can also be
treated in a fairly restricted context. Solving these local problems as local optimization subtasks
might therefore save precious processing time which is needed badly to tackle the notoriously
difficult attachment problems on the global sentence level. It can be shown that by freezing the
optimum solution for local areas of a sentence, indeed a considerable speedup can be achieved,
which in turn leads to an improvement in parsing accuracy if only limited processing time is

made available.

Section 2 gives a short introduction to WCDG and the repair-based transformation method
used throughout the paper. Experiments to determine useful criteria for sentence segmentation
are reported in Section 3, while Section 4 investigates different options for handling dependency

relations crossing segment boundaries.



2 WCDG parsing as transformation-based repair

Constraints in a WCDG are conditions defined on partial structural descriptions consisting of
two dependency edges at most. They have access to lexical and positional information associated
to the word forms involved and the label of the dependency relation established between them.

If the word forms of a sentence are used to define a set of variables which receive as values
pairs consisting of (1) another word form which they are attached to and (2) the relation with
which they modify their governor, parsing becomes a procedure of constraint satisfaction: All
variables get assigned a value which is compatible with all the constraints of the grammar.
Together with the special subordination ROOT which, if assigned to a variable, actually avoids
the subordination of the corresponding word form, and a built-in global constraint prohibiting
cyclical subordination, this definition of a constraint satisfaction problem guarantees that any
admissible value assignment corresponds to one or possibly several dependency trees.

To accommodate lexical ambiguity (and if desired speech recognition uncertainty) the con-
straint solver works on word graphs instead of simple word form sequences. In addition to the
task of determining a structural description of the input sentence it has also to select among
the available alternatives in the graph, accomplishing lexical and structural disambiguation at
the same time. Another built-in global constraint ensures that only alternatives corresponding
to a single path through the graph are considered.

Solutions to a WCDG parsing problem may violate some constraints as long as no better
structural interpretation is available. To rank competing hypotheses in such cases, constraints
are associated with weights between zero and one, where higher values correspond to less
important constraints. Dependency edges under consideration receive a confidence score which
is calculated as the product of weights from all the constraints violated by that edge. For
complex structures scores are also accumulated by multiplying them out, and the description
with the maximum score can be determined.

Constraint weights serve different purposes in WCDG:

e They keep the parsing problem manageable even in spite of pervasive constraint violations.
Parsing quality degrades gracefully in cases of extragrammatical input or limited temporal

resources.

e They provide a criterion to decide between competing solutions to a parsing problem. If

desired, a complete disambiguation can almost always be achieved.
e They guide the parsing problem towards the desired optimum.

e They allow the integration of uncertain knowledge, including default information and prefer-

ences, which however is outvoted if conclusive counter-evidence is available.



Simply being logical formulae on the admissibility of certain fragments of a dependency struc-
ture, constraints are neutral with respect to the parsing strategy adopted. They can be used
to remove dependency relations from an underspecified space of structural hypotheses (elimi-
native parsing) or to license structures as generated by an appropriate mechanism. Generating
structural hypotheses might be achieved by successively extending a partial structure with new
dependency edges in a best-first manner or through deriving a new structure from an existing
one by applying a local repair transformation to it.

The solution method employed in the following experiments is of the latter kind. It starts
out with a complete but possibly incorrect dependency structure, and then successively tries
to change those edges that violate important constraints so that the error is repaired. If an
error can be repaired and a higher global score achieved at the same time, the new structure
is considered more appropriate and transformation continues from there.! If the repair has
introduced a different error, this error is attacked next. Transformation stops when every
important error in the structure has either been repaired or defied attempts of repair.

There are different ways of limiting the time spent by the repair process: a strict time limit
can be set after which the parser should stop, a target score can be specified, below which no
partial structure should be considered, or a threshold can be given to indicate which errors
should be considered for repair. Even with no limiting factors, perfect accuracy is usually only
achieved on short sentences, due to both modelling and search errors.

Due to the typical performance profile of such a parsing procedure, which has an early solution
(albeit usually a bad one) available very soon and continues to improve it over time, there
is a general time-quality trade-off: Given the strict time-out condition, a speedup naturally
translates into a higher quality of analysis.

Although this solution method is far more efficient than a complete search of the problem
space (empirically, it does not take exponential time even when no time limit is set), it is still
too slow for use on long sentences with several dozen words. It is therefore appropriate to
search for further possibilities of speeding up the computation without incurring too much loss

of accuracy.

3 Parsing of subtrees

As it is, a WCDG considers parsing as a global constraint optimization problem in which any
variable may influence the values allowed for any other. For instance, uniqueness constraints are
naturally imposed as all-quantified formulas, and in fact all constraints are all-quantified in the

WCDG formalism (selective application is possible by qualifying the formula with a particular

1 Although achieving a higher score does not necessarily imply that the analysis is more accurate, this is
usually the case.



premise). This means that WCDG parsing is fundamentally not a recursive process, because
larger phrases are not built out of smaller ones. In fact, no phrases are explicitly built at all,
only relations between the words in the surface structure are found.

Nevertheless, these relations contribute to structures that can be viewed as recursively em-

bedded trees. Consider the typical example sentence:

AT&T hatte sich gegeniiber der FCC verpflichtet, | eine von drei Optionen zu verfolgen: | die
Anteile an Time Warner zu verkaufen, | die Fernsehproduktionsfirma Liberty Media zu verdufiern

| oder Kabelfernsehnetze mit 10 Millionen Kunden abzustofien.

(ATET had an obligation to the FCC to follow one of three courses: sell its shares of Time
Warner, dispose of the production company Liberty Media, or sell cable TV networks with 10

million customers.)

At the marked positions, the appropriate syntactic structure can easily be decomposed into
five subtrees, each of which might conceivably be established independently of the others.
In fact, the grammar of German we use can analyse all five subtrees successfully. Although
some complements cannot be found within the subtrees and other words must form ROOT
subordinations that are discouraged, the corresponding subtree can still be established.

A natural experiment would be to apply the parser first to the subclauses in isolation and
then allow the trees to be recombined in a further step. Since each of the problems to be
solved is much smaller than the whole sentence, solving them all should take considerably less
time than solving the global problem, which would leave enough resources to recombine them
into the target structure afterwards. Of course, the best way, and in fact the only reliable
way, of finding this division is to determine the syntactic structure of the entire utterance first,
which would defeat the goal of faster analysis. Therefore, an imperfect method of subdividing
sentences must be employed.

In written language, an approximate subdivision is given by punctuation, which in German
marks all subclauses as well as some other phenomena. Note that in the example sentence, the
three punctuation marks correspond to three of the four boundaries between major subtrees (the
fourth boundary is marked by the conjunction ‘oder’, which may or may not introduce a large
subtree). For our first experiment, we therefore used subclauses, as indicated by the sentence-
internal punctuation, as an imprecise indicator of subtrees. In the first stage of processing,
only dependencies between words within each subproblem were allowed. The obtained partial
structures were then recombined in the second stage by allowing the ROOT edges to select
subordinations outside their subtree.

We also had to decide how much time to spend on analyzing the subproblems and how much

on recombining the results. We arbitrarily selected an equal division of processing time: half of
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the time was divided up among the subproblems in proportion to their size, and the remaining
time was spent on recombining the subtrees.

We employed a corpus of written German extracted from online newscasts of the technical
news service www.heise.de. This corpus comprises 1894 sentences with an average length of 24
words; when dividing them along internal punctuation, the subclauses have an average length

of 10 words.

length .. 10...20...30...40 ... 50 ... 60 ... 70 ...
# sentences| 132 609 703 104 25 7 3 1

Figure 2: Distribution of sentence length in the corpus

As a baseline experiment we ran the heuristic solution method on all sentences without any
subdivision, with a time limit of 300 seconds per sentence. This was chosen so that most
analyses terminate on their own before the limit is reached, so that allowing more time would
not improve the results much. On the average, 60 seconds were spent on each sentence and a
syntactical accuracy of 79.3% was achieved. All further figures indicate parsing performance

relative to this baseline experiment.
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Figure 3: Performance of parsing on subclauses as compared to global parsing

Figure 3 shows the performance of subtree parsing compared against that of normal (global)
analysis, displayed by sentence length. It can be seen that the average parsing time over the
entire corpus decreases. The efficiency gain grows with the size of the problem, although the
trend is reversed for the upper problem classes, where the recombination problem becomes
difficult in itself. Also, these very long sentences usually invoked the strict time limit in the
baseline case, so that the baseline time figure could not rise above the maximally possible 300
seconds.

To measure the accuracy of the found analyses, the number of structurally correct dependency

edges is compared to the baseline case of global heuristic search. The accuracy of the results



rises slightly in each problem class. This shows that the time saved by solving smaller problems
is actually useful during recombination.

Since punctuation is only available for written language and even then is only an approximate
indicator of independent subtrees, we investigated other methods of determining boundaries for
subtree parsing. The easiest method is just to assume boundaries every n words. A somewhat
more informed experiment uses the brackets inserted by an external chunk parser as boundaries;

here the resulting parts are only 2.5 words long on the average. Figure 4 compares the results.

Experiment  Division method relative parsing time relative accuracy

punctuation 0.431 1.004
2 every 2 words 0.773 0.956
3 every 3 words 0.687 0.964
4 every 5 words 0.532 0.971
5 every 10 words 0.422 0.983
6 every 15 words 0.523 0.988
7 chunk brackets 0.644 0.981

Figure 4: Comparison of different subdivision strategies

When sentences are divided into parts of equal length, parsing accuracy drops slightly; this
confirms that the linguistically unmotivated parts are, in fact, somewhat more difficult to parse
on their own than true subclauses, even when they are of comparable length (compare lines 1
and 5, lines 2, 3, and 7). The most suitable subdivision for retaining parsing accuracy is that
according to sentence-internal punctuation. This obviously reflects the fact that nearly all
punctuation does indicate linguistic boundaries of some sort. On the average, only a minor loss
in parsing accuracy occurs in any experiment; however, because of the erratic nature of heuristic
search many individual sentences are analysed with up to 10% higher or lower accuracy.

Employing punctuation is also nearly the best choice for speeding up the parser, apparently
because it strikes a good balance between decreasing the size of the problem and retaining
suitable parts. Choosing arbitrary subdivisions has two different effects on parsing time: as
the subproblems themselves become smaller, they are solved faster, but at the same time the

recombination problem becomes larger and more difficult in itself.

4 Recombining subtrees

So far we have treated every subtree as if it were isolated, i.e. no edge may cross the boundary
of the current subproblem, although according to the desired final result, one edge of a subtree
actually has to cross a boundary. These edges are forced to find another temporary subor-
dination during the first stage. They will usually adopt the ROOT subordination, which the

grammar penalizes because it prefers connected syntax trees. The score of the partial struc-



ture is thereby lowered, which makes the problem more difficult to solve. Alternatively, they
might find a different (and definitely wrong) subordination within the subtree, which cannot
be repaired during recombination. Either way, subdivision makes the entire problem somewhat
harder to parse than necessary. We therefore tested several different recombination strategies
(reverting to punctuation as a boundary indicator).

What happens if we allow the correct subordination in the first stage already? The op-
timization subproblem still has fewer variables than the entire problem, but more values for
each variable. The disadvantage is that many other non-local attachments are also allowed, all
which are wrong, since we cannot know which non-local attachment is the correct one. Line 8
in Figure 5 shows the result: due to the increased complexity of the subproblems, parsing time
goes up when compared to experiment 1, and parsing accuracy actually decreases slightly. This

shows that the non-local attachments chosen in stage 1 are wrong more often than not.

Experiment Recombination variant relative parsing time relative accuracy
8 nonlocal edges in stage 1 0.531 0.992
9 structure revision in stage 2 0.743 1.005
10 assign weight 1.0 0.433 0.994
11 assign weight 0.99 0.441 0.995
12 assign weight 0.95 0.436 0.995
13 assign weight 0.9 0.391 1.000
14 assign weight 0.8 0.393 1.001
15 assign weight 0.7 0.396 1.001

Figure 5: Comparison of different recombination strategies

Another experiment (line 9) changes the behaviour of the second parsing stage instead. So
far, we have tried to recombine the subtrees unchanged, by allowing only ROOT relations to
change during stage 2. This succeeds easily if the subproblems have been solved correctly, but
it cannot succeed if there was an error in parsing the subtree; this would require revising the
partial trees during the recombination step. The disadvantage of this is the same as before:
many other alternatives are also allowed, most of which are wrong.

Again, relaxing the strict separation between subtrees increases parsing time when compared
to experiment 1. The effect is even more pronounced, since it is now the global optimization
problem which allows all alternatives. Although the transformational method only changes
edges when there is an obvious problem, each repair step that is done now has to compare
many more alternatives. At the same time, parsing accuracy increases only slightly.

Rather than indiscriminately allowing more alternatives in the hope of finding the desired
relation, it would be preferable to avoid the artificial constraint failures in the first stage al-
together. Empirically, most of these are caused by a small number of constraints which pose

conditions that are not easily satisfied within a fragment.



For instance, the condition that a finite verb needs a subject is often not fulfilled within a
subproblem because the subject is far distant from the verb. Similarly, penalizing sentence
fragments is appropriate when parsing entire utterances, but for the subproblems, the roots of
the subtrees are actually intended to select ROOT subordinations and should not be punished.

One solution is simply not to use these non-local constraints during stage 1. Since all con-
straints operate independently of each other, they can easily be switched off. In the grammar of
German employed, 16 out of 391 constraints fall into this category and were marked for special
treatment during the first step. Line 10 shows the result of this experiment:? while parsing
time does not change notably compared to experiment 1, a small loss in accuracy occurs.

Obviously, disregarding non-local constraints during stage 1 once again allows unwanted
structures as well as correct ones. For instance, when parsing an entire subclause, the subject
can usually be found with the substructure, and therefore the subject constraint should not
be lifted. Rather than switching the constraints off totally, their importance can be decreased
by assigning a different weight to them during the first stage. This still urges the parser to
establish, e.g., the subject relation if this is possible, but does not cause too much problems
when it is not.

The rest of Figure 5 shows that retaining the problematic constraints at a lower weight is
even more effective than simply switching them off: up to a point, they speed up computation
further without losing more parsing accuracy. The exact weight which should be assigned to
them depends heavily on the weight of other competing constraints in the grammar. As it is,
choosing a fixed alternative weight is enough to obtain a slightly better parsing performance. It
is probable that choosing an alternative weight for each constraint individually could improve
the parsing behaviour further; however, this would require much more work on the part of the
grammar writer and would go even further in the direction of writing a special grammar for

sentence fragments, while our goal was to increase parsing performance on arbitrary grammars.

5 Conclusions

Breaking down a given constraint optimization problem into a number of smaller ones and
recombining the partial results in a second integration stage indeed provided a major step to
achieve an accuracy/speed relation which makes parsing of really long sentences feasible. Most
notably this acceleration has been achieved without any loss in accuracy.
Similar approaches to build complex dependency trees out of partial analyses have always
used chunk boundaries as the primary source of segmentation cues, e. g. (Basili, Pazienza, and
2Due to the multiplicative score aggregation in WCDG, a constraint weight of 1.0 renders the constraint

ineffective, while lower values assign it progressively more importance. Constraints with weight 0.0 are the most
important and correspond to the constraints of a classical (crisp) constraint satisfaction problem.



Zanzotto, 1998) , (Biicher, Knorr, and Ludwig, 2002) or (Ait-Mokhtar, Chanod, and Roux,
2002). In contrast to these results we found chunk boundaries not being optimal segmentation
points. Although performing slightly better than arbitrary segments of the same mean length,
they obviously introduce too short substrings of the sentence to fully reap the possible benefits
of decomposing the optimization problem. Moreover, the quality of chunk boundaries might
suffer from the ad hoc treatment unchunked words. Best results have been achieved using
punctuation marks as linguistically well-motivated segmentation boundaries, which also show a
clear quality advantage over arbitrary segments of comparable length. As expected, the payoff

of segmentation is largest for medium to longer sized sentences.

Considering the partial results of the initial parsing phase as unmodified parts of the final
structure turned out to be superior to more flexible approaches. Allowing the parser to modify
the already established partial structures during the second phase gave no additional benefit.
This adds some confirming evidence to the approach adopted in (Basili, Pazienza, and Zanzotto,
1998), where chunk internal structures are also frozen and can only be accessed from outside

through an explicitly specified handle.

Finally, a further decrease in processing time was achieved by relaxing the non-local con-
straints avoiding unwanted penalties for local subtrees. This result additionally shows that the
potential of WCDG to weaken constraining information instead of simply switching it off is

beneficial in many different settings.

The approach to decompose a complex constraint satisfaction problem into a number of
simpler ones was mainly inspired by chart parsing techniques, where complex structures are
also built out of partial descriptions (Kay, 1986). By avoiding useless duplication of analysis
effort through the memoization of rule applications in a well-formed substring table the worst

case complexity can even be reduced from exponential to polynomial.

Since dependency grammar lacks the notion of constituency, no equivalent for a spanning
edge is directly available. Moreover, it can only be introduced if dependency structures are
restricted to projective trees, a rather strong assumption which has been avoided in WCDG to
preserve structural parallelisms for all kind of movement phenomena. Under these conditions
the idea of associating parts of a sentence with partial analyses cannot easily be transferred
to the constraint optimization task at hand. In particular two main differences have to be
mentioned: In contrast to the recursive decomposition in a chart parser, here the optimization
is divided into a two-step procedure. Moreover, segmentation of the sentence is not achieved as
byproduct of a rule application, but established prior to the constraint evaluation itself using

evidence external to the grammar.

This certainly points to the most interesting question for further research: How can informa-

tion from the grammar itself be used to determine the optimum segment length during parsing,



e. g. by noticing that another word seems to be required. If this can be done in a strictly left-to-
right manner it might open up an interesting new perspective on the time course of incremental
language processing, where the desired close-to-linear behaviour can only be achieved if already
derived structures for sentence segments of the past are frozen and treated as complex units in

the ongoing optimization process.
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