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Abstract
In this paper, we present a method which may speed up Earley parsers in practice. A first pass
called a guiding parser builds an intermediate structure called a guide which is used by a second
pass, an Earley parser, called a guided parser whose Predictor phase is slightly modified in such
a way that it selects an initial item only if this item is in the guide. This approach is validated by
practical experiments performed on a large test set with an English context-free grammar.

1 Introduction

The investigation of approaches that allow practical parsing speed-ups is an important topic of
research, especially in real-word applications based upon large-scale grammars. It seems difficult
to find a technique that would improve the throughput of context-free (CF) parsers, due to the
huge amount of research that has already been performed by the parsing community. First,
we must stress that we are not looking for a new CF parsing strategy with a better theoretical
parse-time complexity, but will only propose a technique which, in some cases (i.e., for certain
grammars or for certain input sentences) improves practical parse-times.

Though the results reported in [12] are not very encouraging, we decided to investigate the
usage of guiding techniques in CF parsing.

When a nondeterministic choice occurs during a nondeterministic process, one usually ex-
plores all possible ways, either in parallel or one after the other, using a backtracking mechanism.
In both cases, the nondeterministic process may be assisted by another process which directs its
way. This assistant may be either a guide or an oracle. An oracle always indicates all the right
ways that will eventually lead to success, and only these ways, whereas a guide will indicate all
the good ways but may also indicate some wrong ways. In other words, an oracle is a perfect
guide.

Of course, nondeterministic parsers are the most likely candidates to be guided. Parsing
with a guide proceeds as follows. The guided process is split into two phases. The first guiding
parser builds a structure called the guide, while the second phase, the guided parser proper,
looks into the guide in order to help (some of) its nondeterministic choices.

In this paper, we will see how a (slightly modified) general CF parser can in practice be
speeded up using guiding techniques.

We choose to guide Earley type parsers [9], the guide being called during its Predictor phase:
an initial Earley item [A — .a,1] is added to a given table T;, for a given source index 4, only



if that initial item is in the guide.!

For a given guided parser, the choice of a guide only fixes the output of the corresponding
guiding parser, still leaving a degree of freedom in the choice of this guiding parser.

In this paper we will define several guiding parsers, and for each of them we will address
two issues: on the one hand, we will quantify its quality (i-e., how far from an oracle the
corresponding guide is) and, on the other hand, we will compare the total run-times of the pair
guiding parser/guided recognizer to the run-time of a standard (non guided) Earley recognizer.
These measures will be performed on a large test set parsed by a guided Earley parser for a large
context-free grammar (CFG) extracted from a wide coverage English tree-adjoining grammar.

Unless otherwise stated, for a CFG (N, T, P, S), terminal symbols in T are denoted by lower
case letters such as a,t, ..., nonterminal symbols in NV are denoted by upper case letters such
as A, B, ..., while strings of symbols in (N U T)* are denoted by Greek letters such as «, T

2 The Oracle

In this Section, we define both oracle and guides, together with their precisions.

Let G = (N,T,P,S) be a CFG and let w = a; . ..a, be an input string of length n > 0. We
say that a production A — « € P is useful at i for some w or equivalently that an (initial) Earley
item [A — .a,1] is useful for some w, if and only if there is a complete derivation of the form
S % T AT, ?5 T'ial'y :;> wiwe = w in which I'y :;> wy =aq...a; and al'y :;> W = Gy -+ Qne
In other words, in the parse forest for w, there is a subtree rooted at A — « which spans a
substring of w whose leftmost position in w is at index 1.

As suggested in the introduction, for a given string w, we define a guide G* as a set of initial
Earley items which contains the set of all useful items for w. During the Predictor phase of a
guided Earley recognizer, an initial Earley item [A — .«, 4] not in G*, will not be added to the
table T;. The guide G which is defined as the set of all useful items for w is called oracle and
is noted O™. The size |G*| of a guide G is its cardinality.

As usual, the precision score (precision for short) of a guide (w.r.t. the oracle) is, for a given
w, defined by the quotient %. However, since by definition we have O% C G*, this
precision reduces to %.

By definition of a guide, its recall score is 100%, since all useful items are in G*.

D wes 0¥

For a test set S, the average precision of a guide is defined by ST
weS

Therefore, in order to evaluate the average precision of the various guides that we will define
below, we first need to measure the number |O¥|, for each input string w in some test set S.
This can be done very easily by using a complete Earley parser and extracting from each parse
forest for w the number |O%|.

We can remark that, in the light of this presentation, it is also possible to measure the
precision of the Predictor phase of a standard Earley recognizer: for a given w, we only have

1The filtering out of productions at their very beginning in the Predictor phase seems more efficient than
their elimination, after complete recognition, in the Completer phase. This remark also explains why we choose
Earley parsers rather than GLR parsers, since, in GLR parsing, the only place where a call to a guide can be
inserted seems to be at reduction time, when the production has been validated. Note that the Scanner phase
could also have been a judicious action to be guided. Moreover, the technique reported here could be applied

to left-corner (chart) parsers as well (descriptions and practical experiments of left-corner parsers can be found
in [13]).



to count the number of initial Earley items that are produced during its Predictor phases.

3 The Guides

3.1 Lexicalization Guiding

We say that a production of a CFG is lexicalized if it contains a terminal symbol. A CFG
is lexicalized if all its productions are lexicalized. In a lexicalized grammar terminal symbols
are called anchors. By extension, we will use the word anchor as a synonym of terminal
symbol. Lexicalized formalisms are popular in NL processing because the rewriting rules in
which an anchor appears give all its valid syntactic constructions. As an example, tree-adjoining
grammars (TAGs) are very often lexicalized TAGs (LTAGs) (See [10] for an introduction).

From a computational point of view, some parsing algorithms may take advantage of lex-
icalized grammars: each word of a given text first selects in a (usually) huge grammar only
the matching rules. This filtering process generally results in a much smaller grammar which
may become more manageable. In order to further improve the efficiency of parsers for lex-
icalized formalisms, Joshi and Srinivas have introduced in [11] the idea of supertagging: for
each word, given its context in a sentence, its appropriate descriptions are selected. However,
since this selection is usually based upon statistical distributions, parser correctness is not pre-
served. Regarding this issue (see [7]), we also present some correctness-preserving supertagging
approaches which rely heavily upon our guiding techniques. When a parsing technique, more
or less directly, uses the input grammar, as is the case in Earley-type parsers, the lexicalized
filtering process or even the supertagging approach may both be considered as guiding parsers:
their output guides are smaller grammars. However, this is only a particular case of guiding
since the knowledge of a smaller set of productions may well be of little interest for some parsing
techniques which need other kinds of guiding information. As an example, we can find in [2]
the informations needed by guided RCG parsers for tree-adjoining languages.

In this Section, we see how it is possible to use the lexicalized productions of a (non-
lexicalized) CFG in a guided parser.

For a CFG (N,T,P,S) and a string w = a; .. . a,, the set of selected productions P, is the
subset of P defined by P, = {A - 0| A — 0 € Pando € N*} U{A — ooti01...tj0; |
A — ogtio1...tjo; € Pand o, € N*,0< k <jandt, € T,1 <h <jand 3(i1,...,4;),1 <
i1 < ... < 1ij < nsuchthat Yh,1 < h < j,a;, = tn}. In other words, for a given input w, a
production is selected either if it is not lexicalized or if all its anchors appear in w in the correct
order.

The processor which, from an input w and a CFG (N, T, P, S), builds the set of selected
productions P, and outputs the set G* = {[A — .,i] |0 <i < |w|and A - a € P,}is a
guiding parser which is called Lex1 in our experiment.

Note that in Lex1, the selected productions are independent of any source index. Of course,
as the guiding parser proceeds from left to right, the length of the suffix of the text not yet
processed decreases, that is the number of productions which, at some source index, are able
to start also decreases. This phenomenon may be taken into account to improve the guide’s
precision. Therefore, for a given source index i,0 < i < n, the set of index selected productions
P! is defined by P! = {A -0 | A —> o € Pando € N*} U{A — ootio1...tjo; | A —



ootio1...tjo; € Pandop € N*,0 < k< jandt, € T,1 < h < jand 3(i1,...,4;),i +1 <
i1 < ... < i; < mnsuchthat Vh,1 < h < j,a;, = tn}. In other words, for a given input, a
production is selected at ¢ either if it is not lexicalized or if all its anchors appear in the suffix
@41 - - - @y of this input in the correct order.

This improved guiding parser is called Lex2 in our experiment.

3.2 Regular Guiding

In [12], Martin Kay challenged the parsing community “to construct a weakened version of
a particular grammar that will serve as an effective guide”. In this paper, we take up this
challenge.

As a weakened version, we decided to design regular supersets of context-free languages
(CFLs), mainly because sentences of regular languages can be recognized in linear time.2

The design of regular supersets (or more generally regular approximations) of CFLs is not
new (see [15] for example) and even their usage in CF parsing (see [14]) has been attempted.
These approximations of CFLs mainly rely on two methods. A transformation occurs either
at the grammar level or at the pushdown automaton (PDA) level. In the first case, CFGs are
transformed by exploiting some necessary condition for a CFG to define a regular language.?
In the second case, a PDA is first built from the CFG, and then that PDA is approximated
by a finite-state automaton (FA). However, for a given real size CFG, the associated regular
grammar or the associated FA are often too big, or the total number of operations performed
by a pair guiding parser/guided parser seems to exceed the number of operations performed by
a standard parser.

Despite these rather discouraging results, we decided to investigate the FA method.* The
superset approximation process which transforms a PDA into an FA always consists in reducing
an infinite number of parse-stacks into a finite one, by defining an equivalence relation on parse-
stacks which induces a finite partition. Each element of that partition is then mapped to a state
of the FA. For example, we could say that two parse-stacks are equivalent if and only if they share
their h top-most elements for a given integer h.> Of course, the precision of the PDA increases
with A, but, for a large grammar (say more than 10000 symbol occurrences), only the value
h =1 is practicable. For large CFGs, the challenge is thus to define regular supersets by means
of FAs that are both manageable and whose number of operations is favorably counterbalanced
by the number of operations saved in the guided parser.

Let G = (N',T,P',S§"),N'=NU{S'},8" ¢ N,P' = PU{S" — S} be an augmented CFG.
Let I = {A - a.f | A — aff € P'} be its set of items (dotted rules). A complete item has
the form A — «., a nonterminal item has the form A — «.Bf, while a terminal item has the
form A — a.tf.

Let I and J be two subsets of I, close-reduce(l, J) is defined as the smallest set K such
that J C K C I by:

1. Initially K = J;

20f course, some other linear run-time supersets could also be studied.

3Recall that it is undecidable whether the language defined by a CFG is regular or not.

4Though the grammar transformation method can be more easily tuned, it seems that it produces less precise
approximations.

51f the PDA is an LR automaton, for h = 1, we have the method described in [1], while for A > 1, we have
the methods of [4] and [3].



2. closure: If A —» a.By € K, then add B — .3 to K for each B — 3 € P;
3. reduce: If A — a. € K, and if there exists B — 3.Avy € (I U K) then add B — SA.v to K;
4. Steps 2) and 3) are repeated until no new item is added to K.

From G = (N',T, P',S"), we define a deterministic FA Ag = (Q,T,6,q0, F) as follows. Its
set of states is Q@ = {[I,J] | I,J € 2¢}. For a state ¢ = [I,J], its first component I is a
set of items called its control set, while its second component J is called its active set. The
initial state go is the pair [Io, Ip] with Iy = close-reduce(d), {S" — .S}). The set of final states
is F={[I,J]|S — S € J}. Let [I,J] be a state in @, for each a € T, we write, for
the (deterministic) transition function 8, 6([I, J],a) = [I',J'] where I' = T U J,, J' = J, and
Jo, = close-reduce(I,{A — aa.f | A — a.af € J}).

Informally, we see that in each state [I,J], the active set J is responsible for the terminal
transitions® while the intent behind the control set I is to play the role of a degenerated parse-
stack. If we follow a path from the initial state, we see that the control sets of the traversed
states do not decrease. In fact, they (mainly) record the nonterminal items that have already
been seen since the initial state. These nonterminal items are used during the reduce phase (see
step 3) to perform nonterminal A-transitions only on recorded A-items. By analogy with the
notion of PDA, and by reference to the control and active sets, Ag is called a set automaton
(SA).

As usual, we define a configuration as an element of () x T™* and a binary relation between
configurations, noted ..JQ_G by (g,tx) Jl_g (¢',z), if and only if §(¢,t) = ¢'. Let w = a;...a, be
a terminal string and let w; = a;41 .. .a, be its suffixes (we have wop = w and w, = €). The
initial configuration is noted ¢y and is the pair (go,wp). For each i, 0 < i < m, we define ¢; as
a configuration of the form (g;, w;) such that ¢ f}l_g cr... )l_c ¢; (that is ¢; = 6(g;_1,a;)). The
final configuration ¢, has the form (g¢,,w,), with the supplementary condition that ¢, must
be a final state in F. We say that w is recognized by Ag if and only if ¢, exists (we have
Co fll_g Ci... )l_g Cn)-

It can be shown that £(Ag), the language accepted by Ag (i-e., the set of all its recognized
strings) is a regular superset of £(G).” More precisely, if ¢; = ([I, J],w;), if some initial item
A — .o is an element of J and if its RHS « can derive the substring a;41 . ..a; of w starting at
index i (i.e., « :;> @41 ---a;), then we have ¢; = ([I', J'], w;) and the complete item A — a.is an
element of J'. Conversely, if a complete item A — «. is an element of J' for some configuration
¢; = ([I', J'], w;), there exists a configuration ¢; = ([, J],w;), i < j (i-e., ¢o )::G i EG ¢;) such
that J contains the initial item A — ., however, in this case, the substring a;;+1...a; may
well not be derived from a in G.

Thus, an SA may detect both the beginning of a production and its complete recognition.
However, when the beginning of a production A — .« is detected in some configuration ¢;,
we are not sure that there exists a configuration ¢;, ¢ < j, in which that production will

6Note how fresh leftmost terminals (i.e., A — a.t3,a = €) are introduced by the close-reduce operation.
G

"Moreover, if go, the initial state of Ag, has the form gy = [Ig, Io] (instead of go = [Io, Io]), £L(Ag) is the
language generated by the superset approximation based on recursive transition networks described in [15]. This
is also the case for the language accepted by the FA defined in [1], if we replace its underlying LR automaton
by a left-corner automaton. If Aé is the SA whose initial state go is the pair [I,Io], it can be shown that

L‘(Aé}) C L‘(Aé?) if It C Is. Thus, Ag’ (i.e., Ag) is the most accurate SA.



be completed. Conversely, when a production A — ¢. is completed in some c;, we are sure
that its recognition has started in some ¢;, ¢ < j. Therefore, even if we are not sure that «
derives a;11...a; in G, we can state that, with Ag, the detection of complete items is more
precise than the detection of initial items. In other words, as defined, SAs are more suited
to detecting complete items than to detecting initial items while our guiding strategy needs
(only) the detection of initial items. In order to detect initial items with the same accuracy as
complete items, we define mirror SAs.

IfG = (N',T, P S") is an augmented CFG, we define G = (N, T, P, S"), its mirror grammar
in which we have P' = {A — X,,...X; | A — X;...X, € P'}. Of course, £(G) is the mirror
language of £(G): L(G) ={an...a1 | a1 ...an € L(G)}. Let Az be the (mirror) SA associated
with G. Of course, the mirror automaton A5 must be interpreted with the mirror input
string W = a, .. .ai, or equivalently with w, scanned from right to left. If a configuration

ci = ([, J],w;), co .Alt_ c; of A(~; is such that J contains a complete item of the form A — &., this

means that a recogniGtion of the production A — « may start at the index n — ¢ and, moreover,
that this production will eventually be completed. In other words, in the configuration ¢; of
Az, we can place the Earley item [A — .o, n — d] into the guide.

Due to our own experience in building regular covers for large CFGs, we believe that the
combinatorial explosion in the number of their states will prohibit the construction of large
SAs, or at least the construction of their (minimal) deterministic versions. Thus, we advocate
constructing, at guiding time, only the sub-automaton, connected to the initial state g and
consistent with a given input string w. Therefore, if w is recognized, exactly n + 1 states of Aa
are constructed.

It is possible to benefit from the fact that an SA is built from a CFG G at run-time
in building this SA only for a sub-grammar of G. More precisely, instead of using G =
(N',T,P',S"), we can benefit from the lexicalized productions of G by using the sub-grammar
Gy = (N, T,P", S",P" = P,U{S" — S}, where P, is the set of selected productions defined
in Section 3.1, and w is the input string. It is even possible to use, for each configuration ¢;, a
different set of productions P! which is the set of index selected productions of Section 3.1.

This guiding parser with a mirror SA, using for each configuration ¢;, a set of index selected
productions, is called SA in the experiment.

In fact, a guiding parser may itself be a guided parser. For example, a finite transducer which
uses the mirror SA Az may be guided by a finite transducer which uses Ag. In such a schema,
two guides are constructed. A first guide, which is built by a finite transducer based upon
Ag, and a second guide which is built by a finite transducer based upon Aa. The first guide
contains useful Earley items of the form [A — .«,i] which are produced when the (guiding)
finite transducer based upon Ag is in the configuration ¢; = ([I,J],w;) and if J contains the
initial item A — .. The guided version of the finite transducer based upon Ay works as its
non-guided version, except that the useful Earley item [A — .a, 1] is put into the second guide
only if it also an element of the first guide. Though the detailed results of this two phase guiding
schema are not reported in the experiment section of this paper, we got the following results:
as expected, the run-times of the guiding phases are roughly doubled, the average precision
is improved from 77.9% to 79.2%, while the global average run-time of the associated guided
Earley recognizers increases from 33ms to 35ms.



4 Experiments with an English Grammar

n-n tnxOvnx1-v tnxOnl-n spu-punct
0 George 1 ~ loved o 2 himself 3 ~ . o 4
%nxn—n / tnxOvnxls2—‘/ \ nxn-n / spus—punct

nn-n tnxOvsi-v
Figure 1: Actual source text as a simple DAG structure
The measures presented in this section have been taken on a 1.2GHz AMD Athlon PC running

Linux. All parsers are written in C and have been compiled with gcc without any optimization

flag.
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Figure 2: Distribution of the number of sentences by their lengths

Our experiment is based upon a wide-coverage English grammar designed for the XTAG
system [16]. Of course, that grammar uses the TAG formalism. In the first stage, the English
XTAG is automatically transformed into a CFG.® Let G be this generated CFG,? the sizes of

its components are reported in Table 1.10

[IN[[ 7] 1Pl | 1G] | max RHS #nt |
| 33 [ 476 | 1131 [ 17129 | 26 |

Table 1: G = (N, T, P, S) facts

8Following [6], the English TAG, stripped of its feature structures, is first transformed into an equivalent
simple positive range concatenation grammar (PRCG). Then, following [2], this simple PRCG is transformed into
a simple 1-PRCG which defines a CF superset. This simple 1-PRCG is in turn transformed into an equivalent
CFG (See [5]), upon which all our experiments are based. In [7], we can find an algorithm which directly
transforms a TAG into a CFG that defines a superset language.

9Though XTAG is an LTAG, the CFG G is not lexicalized.

10The elements in T are POS tags such as n-n, nxn-n, ... (see below). The size |G| of a CFG G is the

number E AoacP |Aa|. In order to give an idea of the complexity of this grammar, the last column gives the
number of non-terminal symbols which occur in the RHS of the longest production. Such an impressively large
number is directly related to the number of adjunction and substitution nodes in the largest elementary tree of
the original TAG.



The association between the words (inflected forms) of an input sentence and the terminal
symbols (anchors) of G is the task performed by a lexer by means of dictionary searches. A
dictionary search performs a one-to-many mapping between an inflected form and its associ-
ated anchors. For example, from the sentence “George loved himself .”, the lexer produces
the sequence “George {n-n nxn-n nn-n} loved {tnxOvnxi-v tnxOvnxls2-v tnxOvsi-v} himself
{tnxOn1-n nxn-n} . {spu-punct spus-punct}”, which is the actual input to all our processors.!!
Of course, all our processors have been prepared to accept such simple DAG structures as input
(See Figure 1).

30 I I I I I I I I I

25 T o : Lexl (avrg = 1lms)
20 + + : Lex2 (avrg = 3ms)
15 1 : SA (avrg = 5ms)

10 A

Average run-time (msec)

Input length

Figure 3: Guiding parsers average run-times

For our test set, we have used sentences extracted from the Wall-Street Journal. We used
42 253 sentences for a total length of 1M words. On this 1M word test set, the lexer phase runs
in a little more than 10 seconds. However, 964 of these sentences are extra-grammatical w.r.t.
G, and thus had to be ignored, leaving 41289 sentences for a total of 945772 words. In this
test set, the lengths of individual sentences show great variations: with an average length of
almost 23 words per sentence, there are single word sentences while the longest one contains
158 words! However, in order to smooth the results, all unique sentences of any given length
have been ignored.!? The distribution of our test set is shown in Figure 2.

As previously explained, a single input word usually selects several anchors. In all, the 944 609
words select 10417451 anchors (that is more than 11 anchors per word on average). In other
words, when a sentence of n words is processed, in fact, this corresponds to a linear input of
about 11 % n anchors.

‘ H Oracle ‘ Predictor Lex1 Lex2 ‘ SA ‘
|G™| 77526680 | 919198693 | 199219402 | 136517224 | 99582822
Precision (%) 100 8.4 38.9 56.8 77.9

Table 2: Average precisions of various guides

Recall that the purpose of our experiment is twofold: on the one hand we want to speed up

1 The names between braces are anchors whose structure has the form £-c where the prefix f is a family
name, reminiscent of the XTAG organization in family trees, while the suffix t is a category (verb,
noun,...).

12This puts aside twelve (long) sentences of length 73, 78, 79, 83, 84, 92, 93, 94, 95, 106, 128 and 158.
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Figure 4: Guided recognizers average run-times

Earley type CF parsers and, on the other hand, we want to quantify the quality of the chosen
guides, in other words how far they are from the ideal guide, the oracle. We can note that the
best guides w.r.t. the second criteria will not necessarily be the ones which will get the best
results w.r.t. the first criteria. The speed-up of a guided parser w.r.t. its non guided version
will clearly be a trade-off between the precision of the guide and the time taken to build it. It
is clear that the theoretical parse-time complexity is not improved by this technique and even
that some practical parse-times can get worse.

The throughputs of the three guiding parsers Lex1, Lex2 and SA are shown in Figure 3, while
the throughput of each associated guided Earley recognizer is shown in Figure 4, together with
the results of a non-guided Earley recognizer.

On our test set, our experiment shows that, with any of the three methods, a guided Earley
recognizer is, on average, more than three times faster than its non-guided counterpart. We can
also note that only a small part (3 to 15%) of the total guided parse-time is spent, on average, in
each guiding phase, and that costly guiding phases produce higher savings during their guided
phase. However, for each of the three methods, it seems that the time saved during the guided
phase is almost counterbalanced by the run-time of the guiding phase, at least within the input

length ranges of our test set. This explains why, rather surprisingly, the three guided Earley



recognizers give close results.!®> An interesting question pointed out by one referee is to know at
which break point it becomes more convenient to pre-process the input sentence with a guiding
parser rather than to perform a direct parsing? Looking at the curves, it appears that this
break point is very low. In fact, by examining the corresponding data, it seems that, even for
very short sentences of a single word, the parse-times of all the guided recognizers outperform
the standard recognizer.

The average precisions of the different guides are shown in Table 2. For the set of grammatical
sentences, the line |G¥| gives the total number of useful items stored in the different guides. The
first column is for the oracle, while the second column is for the Predictor phase of a standard

Earley recognizer.

5 Conclusion

As already noted by many authors (see for example [8]), the choice of a parsing algorithm, as far
as its throughput is concerned, cannot only rely on its asymptotical complexity but must also
take into account practical experiments. Complexity analysis gives worst-case upper bounds
which may well not be reached, and implies constants that may have a preponderant effect on
the typical size ranges of the application. If we consider general CF parsing algorithms that
have a practical implementation, all methods exhibit a theoretical cubic parse-time complexity,
for appropriate grammar forms. However, their practical behaviours differ greatly from one
another. For example, for two popular classes, GLR and Earley,'* it seems that GLR-based
methods can be chosen when the CFG at hand exhibits a rather low rate of ambiguity, while
Earley-based methods are better for very ambiguous CFGs. Since the large-scale grammars
upon which real-word NL applications are based are very often highly ambiguous, we have
decided to speed up Earley-type parsers by a guiding technique. Although such an attempt is
not novel, previously reported results were not very encouraging (see [14] and [12]).

In this paper, on the one hand, we have quantified the quality of the guided Predictor
phase of an Earley recognizer by defining its precision. The quantity of work performed by an
Earley parser decreases as the guided Predictor phase precision increases. In this paper, three
guide construction methods have been experimented. These experiments were performed on a
large, highly ambiguous'® wide coverage English CFG, with a large sample set of sentences of
unrestricted length. We can note that the Predictor phase of a Earley recognizer guided by a
set automaton guiding phase exhibits a precision which is more than nine times better than
that of the Predictor phase of a standard Earley recognizer.

On the other hand we have shown that some kind of guiding technique has to be considered

130f course, we must also consider that the scale of the y-axis does not allow a clear distinction between the
three curves.

140ne referee has noted that “Earley and GLR are not the most commonly used CF parsing algorithms for
NLP, and they are certainly not the best. Often the algorithm of choice is (tabular) left-corner parsing, with
or without top-down filtering”. As a matter of fact, in [13], Moore claims that “LC parsing outperforms several
other magjor approaches to context-free parsing, including some previously claimed to be the best general context-
free parsing method. We conclude that our improved form of LC parsing may now be the leading contender for
that title”. Recall that the purpose of this paper is not to compare guided Earley parsers with other general
CF parsing methods, but rather to show how guiding techniques may improve a given parsing method, without
making any other changes. Nevertheless, such a comparison naturally arises. So we have built guided Earley
parsers for the three (huge) CFGs defined in [13]. Preliminary results on the available test sets show that the
speed of our guided parsers could be favourably compared with Moore’s.

151n fact our test CFG exhibits many cycles.



when one wants to increase parsing efficiency. Though this technique can be implemented with
very few modifications, we have seen that a guided Earley recognizer can run more than three
times faster that its standard counterpart.

Finally, we can note that this study also opens up a way to applications which require both
accurate and efficient supersets of CFLs.
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