Machine Learning for Shallow Interpretation

of User Utterances in Spoken Dialogue Systems

Piroska Lendvai

Antal van den Bosch

Emiel Krahmer

ILK Research Group ILK Research Group Communication & Cognition
Tilburg University Tilburg University Tilburg University
The Netherlands The Netherlands The Netherlands

P.Lendvai@uvt.nl

Abstract

We investigate to what extent automatic
learning techniques can be used for shal-
low interpretation of user utterances in
spoken dialogue systems. This task in-
volves dialogue act classification, shal-
low understanding and problem detec-
tion simultaneously. For this purpose
we train both a rule-induction and a
memory-based learning algorithm on a
large set of surface features obtained by
affordable means from an annotated cor-
pus of human-machine dialogues. Using
a pseudo-exhaustive search, the param-
eters of both algorithms are optimized.
The shallow interpretation task turns out
to be a difficult one, partly since there
are 112 types of user answers. The best
overall accuracy (exact match) obtained
was 56.5%, which is a significant im-
provement over the baseline. The best
average precision and recall for dialogue
act classification was 82.8%, for classi-
fying slot types 80.6% and for detecting
communication problems 77.4%.

1 Introduction

In recent years there has been an increased inter-
est in using statistical and machine learning ap-
proaches for the processing of user utterances in
spoken dialogue systems. Dialogue act classifi-
cation is an example for which this approach has
been relatively successful. The purpose of this

Antal.vdnBosch@uvt.nl E.J.Krahmer@uvt.nl

task is to determine what the underlying intention
of a user utterance is (e.g., suggest, request, re-
ject, etc.). Various techniques have been used for
this purpose, including statistical language models
(Reithinger and Maier, 1995), maximum entropy
estimations (Choi et al., 1999), mixed stochastic
techniques (Stolcke et al., 2000), Bayesian mod-
elling (Keizer et al., 2002) and transformation-
based learning (Samuel et al., 1998b).

Another task for which such approaches have
been applied is automatic problem detection.
Given that current speech recognizers may still
make recognition errors, it is important to try and
detect these problems as soon as possible. Various
researchers, including (Hirschberg et al., 2001;
Van den Bosch et al., 2001; Lendvai et al., 2002b),
have shown that users signal problems when they
become aware of them and that it is possible to
detect communications problems with a high ac-
curacy on the basis of such user signals.

Finally, for processing and understanding
spoken user utterances, statistical techniques have
also proven their usefulness, either in combina-
tion with rule-based grammars (e.g., Van Noord
et al. (1999)) or without them (e.g., Nakano et al.
(1999)).

Dialogue act classification, problem detection
and understanding are all highly relevant for the
processing of user utterances in spoken dialogue
systems. Still, none of the approaches mentioned
above address these tasks in combination. Such a
combined approach would constitute a shallow in-
terpretation module which provides clues for the
dialogue manager about semantic aspects (such as

69



the contents of the user’s utterance) and pragmatic
aspects (the dialogue act and feedback about the
status of the dialogue). If we would be able to
correctly obtain such a representation, interaction
with the dialogue system could improve, allowing
the dialogue manager module to switch its strategy
(e.g., to different error recovery or confirmation
strategy) to adapt to the given situation. Arguably,
generating this combined semantic-pragmatic in-
terpretation is a difficult task since there are many
ways in which these different clues can be com-
bined. In addition, some of these clues will be hard
to predict (e.g., whether a user will accept instead
of correct a misrecognition, or which pieces of in-
formation a user will decide to provide or correct).

The goal of this paper is to investigate to
what extent different machine learning approaches
can be used for the purpose of such shallow in-
terpretation. We use two learning techniques,
namely rule-induction and memory-based learn-
ing. Both learners are trained on a large set of fea-
tures derived from an annotated corpus of human-
machine dialogues with a Dutch train timetable in-
formation system. The features come from differ-
ent sources and are all low-level and directly avail-
able in most current spoken dialogue systems. In
the experiments no explicit feature selection is per-
formed. Our earlier results on problem detection
(based on the same corpus) showed that the best
results are obtained using all features (Lendvai et
al., 2002b). In addition, the learning techniques
themselves are capable to determine which fea-
tures are beneficial for the learning task and which
are not. We do perform an extensive search to es-
timate the optimal settings of both algorithms for
the current task.

The remainder of this paper is organized as fol-
lows. In Section 2 we describe the corpus that was
used and the labelling of the utterances. In Sec-
tion 3 we describe the learning instances that were
derived from the corpus and the general structure
of the optimization and classification experiments.
The results are given in Section 4. We conclude
with some general remarks in Section 5.

2 Corpus and Labelling

The corpus used in our study consists of 3,738
pairs of system questions and user answers; in to-

70

tal 441 full dialogues (involving more than 400
different speakers). The dialogues were sampled
from a range of telephone calls where users in-
teracted with a Dutch train timetable information
system. The dialogues are relatively short (2-10
turns). The system uses a mixed-initiative dia-
logue strategy that prompts the user to fill vari-
ous slots. The system needs to have these slot val-
ues before it can perform a database query. At all
times, the system gives immediate feedback to the
user, via implicit or explicit verification, on what it
has understood. Users of this system will therefore
always become aware of eventual misunderstand-
ings from the following system question.

The semantic structure of the system prompt
and the shallow semantics of the user’s response
were hand-labelled in terms of a simple and
straightforward tag set, derived from an earlier
annotation for problem signalling performed by
(Van den Bosch et al., 2001) and from structured
semantic annotations of user anwers based on up-
date expressions (Veldhuijzen van Zanten et al.,
1999). The resulting tag set is unambiguous, thus
system prompts and user answers can always be
associated with exactly one representation. The
number of different tags for system prompts is
106, that of user utterances is 112. The number
of different occurring pairs of system prompts and
user response is 664: there is no obvious mapping
from systems prompts to user reactions.

System prompts are tagged in terms of dialogue
acts and slots. Basic dialogue acts include asking
a question (Q), explicit verification (E), repeating
a prompt (R), asking a meta-question (M) and of-
fering travel advice (final result, Fr). Implicit ver-
ification is represented as the simultaneous occur-
rence of a question and a verification (Q;I). The
slots to be filled from the user input are depar-
ture and arrival station (V and A respectively), and
the corresponding day, time of day (i.e., morning,
noon or night) and hour (represented as D, T and
H respectively). These time slots can be ques-
tioned together (“when”, Q_DTH) or in isolation
(e.g., “at what time” Q_H). In addition, the sys-
tem can ask whether the user wants to have the
travel advice repeated (repeat connection, Q_Rc),
or whether the user would like to have information
about another connection (Q_Oc), or an earlier or



later one, and so on.

The following are some tagged example system
prompts (translated from Dutch); the general tag-
format is act_slot, the parentical number indicates
the frequency of a tag in our data.

(i) From where to where do you want to travel?

Q_VA (556)
(ii) When do you want to travel from Amsterdam

to Tilburg?

Q_DTH;I_VA (358)

(iii) I am sorry but I didn’t understand you. Could
you repeat from where you want to travel to
Schiphol?

RQ_V;RILA (107)

(iv) I am sorry but I didn’t understand you. Could
you repeat your answer?

M (83)

User utterances are likewise represented as a
combination of dialogue acts and slots. Users
can give information (‘slot-filling’, S), provide
an answer with explicitly uttering ‘yes’ (Y) or
‘no’/*don’t’/*not” (N), or accept incorrect infor-
mation (A). The following are three different an-
swers to the second system question above (num-
bers again indicate frequency of the tag). The gen-
eral tag-format of the classes is act_slot_situation.

(i) Tomorrow.

S_D_ok (228)
(i) No, not to Tilburg but to SCHIPHOL !

N;S_A_pr (16)
(iii) Today at eight in the evening.

A;S_DTH_pr 3)

The first answer is an input in an unproblematic
situation (ok). The second one features an explicit
’no’ and at the same time corrects the misrecog-
nized slot. The third answer illustrates acceptance
since the user does not correct the misrecognized
slot (Tilburg) that is verified implicitly in a there-
fore problematic (pr) situation.

Our annotation scheme thus uses a separate
marker associated with user utterances that fol-
low a question—answer pair in which the an-
swer caused some communication problem, for
instance (and most often) because it was misrec-
ognized. Therefore, the special marker identifies
the point at which the user became aware of the

communication problem, since he or she has just
heared a system prompt not in accordance with the
information just given in the previous answer.

In sum, the user tag represents jointly a high-
level dialogue act (S, A, Y, N), a shallow seman-
tic interpretation of the types of slots filled by the
user, and a high-level pragmatic “awareness” flag
of a communication problem. Appendix A illus-
trates a complete tagged dialogue of the corpus.

3 Learning Experiments

3.1 Feature representation

The shallow interpretation learning task can now
be paraphrased as follows: given a user utter-
ance in its preceding dialogue context, tag it
with a semantic-pragmatic interpretation. This
tag includes dialogue act information, information
about the contents and whether or not a commu-
nication problem arose. In (Lendvai et al., 2002b)
we studied the usefulness of a wide range of fea-
tures for problem detection in spoken dialogue
systems using machine learning. We utilize the
same features for the current study as well. The
features were extracted automatically both from
the state of the system and from the recognized
prosody and wording of the user’s utterance and
are listed in Table 1.

From the Dialogue Manager (DM) we use the
words of the current and the previous prompt as
well as the sequence of ten system prompt types.
The latter can be seen as a (partial) representa-
tion of the dialogue history, showing (among other
things) for which slots the system thinks it has ac-
quired the correct value. Many studies on dialogue
act classification also make use of the history of
the computed classes of user input, e.g., Samuel et
al. (1998a). However, we opted for not using this
feature, in order to avoid cumulative error (Qu et
al., 1997) originating from incorporating incorrect
hypotheses. At the same time, using the correct
tagged history of the user’s utterances is not re-
alistic since a spoken dialogue system can never
have access to those on-line.

The features representing user utterances are
derived from both the output of the Automatic
Speech Recognition module (ASR) as well as the
raw audio. The ASR output of this particular sys-

71



Aspect

Feature

DM: prompt
DM: lexical
ASR: confidence
ASR: branching
ASR: lexical

Prosody: pitch

Prosody: energy

sequence of last 10 prompt types

words in current and previous prompt

summed confidence score of most confident path in current word graph
branching factor in the word graph of current and previous utterance
bag-of-words of previous and current user turn; most confident recog-
nized string

maximum and minimum FO; position of maximum and minimum; mean
FO and standard deviation

maximum energy (RMS); position of maximum; mean RMS and standard

deviation
Prosody: duration
Prosody: tempo

length of utterance in seconds; length of initial pause in frames
number of syllables per second

Table 1: Overview of the employed features.

tem produced a word graph, containing various
word hypotheses along with confidence scores in-
dicating how sure the system is that it recognized
a certain word correctly. From each word graph
we stripped the recognized words (including the
potentially incorrect ones) and encoded these as
a 759 bits bag-of-words (BoW) vector. The 759
bits represent all words that occurred at least once
in our corpus. In each BoW vector we indicate
whether a word was present (‘p’) in the corre-
sponding word graph or not (‘a’).

From the word graph we extracted the duration
of the initial pause, the speech tempo, and the de-
gree of branching. The initial pause in the utter-
ance (the length of the silence that precedes the
utterance) may cue the degree of hesitation of the
user in responding, cf. (Krahmer et al., 2001). The
speech tempo of the utterance corresponds to the
number of uttered syllables per second.

The complexity (or branching factor) in the
word graph was also calculated both for the
current and the preceding utterance, characteriz-
ing the degree of confusion in the graph; much
branching in the word graph can be an indication
of system uncertainty or noisy user input. The
confidence measurements of the ASR were also
converted into a feature: we summed the confi-
dence scores over the nodes of the overall most
confident path for the user input.

Furthermore, we incorporate prosodic features
in the learning since those have been reported

72

to function well for problem detection purposes
(see e.g., Hirschberg et al. (2001)). Non-
standard prosody may be a signal of hyperartic-
ulate speech which is typically associated with
corrections (compare the way “Schiphol” is pro-
nounced in the second user example utterance in
Section 2). From the audio recordings of the cor-
pus we automatically extracted loudness (in terms
of RMS, i.e, root mean square energy), duration of
the utterance from silence to silence and pitch (in
terms of FO, i.e., fundamental frequency).

Each of the 3,738 user utterances in the corpus
is represented as a vector consisting of 2,479 fea-
tures. Each instance contains the tagged represen-
tation of the corresponding utterance; this is the
tag to be predicted.

3.2 Learners

Two learning algorithms were used for the shal-
low interpretation task, a memory-based one and
a rule-induction one. For the former we used
the TIMBL software package, version 4.3 (Daele-
mans et al., 2002). TiMBL incorporates a vari-
ety of memory-based pattern classification algo-
rithms, each with fine-tunable metrics. We chose
for working with the IB1 algorithm only (the de-
fault in TiMBL), taking the classical k-nearest
neighbor approach to classification. This k-NN al-
gorithm looks for those instances among the train-
ing data that are most similar to the test instance,
and extrapolates their majority outcome to the test



instance’s class. Memory-based learning is often
called “lazy” learning, because the classifier sim-
ply stores all training examples in memory, with-
out abstracting away from individual instances in
the learning process.

In contrast, our other classifier is a “greedy”
learning algorithm, RIPPER (Cohen, 1995), ver-
sion 1, release 2.4. This learner induces rule sets
for each of the classes in the data, with built-in
heuristics to maximize accuracy and coverage for
each rule induced. This approach aims at discover-
ing the regularities in the data, and represent it by
the simplest possible rule set. Rules are by default
induced first for low-frequency classes, leaving the
most frequent class the default rule.

3.3 Experimental set-up

Training and testing was done by 10-fold cross-
validation (CV), where re-sampling was carried
out by means of dialogue-based partitioning,
thereby ensuring that no material from the same
dialogue could be part of both the training and
the test set. The performance of the learners was
evaluated according to four measures. (1) Predic-
tive accuracy (the percentage of correctly tagged
test instances). Note that this is based on ex-
act matches. Thus if the learner hypothesizes
A;S_DTH_ok and the correct tag is A;S_DTH _pr,
this counts as an incorrect prediction. The other
three measures are used to gain more insight in
prediction of the components and involve the pre-
cision, recall, and F-score proportionally weighted
over all tags of (2) the part of the tag representing
the higher-level dialogue act (S, A, Y, or N), (3)
the part of the tag representing the filled slots, and
(4) the part of the tag representing the presence of
a communication problem. The F-score represents
the harmonic mean of precision and recall. We use
the unweighted variant of the F-score, which is de-
fined as 2PR/(P + R) (P = precision, R =recall)
(van Rijsbergen, 1979). Before the actual exper-
iments were performed, we performed a pseudo-
exhaustive search for the optimal setting of both
algorithms.

3.4 Pseudo-exhaustive parameter
optimization

Both 1B1 and RIPPER have parameters that bias
their performance. Since it is unknown before-
hand which parameter setting yields the best gen-
eralisation performance, and since it is not allowed
to use test material to make that estimation, a rea-
sonable remaining estimate can be made by per-
forming experiments on the training material it-
self: e.g. to run a 10-fold experiment on each
of the 90% training set splits within the over-
all 10-fold CV experiment (cf. Kohavi and John
(1997)). One parameter setting can thus be tested
by running 10 wrapped 10-fold CV experiments
on training material, and averaging over the 100
test scores. This procedure can be repeated for
other parameter settings, and the parameter setting
with the highest estimated generalisation perfor-
mance can then be selected to be applied to the
full 90% training set, and tested on the yet unseen
10% test set.

The size of our data set and the available com-
puter power enabled us to test a pseudo-exhaustive
combination of parameter settings. The search is
not truly exhaustive because we did not try the
massive number of possible values for numeric pa-
rameters; we only tested the range of values we
estimated to be reasonable. Nevertheless, our ap-
proach searches the space of possibilities consider-
ably more thorough than economic search heuris-
tics such as Monte Carlo sampling (Samuel et
al., 1998a). With 1B1 the following metrics were
tested, amounting to 360 permuted combinations
tested (for details, cf. Daelemans et al. (2002)):

e the number of nearest neighbours used for ex-
trapolation were 1, 3, 5,7, 9, 11, 13, 15, 19,
and 25

e the distance weighting metric of the k nearest
neighbors was either majority class voting,
linearly-inversed distance weighting, inverse
distance weighting, or exponential-decay dis-

tance weighting with ae setto 1, 2, or 4
e for computing the similarity between features

either the overlap function or the modified
value difference metric (MVDM) function was

used
o for estimating the importance of the attributes

in the classification task either no weighting,

73



accuracy dialogue act filled slot types comm. problems
(%) | pre rec F | pre rec F| pre rec F
baseline 133 | 23.1 208 219 — 00 — — 00 —
1.9 2.0 1.8 1.9 — 0.0 — — 0.0 —
one-feature 47.7 1 82.8 757 794|878 7T1.8 789 | 733 522 610
34 2.8 2.1 2.6 1.9 3.4 2.3 5.0 5.6 5.4

Table 2: Baseline and simple learning (i.e., one feature only) scores on shallow semantic interpretation,
averaged over 10-fold CV experiments: accuracy, and proportionally weighted precision, recall and F-
score on dialogue act type, filled slot types, and communication problems. Each second line shows

standard deviation.

Information Gain, Gain Ratio, Chi-squared,
or shared-variance weighting was used.

For the RIPPER algorithm the learners to be op-
timized were created by systematically varying the
following parameters and their values, totalling 24
permuted combinations tested per parameter set-
ting:

negative tests on the feature attributes were
either allowed or disallowed

the number of optimization rounds on the in-
duced ruleset was 0, 1, 2, 3

the amount of learning instances to be mini-
mally covered by each rule was set to 1, 2, 5,
and 10

the coding cost of a hypothesis was allowed
to be multiplied by 0.5, 1.0, and 2.0.

3.5 Baselines

The straightforward baseline is to always predict
the majority class. The most frequent tag among
the 3738 user utterances in the corpus is N_ok
(the user utters a negative lexical item but it does
not signal a problem: “no, thank you™). This oc-
curs 499 times. The strategy of always predicting
this label yields 13.3% accuracy (baseline). In a
way, this majority class baseline is misleading; a
negative answer is much more likely following a
yes/no question-type prompt such as Q_Oc (“Do
you want to know another connection?”) than it is
following a question which involves various slots
(e.g., arrival and destination, Q_VA). An alterna-
tive, directly learnable from the data, is to predict
user input classes solely on the basis of one single
feature: the most recently asked system prompt.

74

Always guessing the tag occuring most fre-
quently in response to the last system prompt type
(based on the 90% training sets, in the same 10-
fold partitions as used by the learners) produces a
baseline of 47.7% accuracy, an F-score of 79.4%
on predicting the higher-level tags (S, A, Y, and
N), an F-score of 78.9% on predicting the types
of filled slots, and an F-score of 61.0% on the de-
tection of communication problems. This learning
experiment provides us with a very sharp baseline,
but is in a way more informative than the major-
ity class baseline. Details (including precision and
recall) are given in Table 2. Generally, precision
scores are higher than those of recall.

4 Results

Table 3 displays the performance of the two learn-
ers on the shallow interpretation task. As was
to be expected, both learning methods perform
significantly better than the majority class base-
line. However, if we compare the results with
those obtained by training on only a single fea-
ture (the most recent system prompt type), a more
interesting picture emerges. On accuracy (i.e.,
the strongest, exact match criterion), both learners
outperform the one-feature learner; IB1 reduces
error by 17%, RIPPER by 11%. Both these accu-
racy scores are statistically significant (IB1: ¢ =
10.50,p < 0.01, RIPPER: ¢ = 4.61,p < 0.01).

If we look at the more detailed sub-measures,
we see that only 1B1 performs somewhat better
than the one feature learner for dialogue act clas-
sification (an F-score of 82.8% vs. 79.4%) and on
predicting the type of filled slots (an F-score of
80.6% vs. 78.9%). Interestingly, for both tasks



accuracy dialogue act filled slot types comm. problems
algorithm (%) | pre rec F| pre rec F| pre rec F
1B1 56.5 | 863 79.5 828|864 757 806|880 693 774
2.7 2.5 2.2 2.2 2.1 2.9 2.0 3.6 4.1 3.0

RIPPER 53.6 | 793 753 772|845 705 769|830 650 727
3.3 3.2 2.8 29 2.8 3.8 3.1 35 7.1 5.3

Table 3:

Scores produced by IB1 and RIPPER on shallow semantic interpretation, averaged over 10-fold

CV experiments: accuracy, and proportionally weighted precision, recall and F-score on dialogue act
type, filled slot types, and communication problems. Each second line shows standard deviation.

RIPPER (trained on all features) performs under
the one-feature learner. Only on problem detec-
tion, both IB1 and RIPPER improve over the base-
line by a broad margin: against the baseline F-
score of 61.0% 1B1 attains 77.4%, and RIPPER at-
tains 72.7%.

The one-feature learner performs so well be-
cause there appear to be strong correlations be-
tween system prompts and typical user answers
that follow it (Lendvai et al., 2002a). This is not
surprising; the hard part of the task seems to pre-
dict those cases where the user gives a different
response than what is most likely. This is where
IB1 and RIPPER can in principle do better than
the baseline, using information provided by the
context features. For the dialogue act type and
the filled slots type, only IB1 is able to improve
over the baseline, suggesting that this algorithm
is able to use information in all other features be-
sides the most recent system prompt to positive ef-
fect, whereas RIPPER is unable to utilize such in-
formation. The reason why the prediction of com-
munication problems at the “aware” point is done
better by the two learners than the baseline is that
it is fairly unpredictable when a communication
problem occurs; at least, it is less strongly related
to the most recent type of system prompt. How-
ever, as (Van den Bosch et al., 2001) and (Lendvai
et al., 2002b) report, 1B1 and RIPPER can attain
higher scores on the same corpus —F-scores be-
tween 87% and 90%— on detecting communica-
tion problems at the “aware” point when trained
on that particular problem in isolation.

The near-exhaustive parameter optimization
lead to the following settings for 1B1: k£ = 13,
the MVDM distance function, gain-ratio feature

weighting, and linear-inversed distance weighting.

For RIPPER the optimal estimation was to allow
negation, optimize two rounds, set the coding cost
factor to 1.0, use default rule ordering, and cover
a minimal number of 1 instance per rule. The lat-
ter setting allows for instance-specific rules, which
is effectively close to IB1’s instance-specific k-
NN classification. Apparently, having instance-
specific rules is optimal for this data, suggesting
that there are one-instance exceptions that reoccur
in test material. Having such exceptions as rules
may pay off, and when they do not reoccur, such
rules are generally harmless. In general, we see
that the algorithm makes use of all kinds of fea-
tures provided to it. It is noteworthy that out of the
270 rules generated by RIPPER on the total cor-
pus material only about 30% cover five or more
instances. In Appendix B a selection from the gen-
erated set of rules are given and explained.

5 Concluding remarks

We investigated the learnability of shallow seman-
tic interpretation of user utterances in a train infor-
mation dialogue system by two machine learning
algorithms. We find that guessing the most fre-
quent user semantics given a system prompt is a
strategy that is hard to beat, but still leaves a con-
siderable margin of error. Only the memory-based
learner 1B1 improved over this simple strategy in
accuracy and performance on the three subtasks.
The rule induction algorithm RIPPER performed
worse on dialogue acts and slots than the one-
feature strategy, apparently hindered by the fact
that it was unable to learn rules for many user an-
swer types, due to the lack of sufficient examples
of these types, and reliable regularities in them.

75



The positive results with 1B1 do suggest that
shallow semantic interpretation from surface con-
text features (system prompts, word graphs, user
prosody) in annotated data is possible, also when
dialogue act classification, slot filling, and prob-
lem detection are treated together as one shallow
interpretation task. Our results leave to be inves-
tigated how well the learners would perform on
each of the tasks in isolation. For problem detec-
tion, we already know performance is improved
when the task is isolated. For the dialogue act clas-
sification and slot filling task, earlier work on the
same train information data can serve as compara-
tive material (Veldhuijzen van Zanten et al., 1999)
if the slot-filling task is extended to identifiying
the slot values.

The method described in this paper is generally
applicable as it is language and task independent.
Given enough data, it is likely that the method is
more efficient in construction and running time
than its counterpart that uses full parsing and/or
full semantic analysis. We hypothesize that with
the use of additional features the current perfor-
mance would improve, so that eventually it could
be integrated and tested in the context of a spoken
dialogue system to achieve more refined strategies
for interpreting user input.

References

W. Choi, J. Cho, and J. Sea. 1999. Analysis system of
speech acts and discourse structures using maximum en-
tropy model. In Proc. of the 37th Annual Meeting of the
Association for Computational Linguistics.

W. W. Cohen. 1995. Fast effective rule induction. In Proc. of
the Twelfth International Conference on Machine Learn-
ing, Lake Tahoe, California.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. 2002. TiMBL: Tilburg memory based learner,
version 4.3, reference guide. ILK technical report, Tilburg
University. available from http://ilk.uvt.nl.

J. Hirschberg, D. Litman, and M. Swerts. 2001. Identify-
ing user corrections automatically in spoken dialogue sys-
tems. In Proc. of the 2nd Meeting of the North American
Chapter of the Association for Computational Linguistics
(NAACL 2001).

S. Keizer, R. op den Akker, and A. Nijholt. 2002. Dia-
logue act recognition with Bayesian networks for Dutch
dialogues. In Proc. of 3rd SIGdial Workshop on Discourse
and Dialogue.

R. Kohavi and G. John. 1997. Wrappers for Feature Subset
Selection. In Artificial Intelligence:97(1-2):273-324.

76

E. Krahmer, M. Swerts, M. Theune, and M. Weegels. 2001.
The dual of denial: Two uses of disconfirmations in dia-
logue and their prosodic correlates. Speech Communica-
tion, 36(1):133-145.

P. Lendvai, A. Van den Bosch, E. Krahmer, and M. Swerts.
2002a. Improving machine-learned detection of mis-
communications in human-machine dialogues through in-
formed data splitting. In Proc. ESSLLI’02 Workshop on
Machine Learning Approaches in Computational Linguis-
tics.

P. Lendvai, A. Van den Bosch, E. Krahmer, and M. Swerts.
2002b.  Multi-feature error detection in spoken dia-
logue systems. In Proc. Computational Linguistics in the
Netherlands (CLIN ’01). Rodopi Amsterdam.

M. Nakano, N. Miyazaki, J. Hirasawa, K. Dohsaka, and
T. Kawabata. 1999. Understanding unsegmented user ut-
terances in real-time spoken dialogue systems. In Proc. of
the 37th Annual Meeting of the Association for Computa-
tional Linguistics.

Y. Qu, B. DiEugenio, A. Lavie, L. Levin, and C. Rose, 1997.
Dialogue Processing in Spoken Language Systems: Re-
vised Papers from ECAI-96 Workshop, chapter "Minimiz-
ing Cumulative Error in Discourse Context”. Springer
Verlag.

N. Reithinger and E. Maier. 1995. Utilizing statistical dia-
logue act processing in verbmobil. In Proceedings of the
ACL.

K. Samuel, S. Carberry, and K. Vijay-Shanker. 1998a. Com-
puting dialogue acts from features with transformation-
based learning. In Proc. of the AAAI Spring Symposium
on Applying Machine Learning to Discourse Processing,
pages 90-97.

K. Samuel, S. Carberry, and K. Vijay-Shanker. 1998b. Dia-
logue act tagging with transformation-based learning. In
Proc. of COLING/ACL, pages 1150-1156.

A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Ju-
rafsky, P. Taylor, R. Martin, C. Van Ess-Dykema, and
M. Meteer. 2000. Dialogue act modeling for automatic
tagging and recognition of conversational speech. Com-
putational Linguistics, 26:339-373.

A. Van den Bosch, E. Krahmer, and M. Swerts. 2001.
Detecting problematic turns in human-machine interac-
tions: Rule-induction versus memory-based learning ap-
proaches. In Proc. of the 39th Meeting of the Associa-
tion for Computational Linguistics, pages 499-506, New
Brunswick, NJ. ACL.

G. van Noord, G. Bouma, R. Koeling, and M. Nederhof.
1999. Robust grammatical analysis for spoken dialogue
systems.  Journal of Natural Language Engineering,
5(1):45-93.

C.J. van Rijsbergen. 1979. Information Retrieval. Butter-
sworth, London.

G. Veldhuijzen van Zanten, G. Bouma, K. Sima’an, G. van
Noord, and R. Bonnema. 1999. Evaluation of the NLP
components of the OVIS2 spoken dialogue system. In
Computational Linguistics in the Netherlands 1998, pages
213-229. Rodopi Amsterdam.



Appendix A: An example annotated dialogue - English translation

Turn#  Turn taker  Utterance Semantic tag
1 System good morning. this is the automatic information system of public Q_VA
transportation. this system provides information exclusively about
train travels from NS-station to NS-station. from which station to
which station would you like to travel?
User I want to go from Voorschoten to the Hague central station S_VA_ok
2 System when do you want to travel from Voorschoten to Utrecht central Q_DTH;I_VA
station?
User I want to go to the Hague central station S_A_pr
3 System when do you want to travel from Voorschoten to the Hague central Q_DTH;I_VA
station?
User the day after tomorrow S_D_ok
4 System at what time do you want to travel the day after tomorrow? Q_H:I_.D
User somewhere in the evening S_T_ok
5 System so you want to travel between eightteen and twenty four hours? E_T
User yes Y ok
6 System I am sorry I did not understand you. could you repeat whether you RE.T
want to depart between eightteen and twenty four hours?
User yes Y _pr
7 System there are five connections. this is the earliest. by passanger train Fr;QRc
to (...). do you want me to repeat the connection?
User yes repeat it Y _ok
8 System I am sorry I did not understand you. could you say again if I need RQRc
to repeat the connection?
User yes Y _pr
9 System I am sorry but again I did not understand you. could you say again RQRc
if I need to repeat the connection?
User yes Y _pr
10 System I repeat the connection. by passanger train to (...). do you want Rc;:Q_Re
me to repeat the connection?
User no N_ok
11 System I am sorry I did not understand you. could you say again if I need RQ-Rc
to repeat the connection?
User no don’t repeat N_pr
12 System I am sorry but again I did not understand you. could you say again RQRc
if I need to repeat the connection?
User no N_pr
13 System do you want to know the next connection? Q-Nxc
User no N_ok
14 System do you want to know another connection? Q-Oc
User no N_ok
15 System I am sorry I did not understand you. could you say again if you RQ_Oc
want to know another connection?
User no I don’t want to know another connection N_pr

77



Appendix B: Selected RIPPER rules

The structure of a rule is: if <feature test> (AND <feature test>, etc.) then class (n/m), where <feature
test> is a test on the presence of a nominal feature value, the presence of an element of a set feature, or
a range of a numeric feature. n indicates the number of instances a rule covers, m the number of false
predictions.

Lexical items are translated from Dutch into English. Feature codes are: promptC: current prompt; sysC:
current system utterance; usrC/P: current/previous user utterance; rmsstdev, rmsmean, ipausedur are
prosodic features (see Table 1).

Rule 1 reveals that very often users are not correcting repeatedly misunderstood system prompts, but
instead accept (A) the erroneous implicit verification (the RI_D part of promptC in a pr environment) and
provide information for the prompted slots (S_VA in reply to RQ_VA), hoping to repair the misunder-
standing at a later point.

Rule 2 captures the characteristics of another type of acceptance, when the user answers with explicit
‘yes’ to the system’s confirmation of the misunderstood time slot. Interestingly, the learner uses a
prosodic feature (the standard deviation in the loudness of the input) to base its prediction on.

In Rule 3 we see that if the more emphatic *where to’ interrogative is used by the system, the user answer
will often contain arrival information only, and this happens in problematic situations.

Rule 4 is fairly general, hypothesizing that whenever the system asks for the time of travel, the user will
provide it without experiencing misunderstandings (ok), and indeed this rule has very low precision.
Hypothesis 5 describes a dialogue situation when the system talks about itself (I’ is present), prompt-
ing for time information ("o’clock’ is present), whereas in the previous turn the user has provided that
(‘o’clock’ is in the word graph). Nonetheless, the user is providing the information (S_H) again.

Rule 6 sheds light on the unproblematic circumstances of giving the departure slot value: the user did
not yet say this in the previous turn ("to’ was absent in that word graph).

The same slot is filled with a certain amount of hesitation (signalled by the the duration of the initial
pause feature) under problematic circumstances in Rule 7.

A good strategy from the classifier is to assume an unproblematic ‘yes’ answer when certain words ('to’,
’no’, ’from’) were not recognized in the input but "yes’ was present in the word graph (Rule 8).

1. if promptC = RQ_VA;RI_D then A;S_VA pr 711
2. if ’so’ € sysC A promptC = E_T A ’o’clock’” € usrP A rmsstdev >= 874 then  (10/0)
A Y pr
3. if "where to’ € sysC then S_A _pr (35/7)
4. if’time’ € sysC then S_H ok (97/75)
5. if’time’ € sysC A" € sysC A *o’clock’ € usrP then S_H_pr (25/7)
6. if promptC = Q_V;E_A A ’to’ & usrP A rmsmean <= 240 then S_V_ok (10/0)
7. if from’ € sysC A ’to” & usrC A ipausedur >= 12 then S_V_pr (68/5)
8. if 'to” € sysC A 'no’ & usrC A *from’ ¢ sysC A “yes’ € usrC then Y_ok (82/12)

78



