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Abstract

In this paper, we investigate whether and
how domain-specific corpora increase
precision of word disambiguation for
typing on an ambiguous keyboard. Ba-
sically, the disambiguation for our am-
biguous keyboard with three letter keys
is based on language—specific word fre-
quencies of the lexicon CELEX (in this
study English and German is dealt with).
The more specific frequency informa-
tion is extracted from texts in the special
domains of school homework in three
subjects and articles in two different sci-
entific areas. All in all, we could not
always reach a better performance by
deploying domain—specific predictions.
As a general solution we propose an
interpolated language model combining
both the general and the specific lan-
guage model. For all our domains good
results — compared to an ideal predic-
tion on the basis of all available models
— could be achieved by this method.

1 Introduction

Ambiguous keyboards enable motor impaired peo-
ple and users of watch—sized devices to communi-
cate by means of a reduced number of letter keys
(down to 3). The number of keystrokes is not nec-
essarily reduced as compared to typing on an or-
dinary keyboard. If arbitrary words are coded this
way, different words receive the same encoding,

i.e. the decoding function of such a keyboard is
not injective. Thus, the user has to select the in-
tended word from a list of word suggestions (or-
dered, e.g., by word frequencies in a given lexi-
con). Nevertheless, with nine letter keys only eight
percent of 24,500 English words are actually en-
coded ambiguously and thus need a disambigua-
tion step (Witten, 1982).

The advantages of an ambiguous keyboard with
word disambiguation for users of Augmentative
and Alternative Communication (AAC) devices
are outlined by Kushler (1998). The efficiency of
an ambiguous keyboard approaches one keystroke
per letter. Beside literacy, no memorization of spe-
cial encodings is required. Attention to the display
is wanted only after the word has been typed.

The disambiguation for an ambiguous keyboard
that is personalised to the user’s vocabulary or
domain—specific in a given communicative situa-
tion promises increased efficiency. One approach
to a user—tailored disambiguation is a system that
automatically adapts to the currently observed lan-
guage usage. However, as observed by Raskin
(2000) with regard to user interfaces, adaptation
in a system makes it more difficult for the user
to know how the system works and to operate it
blindly. Another obstacle of a purely adaptive sys-
tem derives from the short size of the typed texts
in a given situation (the homework corpus we ex-
amine here has a size of 8,027 words).

In this paper, we investigate an approach
to personalise the disambiguation component of
our communication aid in a non-adaptive, user—
controlled manner by employing several domain—
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specific language models. Although the models
themselves are static, a combination of them leads
to a better disambiguation with respect to the cho-
sen domain.

The paper is organised as follows. In Section 2,
we delineate our prototypical ambiguous keyboard
(called UKO-II). We explore various domains in
Section 3 as for domain—specific models to supple-
ment personalised disambiguation. In Section 4,
the evaluation results are presented. In Section
5, we outline related work and finally, we address
open questions and future work.

2 The UKO-II communication aid

Our communication aid UKO-II resides on the
programmable and extendable XEmacs text edi-
tor!. It provides many text entry and manipulation
functions useful in our context. Operating system
support (e.g. sockets), basic applications like mail
and a development environment including exten-
sive documentation are at the programmer’s fin-
gertips. All components of the communication aid
dealing with input/output have been implemented
as Emacs Lisp modules?.

2.1 Text entry interface

UKO-II provides 2 + n (n > 2) windows (in Fig-
ure 1) n is 4). The window in the left upper panel
represents the text editing buffer. The window in
the right upper panel lists all word suggestions for
the ambiguously typed word currently under con-
sideration. In the lower part all keys are shown.
The number n (> 2) of buttons has been specified
in advance. This parameter? depends on the user’s
motor functions or on the buttons available on the
device. A genetic algorithm is used to calculate
a near—optimal distribution of letters in order to
minimise the length of suggested word lists (Kiihn
and Garbe, 2001).

In our project, the keyboard is tailored to a user
with cerebral palsy. No more than four buttons
can be accessed directly. Three buttons provide
ambiguous letter keys labeled by sets of letters for

'http://www.xemacs.org/

2See http://www.gnu.org/manual/emacs-lisp-intro/ for an
introduction to programming in Emacs Lisp

31f less than four physical buttons are available, the keys
have to be selected on a virtual keyboard (scanning).
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Figure 1: UKO-II Emacs text editing interface.

typing in the text editing window. The fourth but-
ton invokes meta—level commands such as letter
deletion and word disambiguation. In this paper,
we assume 7 = 4 throughout.

Words are entered by pressing the correspond-
ing ambiguous key once for each letter. Only after
the word is completed, the user disambiguates the
input by selecting the intended word in a list of hits
provided by the language model. Figure 1 depicts
the situation after the word “aid” has been typed
— by pressing the second, the third and the sec-
ond button again (key sequence “232”") — and be-
fore the user selects the targeted word in the list of
suggestions. If the target word is not known to the
system, it is possible to spell the word and include
it in the lexicon for future use*. Other actions in
the command mode provide text navigation and
editing as well as invocation of the speech output
system. These actions are triggered either by over-
loading the three letter keys with commands, or by
entering and disambiguating a command name.

2.2 The static word list model

The disambiguation step, resulting in the list of
word suggestions as illustrated in the right upper
window in Figure 1, is based on a word list ordered
by the word frequencies obtained from large cor-
pora. In the UKO-II system, the ordering is based
on the word frequency information for English and
German in the CELEX lexical database (Baayen et

“Currently, no default frequency is assigned to these
words. Instead, these personal word entries are added to the
end of the list computed by the word model. Obviously, more
sophisticated combinations will be incorporated in the next
release of UKO.



al., 1995) taken from mixed corpora of written and
spoken sources. The English word form frequen-
cies are based on the 17.9 million word COBUILD
corpus prepared by the University of Birmingham
in 1991. The German word frequencies stem from
the 6 million word corpus collected by the Insti-
tute of German Language in Mannheim in 1984°.
Table 1 gives an overview of the size of the lexica.
By token we refer to the number of occurrences
of a word in the text whereas by type we indicate
the set of different words (Manning and Schiitze,
2001).

Word list Word tokens ~ Word types
English 16,747,857 74,206
German 3,943,923 316,376
German (New) 4,013,854 321,380

Table 1: Word form tokens and types in the

English and German word—frequency lists in
CELEX.

Table 2 gives the maximum and the average
length of the word lists, respectively, assigned to
ambiguous codings with their variances. The word
lists can grow quite long with 50 entries in the En-
glish word list with the ambiguous code *3111°°
or even 75 entries in the modified German word
list with ambiguous encoding *12223°7. But on
average each ambiguous coding fits to two corre-
sponding words if we take an ambiguous keyboard
with three letter keys.

Word list Max.  Avg. Var.
English 50 2.017 11.755
German 75 1915 8.669
German (New) 75 1919 8.776

Table 2: Number of hits for ambiguous codings in
the English and German word lists.

The ambiguous encodings used in our experi-
ments are typed on language—specific keyboards®
with three letter keys (see Figure 2).

3Since the orthography in the German word list does not
respect the spelling reform resolved in 1996, we duplicate
in “German (New)” all words that are spelled differently af-
ter the reform with the corresponding frequencies of the old
spellings. In the following, we always use the modified Ger-
man word frequency list.

6look, loss, moon, guns, hook, cook, . ..

7muﬁte, Woche, miisse, wufite, miifite, Wiiste, . . .

80ne of our test subjects switches between the two key-
boards for typing in English and German, respectively. As

English German

bjk | adf | ceg agj cthk | bde
nosv | pqr | hil Imq | ostuv | in
wXxu | t- | myz rwzid | xyuB | po-

Figure 2: Keyboard layout used in UKO-II for En-
glish and German.

We denote by rank(w,c,p) the position of a
word w in the corresponding word list of code ¢
ordered by a language model with the probabil-
ity function p. A performance metric of such a
language model for disambiguating a given text
is the precision of rank r, i.e. the percentage of
correct disambiguations if only the r most likely
suggestions according to the underlying language
model are considered. Assuming r = 1, the preci-
sion of rank 1 — also called the simple precision
(cf. Jurafsky and Martin (2000, p. 639) for consid-
erations in the area of word sense disambiguation)
— turns out to be around 68.75% for English and
73.5% for German CELEX word frequency lists,
respectively. Table 3 presents the upper values of
the precision of rank 1 to 5 for the CELEX lexica
in English and German. Notice that these mea-
surements are upper bound values as the language
model and the test set cannot be assumed to be
identical. Thus actual typing performs consider-
ably weaker (cf. upper left panel in Figure 3).

Rank 1 2 3 4 5
English ~ 68.75 86.77 92773 9524 96.63
German 73.50 87.67 9276 9541 96.85

Table 3: Precision of rank = 1,...,5 for the
CELEX lexica in English and German.

In Section 4, we evaluate domain—specific test
corpora with the CELEX frequencies and compare
these values to values computed for several more
specific language models.

In general, a static base language model as pre-
sented here will be limited in its representativity
for arbitrary texts. As our goal is to improve the
precision of the disambiguation step, we propose
to complement the base language model with lan-

fluent typing with one keyboard may outweigh the efficiency
effect for an optimised language—specific keyboard, UKO-II
can also be tailored to use only one keyboard layout for both
languages; i.e. only the language models and vocabularies are
exchanged.
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guage models extracted from domain—specific cor-
pora as outlined in the next section.

3 Domain-specific corpora

Let us first determine the meaning of “domain”
we assume here. According to Rose and Had-
dock (1997), homogeneity is an important feature.
In Lesher and Rinkus (2002), genres and topics
are differentiated. Lehnert noted from (Soderland,
1997) characterises a specific domain as a corpus
of texts together with a predefined set of concepts
that are of interest in that domain (e.g., newspa-
per articles in which the target concept is manage-
ment succession events: identifying persons mov-
ing into corporate management positions or mov-
ing out). This means that a domain in the terminol-
ogy of Lehnert coincides with a topic in the Lesher
and Rinkus classification. Additional properties
for domain classification according to Lesher and
Rinkus are style and formalness. As our experi-
ments show varying behaviour for different genre
and topic domains of uniform style, we investigate
the conciseness of our domains in more detail. Ba-
sically, we define a domain as a set of documents
on the same topic and in the same style.

In our evaluation, we use two English and two
German text collections. Every fifth word is ex-
tracted and added to the test set (cross—validation
by splitting the files into 80 percent as training
material and the remaining 20 percent of texts for
testing). In the following, we describe each of the
four text corpora in more detail.

ACL and COLING. These two English text
collections originate from the proceedings of the
ACL-02 conference (ACL, 2002) and the COL-
ING 2002 (COLING, 2002)°. The ACL and COL-
ING collection consists in total of 455 papers in
portable document format. Since not all papers
could be converted to plain text successfully, the
usable corpus finally comprises 354 texts in the
domain of computational linguistics (208 for ACL
and 146 for COLING). After the process of tok-
enization and filtering, the overall number of word
tokens of the corpus is approximately 1.5 million
(0.45 million tokens were filtered out). A more
detailed overview on the sizes is shown in Table 4.

“Both paper collections are available on CD—ROM.
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BIDOK. The third part of our evaluation mate-
rial is a selection of German texts from the BIDOK
library (BIDOK, 2003). BIDOK is an Internet li-
brary containing scientific articles about the inte-
gration of disabled people. These articles are pub-
licly available and primarily include German texts
about theoretical basics, discussions, analyses and
advice concerning the integration of handicapped
persons.

We have chosen the BIDOK library because of
its large amount of thematically sorted texts that
are easily available. The whole collection consists
of 711 texts divided into 14 domains. Two do-
mains could not be dealt with in the preprocessing
step because of technical problems. We run our
evaluation tests on each of the remaining twelve
domains.

The texts selected from the BIDOK corpus have
an overall size of 5.5 million words. 1.36 million
tokens are filtered out in the preprocessing step de-
scribed in Section 4.

School. The School corpus consists of home-
work of a German 10th—grade pupil in the sub-
jects Biology, Physics and Chemistry in the school
year 2001-2002. These texts contain expressions
such as formulae which cannot be typed directly
using the ambiguous keyboard and thus are dis-
regarded for the experiments'?. The School cor-
pus texts have an overall size of 8,027 tokens after
elimination of 400 tokens with punctuation marks,
formulae and numbers.

Beside cross—validation for all four corpora, the
school corpus is also evaluated by taking approx-
imately the first 80 percent of those texts in the
training set and the rest in the test set in a sec-
ond experiment (we refer to this experiment by
School (b), label S’ in Figure 3 whereas the cross—
validation of school homework is referred to by
School (a) and S, respectively).

4 Experimental results

In our test series, we investigate the usefulness of
complementing the general model that we retrieve
from the CELEX corpus by a domain—specific

1Studies on using LaTeX (Lamport, 1994) for typing for-
mulae are left for future work.



model. For all text collections, some preprocess-
ing steps are necessary.

We only consider words that the user is able to
access directly through the ambiguous keyboard.
The letters “A—Z”, the apostrophe and the hyphen
occur on the keys of the English keyboard. The
German keyboard additionally contains the um-
lauts “AOU” and the character “B”. All other char-
acters are substituted (e.g. é by e) or removed in
a special step along with punctuation marks and
numbers. Additionally, we ignore the distinction
between upper and lower case letters.'!

A summary of the corpora sizes after removing
non-word tokens is given in Table 4.

| ACL COLING BIDOK  School
Total 1,172,609 760,123 5,521,501 8,027
Discarded 274,547 176,168 1,359,167 440
Training 712,415 433,324 3,550,882 6,342
Test 185,647 150,631 611,452 1,245

Table 4: Corpora sizes (tokens) after removing
non—words.

As described in Section 2, we use the evalua-
tion metric of precision of rank r. We run four ex-
periments on each of the corpora described in Sec-
tion 3. Furthermore, we assume a cross—validation
for all corpora. Additionally, the School corpus is
divided sequentially in a 80:20 percent manner (cf.
S’ in Figure 3).

(1) The first run is performed with the general
language model derived from the CELEX
word statistics.

(2) In the second experiment, the language
model derives from the training texts in the
domain-specific corpus currently under con-

sideration.

(3) The third run exploits both the models in (1)

and (2) for each word and takes the model
resulting in the better rank for this word (or-
acle). The oracle serves as an ideal baseline
to compare our language model in (4) to'?.
"In UKO-II, the vocabulary actually distinguishes be-
tween upper and lower case letters in the following manner.
Only the more frequent spelling is stored in the lexicon and
suggested accordingly (e.g., Tasten “keys” outstrips tasten
“to fumble”). In order to change the initial character a com-
mand via the meta—function key switches the mode.
"2Note that without knowing the intended word, this value

(4) Finally, in a fourth experiment, the two mod-
els are combined by interpolating with an ex-
perimentally derived optimal weight A. A in
[0,1] is chosen optimally for any corpus by
comparing the precision for fifty values with
step length 0.02. We calculated the following
A values: 0.98 (ACL), 0.98 (COLING), 0.96
(BIDOK), 0.46 (School (a)) and 0.32 (School

(b)).

Formally, we denote by pi(w|c) the condi-
tional probability of disambiguating the ambigu-
ously typed word (code) ¢ by word w in the gen-
eral language model. By pa(w|c) we denote the
conditional probability of word w given code ¢ in
the domain—specific model. Accordingly, the in-
vestigated rank evaluations (cf. Sec. 2.2) for ex-
periment (1) to (4) look as follows:

(1) rank(w, ¢, p1)
(2) rank(w, ¢, p2)
(3) min(rank(w, ¢, p1),rank(w, ¢, p2)) and

(4) rank(w, ¢, p3) where
p3(wlc) = Apa(wle) + (1 = \) pr(wle).

In Figure 3, we present the evaluation results
for the precisions of rank 1 to 5 using evalua-
tions (1) to (4) for the corpora ACL, COLING,
BIDOK and School (a). Additionally, the fifth bar
depicts School (b) with a sequential partition. Ta-
ble 5 delineates the out of vocabulary (OOV) —
i.e. the percentage of missing word tokens or types
missing in a model combination — resulting from
models (1), (2) and (4). We observe that for the
larger corpora (cf. ACL, COLING and BIDOK),
the second method using only the domain—specific
model already outruns the general language model
computed by the CELEX word frequencies. Un-
fortunately, this does not hold for the smaller cor-
pus with school homework texts where the test set
has been split chronologically at the end of the
corpus (cf. fifth bar). Here the domain—specific
model performs worse in comparison to the gen-
eral model. We can compensate for this disadvan-
tage by combining the general and the domain—
specific model. How far we can get is illustrated

can only be computed for a code in a labelled corpus but not
for an ambiguously typed code.
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(1) (2)
0.8 — 0.8 =
0.4 ii 0.4 ﬂ
0.0 0.0
ACBSY¢S ACBS¢Y
(3) (@)
0.8 0.8
0.4 0.4
0.0 0.0
ACBS¢S ACBS¢Y

Figure 3: Cross—validation evaluation based on the
precisions of rank 1 trough 5 for the corpora ACL
(A), COLING (C), BIDOK (B) and School (a) (S)
using the methods (1) to (4) described above. Ad-
ditionally, School (b) (S’) shows the evaluation re-
sults using a sequential test—training partition.

by the ideal baseline (3). It delineates the opti-
mal value for any combination of the two language
models in (1) and (2). The interpolated model per-
forms only slightly poorer and is at least as good
as the domain—specific model, even for the larger
corpora.

Table 5 shows the percentage of unknown word
types and tokens for each corpus using models (1),
(2) and (4). The clear improvement of the OOV
token rates for every corpus supports the desir-
ability of combined general and domain—specific
language models. There is no clear advantage for
the general or the domain—specific model in terms
of the OOV token rates, if we compare the first
two rows (ACL, COLING) to the other corpora.
Furthermore, we observe that at least with respect
to the OOV type rates for the School corpora, we
can reduce the percentage of unknown words in a
test text considerably by memorising new words
after their first occurrence. Then, the number of
unknown words in a text correspond to the number
of OOV types. This method can be exploited by a
dynamic language model, as is planned in a later
stage of our project. Interestingly, this does not
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OOVrate % | (1) (2) 4)

types

ACL 1371 21.98 8.46
COLING 10.28 2586  7.95
BIDOK 4.26 1.72 1.32

School (a) 3.38 1.96 1.40
School (b) 3.66 2.78 1.85

tokens

ACL 17.85 23.36 8.66
COLING 17.11 32,61 11.16
BIDOK 19.03 2.25 1.63
School (a) 14.52 5.26 3.13
School (b) 13.17 6.25 4.10

Table 5: Out of Vocabulary (OOV) word rates
(types and tokens) for the general (1), the domain—
specific model (2) and model combination (4).

hold for the ACL corpus and the combined model
(4), where apparently many unknown words occur
only once (the so—called hapax legomena; Man-
ning and Schiitze (2001, p. 22)) in the test set and
thus do not benefit from dynamic updating the lan-
guage model.

These results support the need for the develop-
ment of a personalised version of UKO-II where
the user may select one or possibly more topic do-
mains that the system is trained with, before s/he
starts writing.

5 Related work

Ambiguous keyboards in general and competing
approaches are only touched lightly here for rea-
sons of space (see also (Harbusch and Kiihn,
2003)). An important recent development in
the area of ambiguous keyboards is the work by
Tanaka—Ishii ef al. (2002). They present an am-
biguous text input system with five or fewer letter
keys. Word predictions are computed on the basis
of prediction by partial matching (PPM) on the
word level. The letters are assigned to the keys in
alphabetical order. This approach compares favor-
ably to ours. However, in our approach the keys
have been assigned non-alphabetically after opti-
mising with respect to a large corpus.

Other work on typing with word disambigua-
tion focusses on the nine letter keys of a stan-
dard phone keyboard, e.g. Forcada (2001); Rau
and Skiena (1996), and can be traced back to the
early 1980s (Witten, 1982, pp. 120-122). Work in
alternative and augmentative communication pre-



ceding Kushler (1998) deals with key—by—key dis-
ambiguation for efficient text input (Levine and
Goodenough-Trepagnier, 1990; Arnott and Javed,
1992).

Many approaches have been published re-
cently on the acquisition of homogeneous do-
mains. (Seymore and Rosenfeld, 1997) investigate
the problem of automatic topic identification and
present a method for fine—tuned topic adaptation
by interpolating with thousands of topic domain
models. For cases where the topic domain is un-
known or the topic changes within a document, it
appears easier to apply dynamic adaptation of the
domain models, e.g. by on-line algorithms (Kalai
et al., 1999). Resnik and Melemed (1997) report
on semi—automatic extraction of domain—specific
translation lexica. In a post—editing process, gen-
erally used words are explicitly filtered out again
(Iexicon of technical terms only). We did not make
such a distinction because we tried to circumvent a
manual post—processing step as this requires judg-
ing whether a term that may occur in the general
lexicon, is also used as a technical term (e.g., “fea-
ture” as in Head-Driven Phrase Structure Gram-
mar; Sag and Wasow (1999)). Tests with a hand-
coded domain—specific lexicon are left for future
work.

Finally, we discuss the application of domain—
specific knowledge in language modeling. This
paradigm is widely used in various areas such as
pattern recognition and image processing, text and
language modeling, diagnosis systems, computa-
tional biology, or genetics (e.g., in the area of
information retrieval domain—specific search en-
gines are appearing on the market (cf. Kruger
(2000)) or Oyama et al. (2001)). A directly com-
parable approach, in the domain of augmentative
communication aids, is presented by Lesher and
Rinkus (2002). They report substantial improve-
ments based on domain—specific topic databases.
Their claim is that the method also works in other
domains of classification such as style, formal-
ness, or genre. Our studies do not completely
support with this claim. Particularly for smaller
corpora or inhomogeneity within a corpus (cf.
school corpus), we obtained lower values for a
pure domain-specific disambiguation. For the in-
terpolated language model, the claim is confirmed

by our evaluations.

6 Conclusion

We investigated the use of domain—specific lan-
guage models for the disambiguation of ambigu-
ously typed text and presented two basic ways
of combining domain—specific language models
with a general model. We have run experiments
with two English and two German text collections
and compared the results. Although the domain—
specific model alone does not outperform the gen-
eral language model if the training set is not repre-
sentative, a combination with the base model can
compensate this. An ideal combination of the two
models is the oracle (cf. (3)). In general, the inter-
polation of a domain—specific and a general model
turns out to be a promising approach, even if the
available domain—specific training corpora are of
limited representativity.

An open question results from our observations
in the previous Section. How can a domain-
specific lexicon be acquired? Evaluations have
to show the performance with a lexicon providing
only technical terms interpolated with the general
CELEX lexicon.

Future work will address the integration of an
adaptive component updating a text—specific lan-
guage model where recency information of words
is considered for the ranking of word suggestions.
We will explore a more fine—grained topic distinc-
tion which is available for our corpora. The use of
syntax for disambiguation is examined in a paral-
lel ongoing project. The long—term goal is a dis-
ambiguation component that utilises several layers
of language models for text entry with an ambigu-
ous keyboard. On an implementation level, our
communication aid will be extended to allow the
entry of formulae, numbers and other special ex-
pressions.
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