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Abstract

In this paper, we report about some
preliminary experiments in which we
tried to improve the performance of a
state-of-the-art Predictive Typing sys-
tem for the German language by adding
a collocation-based prediction compo-
nent. This component tries to ex-
ploit the fact that texts have a topic
and are semantically coherent. Thus,
the appearance in a text of a certain
word can be a cue that other, semanti-
cally related words are likely to appear
soon. The collocation-based module ex-
ploits this kind of topical/semantic re-
latedness by relying on statistics about
the co-occurrence of words within a
large window of text in the training
corpus. Our current experimental re-
sults indicate that using the collocation-
based prediction module has a small but
consistent positive effect on the perfor-
mance of the system.

1 Introduction

Written communication is a vital factor in human
society. Impairments which lead to a reduction of
typing speed, therefore, severely influence quality
of life and cut off a person from equal participation
in the information society.

Since languages display a certain degree of re-
dundancy and predictability, low-speed typists can
be supported by Predictive Typing (PT) systems.
Such systems attempt to predict subsequent por-
tions of text by analyzing the text already entered
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by the writer. Character-by-character text entry is
replaced by making a single selection as soon as
the desired word or word sequence is offered by
the system in the selection menu.

The current most popular PT technology (see,
for example, (Carlberger, 1998), (Copestake,
1997)) relies on a statistical approach based on the
probability of n-grames, i.e., the continuations pro-
posed by the system are strings that often follow
the string the user just typed (string frequencies
are extracted from a training corpus).

As part of the European Community funded
FASTY project, we are currently developing a
PT system that augments standard word-based n-
gram prediction with part-of-speech-based predic-
tion (an idea already implemented with success
by (Carlberger, 1998)), grammar-based predic-
tion, compound processing, inflectional analysis
and a user lexicon ((Matiasek et al., 2002), (Ba-
roni, 2002), (Baroni et al., 2002a), (Baroni et
al., 2002c)). The FASTY system is being im-
plemented for the Dutch, French, German and
Swedish languages.

In this paper, we report about some preliminary
experiments in which we attempt to further im-
prove the performance of the German version of
FASTY by adding what we label a collocation-
based prediction module.

The idea behind collocation-based prediction is
the following. The standard n-gram model pre-
dicts words on the sole basis of their immediate
context (n preceding words). However, since texts
typically have a topic and are semantically coher-
ent, there are also long-distance relationships be-
tween the words in a text that could be exploited
to improve prediction.



The appearance in a text of a certain (content)
word can be a cue that other, semantically related
words are likely to appear soon. For example, if a
current newspaper article contains the word /raq,
itis also quite likely that it will contain words such
as Bush, Saddam, UN, war. The collocation-based
module exploits this kind of topical/semantic re-
latedness by relying on statistics about the co-
occurrence of words within a large window of text
in the training corpus.

As far as we know, this is the first attempt to
incorporate a collocation-based module in a PT
system (beyond the “recency promotion” mecha-
nism proposed by (Carlberger, 1998), which we
discuss in 3 below). However, the same idea was
exploited with success by (Rosenfeld, 1996), who
integrated a similar component in a statistical lan-
guage model aimed at automatic speech recogni-
tion applications. The work of Rosenfeld consti-
tutes a major source of inspiration for the model
we are presenting here.

The results of the experiments we report below
indicate that using the collocation-based predic-
tion module has a small but consistent positive ef-
fect on the performance of the system.

The remainder of this paper is organized as
follows: In 2, we shortly describe PT systems
and how they are evaluated. In 3, we present
our collocation-based prediction model. In 4,
we report about the experiments we ran with the
collocation-based module and FASTY. Finally, in
the conclusion (section 5) we discuss some of the
strategies we plan to follow in order to improve the
performance of the current model.

2 Predictive typing for augmentative and
alternative communication

While they have other applications as well, PT
systems are an important component of augmen-
tative and alternative communication (AAC) de-
vices, i.e., software and possibly hardware typ-
ing aids for disabled users (see for example (Carl-
berger, 1998), (Copestake, 1997), (McCoy and
Demasco, 1995)). Besides functioning as typing
aids, such devices can be connected to speech syn-
thesizers in order to allow oral communication to
people who cannot speak.

PT systems provide the user with a prediction

window, i.e., a menu that, at any time, lists the
most likely next word candidates, given the input
that the user has typed until the current point. If
the word that the user intends to type next is in
the prediction window, the user can select it from
there. Otherwise, the user will keep entering let-
ters, until the target word appears in the prediction
window (or, of course, until she finishes typing the
word).

PT systems typically base their predictions on
various forms of n-gram statistics extracted from
one or more training corpora.

The (percentage) keystroke savings rate (ksr) is
a standard measure used in AAC research to eval-
uate word prediction systems (see, for example,
(Carlberger, 1998) and (Copestake, 1997)). The
ksr can be thought of as the number of keystrokes,
in percent, that a “perfect” user could save by em-
ploying the relevant word predictor to type a cer-
tain text, over the total number of keystrokes that
are needed to type the same text without using the
word predictor.

Usually, the ksr is defined by

k1+ks

n

ksr = (1 — ) * 100 (1)
where: k; is the number of input characters actu-
ally typed, ks is the number of keystrokes needed
to select among the predictions presented by the
model and k,, is the number of keystrokes that
would be needed if the whole text was typed with-
out any prediction aid. Here, we make the rea-
sonable assumption that the user will need one
keystroke to select among the predictions in the
prediction window, i.e., that ks equals 1.

The ksr is influenced not only by the quality
of the prediction model but also by certain pa-
rameters of the prediction process, most impor-
tantly by the number of predictions to select from
the user is presented with, i.e., by the size of the
prediction window. In the simulations we report
about below, we assumed a prediction window of
5 words. This is a number of predictions that can
be scanned quickly by most users (cf. (Hunnicutt
and Carlberger, 2001)), and it is the default setting
in FASTY.

"However, our tests have shown that an increase of 1.5-2
percent points in ksr can be expected if the number of predic-



Using ksr as an evaluation measure has the
drawback that an exact computation of the ksr is
possible only by running a simulation of the pre-
diction process. However, it is the measure that re-
flects best the benefits a disabled typist has when
using a word prediction system.

Preliminary tests show that the German version
of the FASTY system can reach, when the training
and testing corpora are similar, a ksr as high as
66%. As far as we know, this is the highest ksr
achieved by a system implemented in a language
other than English.

3 Collocation-based prediction

The collocation-based prediction model exploits
the fact that, because of topical/semantic factors,
the appearance of a word in a text can be a cue
that other, related words are likely to appear soon.

We use the term collocation (see, for exam-
ple, (Manning and Schiitze, 1999), chapter 5) in
a rather loose sense, to refer to any pair of words
wl and w2, where the occurrence of w1 in a text
makes the appearance of w2 in the same text more
likely. In particular, adapting the terminology of
(Rosenfeld, 1996), we refer to w1 as the rrigger,
and w2 as the rarget.

The Swedish PT system described in (Carl-
berger, 1998) incorporates a simple and effective
form of collocation-based prediction, that Carl-
berger labels recency promotion. Recency pro-
motion exploits the fact that words (more interest-
ingly, content words) are likely to occur more than
once in the same text. Thus, all else being equal, a
candidate word that already occurred in the current
text should be preferred over a candidate word that
is new in the current text. Carlberger reports that
recency promotion brings a significant improve-
ment in terms of keystroke savings.

In certain cases, the user lexicon as imple-
mented in the FASTY system can provide a very
simple form of recency promotion. The aim of
the user lexicon is to provide resources targeted at
the user’s specific vocabulary and style in order to
bias the general language model towards the user’s
needs. The user lexicon can be extracted from
texts the user has written previously or that reflect

tions is raised to 7, and a gain of 3 percent points or above if
9 predictions are used.

her needs, or it can be empty. In any case, dur-
ing the operation of the FASTY system, all content
words the user enters are recorded (along with the
corresponding bigrams) and immediately added to
the user lexicon. At the end of the session the user
may decide to save the augmented user lexicon or
to abandon the changes.

The immediate augmentation of the user lex-
icon has the (desirable) effect that words previ-
ously unknown to the system (e.g., proper names)
may be predicted immediately after they have been
typed the first time, and (more to the point of the
current discussion) the probability of the words
that the user typed up to this point in the cur-
rent session is boosted up. However, when start-
ing with an empty lexicon, these words may dis-
turb the prediction process, since each of them re-
ceives a very large portion of the probability mass
reserved to the user lexicon. Currently, there is
no adjustment or decay implemented, since we as-
sume a non-empty user lexicon, in which case the
distorting effects are minimal. Still, preliminary
tests indicate that even the use of an initially empty
user lexicon can bring up the ksr by about 3 per-
cent points.

Whether a more general collocation-based pre-
diction system, such as the one we are propos-
ing here, will bring further improvements beyond
those provided by recency promotion is not a triv-
ial issue: (Rosenfeld, 1996) has showed that, in
the English corpus he analyzed, the best predictor
for the occurrence of a word was the word itself
in 68% of the cases, and in 90% of the cases the
word itself was among the 6 best predictors .2

In the next two subsections, we describe how
we extract collocations (in the sense given above)
from the training corpus (3.1), and the way in
which we implement collocation-based prediction
for the PT task (3.2).

These results were obtained by considering wordforms,
i.e., treating different members of the same inflectional
paradigm as different words. Given that Rosenfeld also re-
ports that words sharing the same stem are good predictors
of each other, we expect that the proportion of good “self-
triggers” would be even higher if the counts had been based
on lemmas. On the probability that the same word will occur
more than once in the same text, see also (Church, 2000).



3.1 Collocation extraction

In order to score the “textual association strength”
between words, we calculate the (pointwise) mu-
tual information for each pair of content words® in
our training corpus.

Mutual information, first introduced to compu-
tational linguistics by (Church and Hanks, 1989),
is one of many measures that seems to be roughly
correlated to the degree of semantic relatedness
between words.* The mutual information between
two words w1 and w2 is given by:

Pr(wl,w2)
Pr(wl)Pr(w2)

Intuitively, the larger the deviation between
the empirical frequency of co-occurrence of
two words and the expected frequency of co-
occurrence if they were independent, the more
likely it is that the occurrence of one of the two
words is not independent from the occurrence of
the other.’

In particular, (Brown et al., 1990) observed
that when mutual information is computed in
a non-directional fashion and by counting co-
occurrences of words within a relatively large win-
dow, but excluding “close” co-occurrences (which
would tend to capture multi-word names, phraseo-
logical units and lexicalized phrases), the measure
identifies semantically related pairs.

Since this is the type of relationship we are af-
ter (dependencies between adjacent words are al-
ready captured by the standard word-based bigram
model), we computed mutual information by con-
sidering, for each pair, only co-occurrences within
a maximal window of 50 words and outside a min-
imal window of 2 words.5

Notice that, since directionality is not taken
into account (i.e., both wl...w2 and w2...wl are
counted as occurrences of the same bigram), for

I(wl,w2) = log )

3We determine which words are content words by running
the whole corpus through the XEROX German morphologi-
cal analyzer (Karttunen et al., 1997).

*We also experimented with the log-likelihood ratio mea-
sure proposed by (Dunning, 1993). However, the results were
consistently worse than with mutual information.

S(Rosenfeld, 1996) uses the closely related average mu-
tual information measure to identify trigger-target pairs.

%See (Baroni et al., 2002b) and (Baroni et al., 2002c¢) for
other studies in which we used this technique to identify se-
mantically related words.

each w1l w2 pair (where the first word is the trig-
ger, the second the target) with a certain mutual in-
formation, there is also an equivalent w2 w1 pair
with the same mutual information.

The top 20 collocates of the word Hund “dog”
that were found in this way were:

MI MI
eingeschlifert | 15.297 | Hiindin 13.853
Herrchen 15.297 | Schwanz 13.831
Terrier 14.841 | Hiite 13.771
Hundes 14.764 | Haustiere 13.744
Vierbeiner 14.548 | Quarantdne | 13.618
Rottweiler 14.493 | Haustier 13.583
Frauchen 14.417 | Hund 13.513
bil 14.249 | Bohlen 13.481
gebissen 14.007 | Katze 13.371
Leine 13.863 | Besitzerin 13.074

As this example shows, in general the colloca-
tions extracted using this method are quite plausi-
ble.

3.2 Generation of collocation-based
completions during prediction

The collocation-based component has access to
the list of trigger-target pairs that was constructed
from the training corpus as we just described. At
startup time, this list is read by the predictor and
a hash table associates each trigger with a list of
its targets and the corresponding scores. These
scores are stored as integers and are derived from
the original mutual information measure by multi-
plication with an adjustable factor’.

During the prediction process, the collocation-
based model keeps track of the last n words en-
tered (the window size n is an adjustable param-
eter — see discussion in 4 below) and it main-
tains a trie of current targets for prediction. Ev-
ery time the window changes (i.e., the user starts
to type the next word) the trie is newly computed.
For each trigger word in the sliding context win-
dow, the associated targets and their scores are
looked up in the trigger-target hash table. Each
target word together with its score is entered into
the collocation-based prediction trie. Thereby the
score is interpreted as a count that can be used dur-
ing prediction for computing the probability of the
suggested completions.

"We experimented also with nonlinear scores, but these
performed worse.



The textual distance of the trigger to the current
word is also taken into account. We use a decay
function that reduces the score of a target propor-
tional to the distance of its trigger from the current
word. Thus, the prediction score .S}, of a word at
the current input position n + 1 (given a trigger
window size of n) is computed as the sum of the
decayed trigger scores S; of this word as a target
of all triggers w; in the context window:

mn

Splunen) = 3 w (3)

The probability assigned to a possible comple-
tion by the collocation-based model is given by
the sum of the scores associated with the pairs in
which the candidate completion is a target, divided
by the sum of the scores of all currently active
targets (i.e., the targets associated with the last n
words).

In the experiments reported below, we inte-
grated the collocation-based model in a version of
the FASTY system consisting of word-based bi-
gram and unigram models and a tag-based trigram
model.®

The probability estimate for the (completion of
the) next word is derived by interpolating the uni-
gram probability of the word (given the already
entered, but possibly empty, prefix), the bigram
probability of the word (given the previous word
and the prefix) and a term derived from the tag
model. This term is computed as in (Carlberger,
1998) by summing up the probability of each tag
to occur with the next word (according to the
trigram-based tag model) multiplied by the proba-
bility that this tag occurs with the predicted word
(for details, see (Carlberger, 1998)).

The collocation-based model is integrated into
the system by interpolating the word-based uni-
gram statistics with the trigger-based target word
probabilities.

We decide to combine the collocation-based
model with the unigram model since, in earlier ex-
periments, we observed that reducing the weight

8The word-based unigram model is augmented by an (in-
dependently needed) morphological lexicon, that serves as a
backup resource if the statistical model runs out of predic-
tions. As mentioned above, the full FASTY system also in-

cludes compound prediction, grammar-based prediction and
a user lexicon.

assigned to the bigram model from its empirically
determined optimum has a strong negative im-
pact on ksr. Moreover, conceptually, the seman-
tic information exploited by the collocation-based
model seems to belong with the lexical factors re-
flected in unigram statistics, rather than with the
mostly syntactic factors that govern the other mod-
els.

In the current version of FASTY, the optimal in-
terpolation weights are empirically determined via
hand-tuning. Clearly, this is an aspect of the sys-
tem where further work is needed.

4 Experiments with collocation-based
prediction

Extraction of trigger-target pairs was performed
on the APA (Austrian Press Agency) newswire ar-
ticles from January to October 1999 (containing
27,251,629 words). We collected the 9,235,073
long-distance bigrams made of content words that
occurred at least 5 times in this corpus. Only
pairs of words occurring in the same article and
within the window specified in 3.1 above were
considered. After calculating the mutual informa-
tion scores and pruning away pairs with a mu-
tual information score of less than 10, as well
as pairs containing punctuation, all-caps abbrevia-
tions, and proper names (as these might be only
relevant to the training corpus), we arrived at a
manageable set of 306,367 pairs built from 33,693
trigger words.

The other word-based models and the tag-based
model were trained on the same corpus.

For a first set of experiments, we created a test
corpus distinct from the training corpus by ran-
domly selecting 11 articles from the Frankfurter
Rundschau Corpus (newspaper articles from June
29 to July 12 of 1992), containing 10,109 words
(70,984 characters).

Simulation runs were performed on each article
separately, since the articles are topically different
and it was undesirable (and also not conforming
to the practical use of FASTY) to carry over the
triggers from one article to the other. The total ksr
scores were computed from the sums of the dif-
ferent character counts according to equation (1).
Note that the figures for the number of typed char-
acters include the keystrokes needed for selecting



among the predictions.

As a baseline we computed the ksr without em-
ploying the collocation-based model. The inter-
polation weights were set to 0.2 for the word uni-
grams, 0.6 for the word bigrams, and 0.2 for the
tag model. These settings have proven useful in
previous experiments.

The results of the baseline experiment are
shown in Tab. 1.

sample | chars total | chars typed ksr
#1 3924 2092 | 46.69
#2 5517 3021 | 45.24
#3 5215 2514 | 51.79
#4 4887 2646 | 45.86
#5 10121 6104 | 39.69
#6 7099 3953 | 44.32
#7 6658 3603 | 45.88
#3 2683 1459 | 45.62
#9 4827 2607 | 45.99
#10 4399 2054 | 53.31
#11 15654 7297 | 53.39
Total 70984 37350 | 47.38

Table 1: Baseline ksr

In order to find an optimal setting for the param-
eters of collocation-based prediction, we experi-
mented with different sizes of the trigger context
window and with and without distance-based de-
cay (cf. equation 3). It turned out that a change in
window size within the 20-to-50 word range does
not have a significant effect on performance. Re-
ducing the trigger window to 10 words, however,
leads to a noticeable degradation in performance.

Using the decay function leads to a slight im-
provement in performance (especially in combi-
nation with larger windows).

Although the differences are rather small (ex-
cept for the simulations with very narrow win-
dows), we consistently achieved the best results
using a trigger window of 50 words together with
the decay function. The results reported here are
based on these settings.

We used the same weights as in the baseline ex-
periments for the word-based bigram model and
for the tag-based trigram model. The total weight
assigned to the word-based unigram model and to
the collocation-based model was kept constant as
0.2, while the relative weights of these two models
were systematically varied.

The x-axis in the figures below is scaled to show

the percentage of weight assigned to collocation-
based prediction over the total weight allocated
to the word-based unigram and collocation-based
models together (for shortness, this is called “uni-
gram weight” in the figures).

In Fig. 1 the changes in ksr depending on the
weight of collocation-based prediction are shown
for the different test documents. It turns out that
collocation-based prediction leads to an improve-
ment in ksr for each document. However, these
improvements tend to be rather small, and they are
not always obtained with the same weight settings.
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Collocation weight in percent of unigram weight

Figure 1: Ksr gain for different texts

The overall improvement is shown in Fig. 2.
The best overall ksr gains are achieved when the
weight of collocation-based prediction contributes
about 5-7% of the weight allocated to the word-
based unigram and collocation-based models.

This is also the range in which the sample texts
benefitting most from collocation-based predic-
tion showed the highest ksr gains.

0.3
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el J\ |
0.2+ |
0.15+ |
0.1+ .
0.05 + .
0 1 1 1 1 1 1 1 1
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Collocation weight in percent of unigram weight
Figure 2: Overall ksr gain

We then conducted a second set of experiments
using the same training corpus but a much larger



test set. This test set was constructed by extracting
999 articles from the Donaukurier Corpus, for a
total of 300,449 words (approximately 2.23MB of
characters).

Simulation runs were performed (on each arti-
cle separately) without and with the collocation-
based model. For the simulation without colloca-
tions, we used the same settings as above. For the
simulation with collocations, we used the weights
that gave the best results in the previous tests (uni-
grams: 0.187, collocations: 0.013, bigrams: 0.6,
tag model: 0.2).

Again, using the collocation-based model led to
a (small) improvement in total ksr: from 41.475
without collocation to 41.653 with the collocation-
based model. The distribution of ksr changes
across articles was as follows: in 644 cases, the
collocation-based model led to an improvement in
ksr over the baseline; in 274 cases, the collocation-
based model caused a decline in ksr; in 81 cases,
there was no effect on ksr.

A paired two-sided Wilcoxon signed rank test
comparing the ksr’s for each article with and with-
out the collocation model showed that the differ-
ence between the two conditions is highly signifi-
cant (V = 91420.5,p < .00000).

Thus, the results of the second experiment con-
firmed the small but consistent positive effect of
collocation-based prediction that we found in the
fist experiment.

The effects of collocation-based prediction in
both experiments are document-specific, probably
depending on how well the topic of each test doc-
ument is represented in the training corpus.

5 Conclusion

In this paper, we reported about some prelimi-
nary experiments in which we added a collocation-
based module to the German FASTY system,
in order to exploit semantic/topical dependencies
among words.

The results we obtained in these experiments
are encouraging, in that they indicate that adding
collocation-based prediction to FASTY does im-
prove ksr. However the magnitude of this im-
provement is small. Thus, we are currently explor-
ing various strategies to boost up the performance
of collocation-based prediction.

The way in which we interpolate the
collocation-based model with the other prediction
models appears to be extremely important. Thus,
we should perhaps adopt a more sophisticated
interpolation scheme than the current hand-tuning
approach. For example, we could experiment with
an EM-like algorithm or a Maximum Entropy
model along the lines of (Rosenfeld, 1996).

The results also suggest that the semantic cov-
erage of the long-distance bigram pool should per-
haps be extended via training on larger corpora.
However, care should be exercised in ensuring that
the resulting collocation database is still manage-
able in size and that it does not introduce noise that
disturbs the prediction process.

Moreover, rather than collecting triggers and
targets directly from wordforms, the training cor-
pus should perhaps be lemmatized, and the rel-
evant statistics should be computed for lemmas.
This is appealing because semantic relatedness
does not depend on the particular inflected word-
forms involved (especially if long distance de-
pendencies are considered) but rather on lemmas.
This would also lead to a more compact colloca-
tion database, which is certainly desirable.

While lemmatization does not pose a problem
for the collection of long-distance bigrams, during
the prediction process we need to present word-
forms, rather than lemmas, to the user. Thus,
strategies should be developed to come up with
the most likely wordform(s) for each lemma. The
FASTY system contains a grammar-based module
(not described in the present paper) that checks
whether predicted wordforms are grammatically
possible in the current context. Perhaps, this mod-
ule could be employed to generate appropriate
wordforms.

Instead of relying simply on the patterns of co-
occurrence of two words, we could also look at
their contextual similarity, as measured by the co-
sine of vectors representing other words they occur
with (see (Manning and Schiitze, 1999), chapter
8).

Finally, semantically related words could be
clustered into classes (for example, adopting the
clustering algorithm we already use with some
success for the compound head prediction compo-
nent of FASTY — see (Baroni et al., 2002¢)), so



that the trigger-target model could be replaced or
combined with a more general class-based model.

We hope that further work along the lines we
just sketched will transform the promising but
meager improvements in ksr we report here into
a more sizeable positive boost of the performance
of the system.

At that point, we will make collocation-based
prediction a stable component of the FASTY sys-
tem, and we will adapt it to the other languages of
the FASTY project.
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