The MetaGrammar: a cross-framework and cross-language test-suite
generation tool

Alexandra Kinyon and Owen Rambow
University of Pennsylvania
kinyon@linc.cis.upenn.edu

Abstract

In this paper, we present a novel ap-
proach for building parallel syntacti-
cally annotated sentences for different
frameworks and languages. These syn-
tactically annotated sentences are au-
tomatically generated from a compact
higher level of syntactic abstraction, a
MetaGrammar hierarchy, which min-
imizes the need for human intervention
in building annotated test-suites. With
a single hierarchy, each sentence gen-
erated is automatically mapped to sev-
eral annotations (traditional constituent
structure, LFG F-structure, dependency
structure and constraint grammar rep-
resentation) thus allowing one to di-
rectly compare the coverage of gram-
mars based on different frameworks.
Furthermore, also with that same sin-
gle compact hierarchy, the tool gener-
ates parallel annotated sentences for dif-
ferent languages, which may prove use-
ful for Machine Translation evaluation.

1 Introduction

A large number of grammar formalisms exist for
which expensive dedicated tools such as wide-
coverage grammars, parsers etc. have been de-
veloped. All these grammar formalisms have
the same goal: formalize the syntax of natural
language so that it can be processed by a com-
puter. However, they resort to very different means
and to very different formats of representations to
achieve this goal. Broadly speaking, some for-
malisms rely on the notion of Phrase Structure,
others rely on the notion of syntactic function, oth-
ers on the notion of dependency, and yet again oth-
ers on the notion of “constraint” or on a hybrid
type of syntactic information.!

'Sometimes, the dichotomy phrase-structure versus de-
pendency structure is deemed language dependent because

As pointed out in (Sutcliffe et al., 1996), this
variety of formats becomes a problem when one
wants to directly compare grammars. One stan-
dard way to evaluate the coverage of a grammar
consists in comparing the analysis of the gram-
mar to a gold standard analysis i.e. hand-corrected
syntactically annotated data. Traditionally, when
talking about syntactically annotated data, one dis-
tinguishes treebanks, such as the Penn Treebank
(Marcus et al., 1993), which consist of naturally
occurring text and often contain complex syn-
tactic phenomena and a large lexicon, from test-
suites, such as TSNLP (Lehman and al, 1996).
A test suite is a set of artificially built sentences,
which are sorted by linguistic phenomena, and
designed to contain a limited lexicon.”? Evalu-
ation approaches which rely on treebanks tend
to be favored by the statistical parsing commu-
nity because of their empirical flavor. However,
rather than opposing treebanks to test-suites, it
seems more fruitful to see both as complementary
tools, each having its advantages and drawbacks
for evaluation purpose. When evaluating the per-
formance of a grammar against a treebank, one
can obtain quantitative measures by computing
metrics such as precision, recall, crossing brack-
ets etc.> However, one can not obtain qualitative
measures i.e. which syntactic phenomena are han-
dled by the grammar. Since test-suite sentences
are sorted by phenomena (e.g. wh-questioned ob-
ject, passive with no agent, ...), when evaluating

phrase structure representations are thought to be less ade-
quate to formalize the syntax of so-called free word order
languages, but even this is not to be taken for granted since
there are, for instance, dependency grammars for English and
phrase structure grammars for Japanese, such as the HPSG
grammar of (Y.Mitsuishi et al., 1998).

2 Another characteristic of test-suite is that they may con-
tain ungrammatical sentences on purpose, but we do not ad-
dress this issue here.

3For an overview of the various metrics used with their
respective advantages and drawbacks, see e.g. (Carroll et al.,
1998)

125

the performance of a grammar against a test-suite,
one may find, in addition to the metrics above,
which syntactic phenomena are badly handled (or
not handled at all) by the grammar, thus giving a
clear indication as to which grammar rules need
to be added or improved. Moreover, when devel-
oping a grammar within a given framework, for
a given domain and a given language, more of-
ten than not, an annotated treebank for this spe-
cific <framework,domain,language> triplet will
not be available. For applications requiring par-
allel grammars for several languages, the problem
is even more acute since virtually no treebank cur-
rently exists with parallel annotations for naturally
occurring text in more than one language.*

However, both Treebanks and test-suites are
costly to build: usually, once the data to be an-
notated is chosen (be it real world-data or artificial
data), it is then parsed and hand-corrected. The
hand-correction phase requires extensive human
intervention. We propose to depart from this 2-
phase scheme of annotation. Instead, we encode a
compact higher level of syntactic abstraction, the
MetaGrammar (MG), from which annotated data
is generated. This allows us to make the develop-
ment of test-suites faster by reducing the need for
human intervention, and also by making it possi-
ble to generate, from a single MG hierarchy, par-
allel test-suites for different languages and frame-
works.?

In the first part of this paper, we introduce the
notion of MetaGrammar and explain how it can be
used to classify and generate syntactically anno-
tated sentences.

In the second part of this paper, we explain
how the abstract level allows to “share” syntac-
tic knowledge among different languages, and dis-
cuss how we have generated parallel annotated
data for English and German.

In the third part of this paper, we explain how
this approach has allowed us to generate in par-
allel the same data annotated for different syntac-
tic frameworks. More specifically, we focus on

*This may partly explain why industrial research project,
such as Xerox XLE, still develop large hand-crafted gram-
mars instead of inducing them from treebanks.

5 Another advantage of our approach is that there is not
need for a parser, and for disambiguation (manual or auto-
matic) in order to build a test-suite.

126

phrase structure annotation, dependency annota-
tion, LFG F-structure annotation and constraint
grammar annotation.

Finally, in the last part of this paper, we discuss
directions for future work, including the question
of extending the approach to naturally occurring
text in order to bridge the gap between treebanks
and test-suites.

2 What is a MetaGrammar?
2.1 Theoretical Issues

The notion of MetaGrammar was originally pre-
sented in (Candito, 1996). Her goal was to au-
tomatically generate a wide-coverage Tree Ad-
joining Grammar (TAG)’ while minimizing hu-
man intervention in the grammar writing process,
and thus easing grammar development and main-
tenance. The idea is to add a higher-level and com-
pact layer of linguistic description, which imposes
a general organization for syntactic information in
a three-dimensional hierarchy :

e Dimension 1: initial subcategorization

e Dimension 2: valency alternations and redis-

tribution of functions

e Dimension 3:
ments.

surface realization of argu-

Each terminal class in dimension 1 describes a
possible initial subcategorization (i.e. transitive,
ditransitive etc...). Each terminal class in dimen-
sion 2 describes a list of ordered redistributions of
functions (e.g. it allows to add an argument for
causatives, to erase one for passive with no agents
...). Bach terminal class in dimension 3 represents
the surface realization of a surface function (ex:
declares if a direct-object is pronominalized, wh-
extracted, etc.). Each class in the hierarchy is as-
sociated to the partial description of a tree (Rogers
and Vijay-Shanker, 1994) which encodes father,
dominance, equality and precedence relations be-
tween nodes. A well-formed tree is generated by
inheriting from exactly one terminal class from di-
mension 1, one terminal class from dimension 2,
and n terminal classes from dimension 3 (where
n is the number of arguments of the elementary

6A similar metagrammar tool for TAGs may be found in
(Xia, 2001)

"We do not present TAGs here, since it is orthogonal to
our concern. Suffice it to say that the basic rules are phrase-
structure trees.

tree being generated). For instance the elemen-
tary tree for Par qui sera accompagnée Marie
(By whom will Mary be accompanied) is gener-
ated by inheriting from transitive in dimension 1,
from passive-no-agent in dimension 2 and subject-
nominal-inverted for its subject and questioned-
object for its object in dimension 3. This compact
representation allows one to generate a 5000 tree
grammar from a hand-crafted hierarchy of a few
dozens of nodes, esp. since nodes are explicitly
defined only for simple syntactic phenomena.®

This particular MG tool was used to develop
a wide-coverage TAG for French (Abeille et al.,
1999) (5000 grammar rules), as well as a medium-
size TAG for Italian (Candito, 1999). It is worth
mentioning that in addition to proposing a com-
pact representation of syntactic knowledge, (Can-
dito, 1999) began exploring whether some com-
ponents of the hierarchy could be re-used across
similar languages (French and Italian). However,
she developed two distinct hierarchies to generate
grammars for these two languages and generated
only grammars for the TAG framework °. We ex-
tend the use of the MetaGrammar, whose basic
role is to generate trees, in order to generate anno-
tated strings i.e. sentences in a test-suite. In order
to achieve this, we simply add one dimension to
the organization above: a Lexicalization dimen-
sion which allows us to specify lexical items i.e.
the words which will appear in the annotated sen-
tence. We also push further the cross-language and
cross-framework potential of a MetaGrammar or-
ganization by generating annotated sentences for
English and German from one single hierarchy
and for different frameworks: traditional phrase
structure, LFG F-structure, Dependency tree, con-
straint grammar annotation.

In addition to that, the syntactically annotated
sentences we generate are classified by syntac-
tic phenomena, thanks to the notion of Hypertag,
which was introduced in (Kinyon, 2000). The
main idea behind hypertags is to keep track, when
trees are generated from a MG hierarchy, of their

8Nodes for complex syntactic phenomena are generated
by automatic crossings of nodes for simple phenomena

For croos-language grammar development, one can also
cite the LFG Parallel Grammar project (Butt et al., 2002), but
to the best of our knowledge, this project does not explicitly
explore rule-sharing across languages.

salient syntactic characteristics i.e. the terminal
classes used for generating the tree'’. For in-
stance, the verb give in A book was given to May
could be assigned the hypertag:

Subcat: Ditransitive

Valency alternations: Passive no Agent

Canonical NP
Canonical NP

Subject:

Argument Realization Object:

Although we retain the linguistic insights pre-
sented in (Candito, 1996), that is the notions of
multi-dimensions to model syntax, with one di-
mension for subcategorization, one dimension for
valency alternation, one dimension for the realiza-
tion of syntactic argument, and one dimension for
the realization of lexical items, we use a differ-
ent MetaGrammar tool which is less framework-
dependent and supports the notion of hypertag.
2.2 Practical Issues
The MG compiler we use for generating test-suites
is presented in (Gaiffe et al., 2002).1 In the
(Gaiffe et al., 2002) tool, each class in the MG hi-
erarchy encodes:

o Its SuperClasse(s)

A Hypertag which captures the salient lin-
guistic characteristics of the class.

What the class needs and provides

A set a quasi-nodes

Constraints between quasi-nodes (father,
dominates, precedes, equals)
e Traditional feature equations for agreement.

The MG tool automatically crosses the nodes
in the hierarchy, looking to create “balanced”
classes, that is classes that do not need nor pro-
vide anything.'> Then, for each balanced terminal
classes, the structural constraints on quasi-nodes
are unified, and if the unification succeeds, a pair
<description,tree> is generated. Figure 1 shows
a simple example of how one can generate the an-
notated sentences The boy sees a duck for phrase
structure.

'9The notion of hypertag was inspired by that of supertags
presented in (Srinivas, 1997), which consists in assigning a
TAG elementary tree to each lexical item in a sentence, hence
enriching traditional POS tagging information. However, hy-
pertags are framework-independent.

U'This compiler is freely available on
http://www.loria.fr/equipes/led/outils/mgc/mge.html

12 Another way to view this is by analogy to the notion of
resource allocation graphs.

127

Class Declarative \ Gass LexSubiEnslis \ /Class LexObjEnglish \

ﬁass TransitichanonieaN / Class NPSubj \/ Class - NPObj \(Class

o Typertan Tobiec NP LexVEnglish Hypertag :

ypertag : Hypertag : Hypertag : subject: NP ypertag : object: - " e i

construction: subeat :transtitive H_ypcrtag : HYPU'P’E : english =+

declarative Needs: lexSubj Needs: lexObj tense:simple english =+ german =-
— Needs: Subject i english =+ german =-
Needs: subeat ObjectRealization Provides: Provides: german =- _ _
lexV —_— SubjectRealization Object Needs: <empty> Needs: <empty>

—_— Provides: subcat Needs: <empty> R

Provides: <empty> - =) Provides: Provides:

— QuasiTree : QuasiTree : QuasiTree : [LexSubi lexOb;

QuasiTree : S father VP Subj equals NP Obj equals NP Provides:)

§ dominates V S dominates Subj Subj father detObj Ohj father detObj lexV Quasiiree : QuasiTree ;
VP father Obj Subj father nObj Obj father nObj JE— detSubj father the detObj father a
VP father V detSubj precedes nSubj detObj precedes nObj || QuasiTree : nSubj father boy nObj father duck
Subj precedes V v father sees \ /
LSUEZAN AN J\ N /

Hypertag : N
construction: declarative
subcat :transitive NPSubj VP
subject: NP
object: NP det n v
tense:simple | /\
english :+ the boy sees n
german :- | |
duck

GENERATED
OUTPUT

Figure 1: Generation of sentence The boy sees a duck

Note that with the same hierarchy, but with
slightly different dominance and precedence con-
straints on the hierarchy nodes, one obtains a sen-
tence annotated for phrase-structure, but with dif-
ferent linguistic choices (e.g. an X-bar representa-
tion of the sentence).

A first advantage of the approach is that the syn-
tactic phenomena covered are quite systematic and
the annotation coherent: if sentences are generated
for “transitive-passive-whExtractedByPhrase”
(e.g. By whom was the mouse eaten?), and if
the hierarchy includes ditransitive verbs, then
the automatic crossing of phenomena ensures
that sentences will be generated for “ditransitive-
passive-whExtractedByPhrase” (i.e. By whom
was Peter given a present).

A second advantage of the approach is to min-
imize the need for human intervention in the test-
suite building process. Human intervention is
needed to “organize” the linguistic knowledge i.e.
encode the hierarchy, and then to verify that the
output sentences are valid. There is no annota-
tion phase after the generation. If the generation is
not satisfactory, either because some sentences are
ungrammatical, or some syntactic structures are
deemed incorrect, then changes are made directly
in the MG hierarchy and never in a post-generation
phase. This ensures a homogeneity of the annota-
tion which is not necessarily present with tradi-
tional hand-annotation approaches.

128

A third and essential advantage is that it is
straightforward to have parallel annotations gen-
erated from a single hierarchy. We devote the next
two sections to this topic.

3 Generating Cross-Language
Annotated Data

Traditionally, phrase-structure grammars are
deemed not well suited for languages such as
German which exhibit a relative free-word order.
The English sentence today the boy sees a duck
has only 3 possible orders (with foday at the
beginning or at the end of the sentence, or,
felicitous in some contexts, just before the verb).
The same sentence in German, heute sieht der
Junge eine Ente, has 6 possible word orders, since
all the combinatorics between the constituents
are allowed as long as the finite verb is in second
position (the “V2” effect). Moreover, German
also allows an expletive construction: es sieht
der Junge eine Ente heute, thus doubling the
number of possible word orders to 12. However,
the MG tool allows us to generate all the possible
word-orders, simply by leaving some precedence
relations unspecified. In the appendix, we show
how 18 English sentences sorted by syntactic
phenomena correspond to 82 sentences in German
because of word order variations. This total of
100 sentences covers for English and German
declarative sentences, sentences with subordinate
clauses with or without a complementizer, sen-

Class Transitive

Hypertag :
subeat :transtitive

Class NPSubj
Typertag : Subj :NP

 Class Declarative N\

Hypertag :
construction:

Class NPObj

Hypertag : Obj:NP

Class LexObjGerman

N E)

LexVGerman
Hypertag :

Class LexSubjGerman

Hypertag :

Hypertag : english =-

Subj father detObj
Subj father nObj
detSubj precedes nSubj

S dominates Subj
S dominates Obj
S i VF
VF precedes V

‘ S dominates V. J
Class VorFeld %
german =+

English=-

Hypertag :
Needs:<empty>

Provides: VFRealization

Obj father detObj
Obj father nObj
detObj precedes nObj

declarative Needs: lexSubj Needs: lexObj tens?:simplr english =- german =+
e et Needs: izati english =- german =+-
Needs: subcat ObjectRealization Provides: Provides: german =+ -
lexV 'VFRealization ji Objs Needs: <empty> Needs: <empty>
e —— - Needs: <empty> o _
Provides: <emply> Provides: ~subeat QuasiTree 7 e Provides: Provides:
QuasiTree : QuasiTree Subj equals NP Obj equals NP Provides: lexSubj lexObj

TexV QuasiTree :
detObj father eine
nObj father Ente

QuasiTree :
detSubj father der

QuasiTree : nSubj father Junge

v father sieht

QuasiTree :<empty> Hypertags : 8§
construction: declarative -
Class subcat :transitive NPSubj Y
VFisObj subject: NP g%'\“m
VFisExp! — Provides: <empty> english :+ der Junge 1(-! In
Needs:<empty> v e r— german :-
Provid o Provides: Hypertag : VE :Expl / Subject / Object ene Ente
ovides: <empty> vides: <empty> VF :Object s
Hypertag : Hypertag = Quasitree N 3
VF zexpl VF :Subject . COn
i VE equals Obf NPOB] Y Bpl ¢ NPSubj NPObj
QuasiTree : QuasiTree : . NPSubj) P
” : . Expl V NPObj 'Subj PN
VF equals Expl kV]' equals Subj SXp . i n
Expl father es det n NPSubj det n
V| det n det n | | sieht VN | | | |
| | | cine Ente det n & siht der Junge cine Ente
es sicht eine Ente der Junge |
der Junge
3

Figure 2: Generation of four word orders for Der Junge sieht eine Ente
Large plain arrows indicate inheritance links in the hierarchy. Smaller arrows indicate a crossing of fi nal classes which produces

an output

tences with or without a temporal modifier, and
for German sentences with or without an expletive
es. This constitutes a sample of the annotated
sentences generated by our hierarchy. Because of
space constraints, we are not able to reproduce
here the syntactic annotations, but the data is
available upon request to the authors.

Figure 2 illustrates how we generate the Ger-
man version of our sentence from Figure 1 (the
boy sees the duck). We retain the English hier-
archy, but add a special class for V2, called Vor-
feld (at the left in Figure 2). Of course, the lex-
ical items (at the right in both Figures 1 and 2)
are different as well. This hierarchy correctly gen-
erates the four possible word-orders: Der Junge
sieht eine Ente, eine Ente sieht der Junge, es sieht
der Junge eine Ente, es sieht eine Ente der Junge.
All the sentences have the same hypertag, except
for the Vorfeld value, which is Expletive,Subject,
or Object. Except for the classes in the lexical-
ization dimension, which are language dependent,
classes are the same as for English, with the excep-
tion of the Vorfeld realization class and its descen-
dants. (The figures omit some details for reasons
of space.)

In using a single hierarchy for multiple lan-
guages, one of course is immediately faced with
the question of what level of granularity one
should use in expressing the categories of the
metagrammar. For example, in describing a verb-
second language such as German, one could opt to
“bury” the syntax of verb-second in the language-
specific partial description associated with the
classes of the hierarchy. Alternatively, one could
introduce (as we have done in Figure 2) a Vor-
feld class which the German main-clause sentence
(but not the English verb or the German embedded
verb) obligatorily inherits. It is clear that this ap-
proach is interesting when several languages are
to be modelled, some of which are verb-second,
and others of which are not. Furthermore, one can
might model the occupation of the Vorfeld either
as subclasses of Vorfeld (as we have done), or us-
ing argument realization classes (in fact, the same
as for English topicalization). Finally, if one is
modelling a large number of V2 languages, one
needs to consider the variety of V2 behavior found
cross-linguistically with respect to the location of
the non-finite verb (VO or OV), the occurrence of
V2 in embedded clauses (see the complex behav-

129

ior in Mainland Scandinavian), or the occasional
V3 effect (Kashmiri). Thus, we see that our ap-
proach does not impose a linguistic choice for the
cross-linguistic modelling of syntax, but it allows
for a wide variety of approaches which can be
chosen as a function of research and application
needs.

4 Generating Cross-Framework
Annotated Data

So far, we have explained how we produce sen-

tences annotated for phrase-structure. We now ex-

plain how we produce other types of syntactic an-

notation: LFG F-structures, dependency annota-

tions, and constraint grammar annotation. '3

As we’ve seen in the previous section, the
MG generator outputs pairs of <FeatureStructure-
Tree>. When the MG is used to generate a gram-
mar, then the tree is interpreted as a grammar rule
(notion of “elementary tree” in the TAG frame-
work) and Feature structure is meant to repre-
sent a description of this tree. However, the <
FeatureStructure — Tree > pair can be inter-
preted differently. In the previous section, we have
seen that the trees generated by the MG may repre-
sent a whole Phrase-structure annotated sentence,
and the feature structure represents a description
of that sentence. But the generated tree does not
have to represent a Phrase structure tree: it can
as well represent a dependency tree, an LFG F-
structure (with co-indices to account for reentrant
features), or a flat tree consisting of only one root
node and daughter leaves (with one leaf for each
word in the sentence), where each leaf is annotated
with constraint grammar annotation.

So, by using the the exact same MG hierar-
chy used for generating Phrase-structure annota-
tion, we have generated the very same sentences
for English and German, but this time annotated
with dependency structures.

Figure 3 shows how we generate annotations
for The boy sees the duck, for dependency. Note
that the hierarchy is identical to the one on fig-
ure 1, except for the constraints for building the

BFor the constraint grammar annotation, we have used the
output for English of the ENCCG demo available online at
www.connexor.com/demos.html. For LFG, and dependency
annotations, we produce ‘standard” analysis, but as we have
seen in the previous section, different linguistic choices could
be made.

130

Quasi-tree. We use the same technique (changing
the constraints on quasi-trees) to generate LFG F-
structures, and constraint grammar annotations.

Of course, all the sentences in the appendix are
generated in a similar fashion using 26 classes.
The cross-language and -framework parallelism of
the sentences is ensured by the hypertag. For in-
stance, all the examples presented on figures 1, 2
and 3 have a common hypertag kernel:

construction: Declarative
Sucat: Transitive

tense: simple english:+/-
german:+/-

Subject: NP

Object: NP

S Conclusion and Future Work
We have shown a new way to produce cross-
language and cross-framework test-suites, using a
common MetaGrammar hierarchy, which reduces
the need for human intervention in the develop-
ment process. The same technique may be ap-
plied for generating cross-languages and cross-
framework grammars, which is a problem we are
currently investigating. We plan to expand the hi-
erarchy to generate larger test-suites 14

Moreover, in future work, we plan to apply the
same technique to naturally occurring text, which
would prove promising for producing parallel tree-
banks for various frameworks. If we assume that
a treebank already exists (such as the Penn Tree-
bank), our task would be to extract hypertags from
the existing annotation (which, in the case of the
Penn Treebank, can be done, using some heuris-
tics), and then use the hypertags to generate an-
notations for the same corpus in different frame-
works. If no treebank exists, we have to do the hy-
pertagging by hand, and assign a dependency-style
structure to the sentence. We can then proceed in
the same manner as before, using a single hand-
annotation to derive the treebanks for the different
frameworks. Thus, we believe that the use of hy-
pertags as a framework-neutral representation of
relevant syntactic features can greatly reduce the
dependence of treebanks on particular formalisms

4Scaling up has not been a problem to generate grammars
of more than 5000 rules (see (Kinyon and Prolo, 2002) for a
detailed discussion), and presents no intrinsic diffi culties for
test-suite generation.

Class Declarative

@ s Transitive(fanunicm / Class NPSubj \ / Class NPObj \ (Class \ Gas 1 . \ [Class LexObjEnglish "\

_— LexVEnglish Hypertan -
Hypertag : Hypertag : Hypertag : subject: NP Hypertag : object: NP Tivpertan - Tvoeren s ypertag :
construction: subcat : transtitive - pertag : ypertag : english =+
declarative Needs: lexSubj Needs: 1exObj tense:simple english =+ german =
" Needs: ji izati english =+ german =-
Needs: subcat ObjectRealization Provides: Provides: german =-
lexV ——— SubjectRealizati Object Needs: <empty> Needs: <empty>
Provides: <empty> Provides: _subeal Needs: <empty> Provides Provides:
T T QuasiTree : QuasiTree © QuasiTree : _ Provides; rides.
QuasiTree : Root dominates Subj Subj equals nSubject Obj equals nObj Provides: exSubj)
<empty> Root dominates Obj fexV QuasiTree : QuasiTree :
Subj precedes Obj T nSubj equals nSubj :hoy nObj equals nObj :duck
Q“;’;m ;;“;ﬂs visees nSubj father detS :the nObj father detO :a
Hypertag : Visees
construction: declarative
subeat :transitive N N
subject: NP GENERATED
object: NP nSubj : boy nOb; :duck OUTPUT
tense:simple
english :+
german :- det:the det:a

Figure 3: Generation of dependencies for The boy sees a duck

and frameworks.

References

A. Abeille, M. Candito, and A. Kinyon. 1999. FTAG:
current status and parsing scheme. In Proc. Vextal-
99, Venice.

M. Butt, H. Dyvik, T.H. King, H. Masuichi, and
C. Rohrer. 2002. The parallel grammar project. In
proc. GEE-COLING, Taipei.

M.H. Candito. 1996. A principle-based hierarchical
representation of LTAGs. In COLING-96, Copen-
hagen.

M.H. Candito. 1999. Representation modulaire
et parametrable de grammaires electroniques lexi-
calisees. Ph.D. thesis, Univ. Paris 7.

J. Carroll, E. Briscoe, and A. Sanfi lippo. 1998. Parser
evaluation: a survey and a new proposal. In LREC-
98, Grenada.

B. Gaiffe, B. Crabbe, and A. Roussanaly. 2002. A new
metagrammar compiler. In Proc. TAG+6, Venice.

A. Kinyon and C. Prolo. 2002. A classifi cation of
grammar development strategies. In Proc. GEE-
COLING, Taipei.

A. Kinyon. 2000. Hypertags. In COLING-00, Sar-
rebrucken.

S.Lehman and al. 1996. Tsnlp — test suites for natural
language processing. In Proc. COLING-96, Copen-
hagen.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English : the
penn treeban. In Computational Linguistics, Vol 19.

J. Rogers and K. Vijay-Shanker. 1994. Obtaining trees
from their description: an application to TAGS. In
Computational Intelligence 10:4.

B. Srinivas. 1997. Complexity of lexical descriptions
and its relevance for partial parsing. Ph.D. thesis,
Univ. of Pennsylvania.

R. Sutcliffe, H. Koch, and A. McElligot, editors. 1996.
Industrial Parsing of Software Manuals. Rodopi,
Amsterdam.

F Xia. 2001. Automatic grammar generation from two
perspectives. Ph.D. thesis, Univ. of Pennsylvania.

Y.Mitsuishi, K. Torisawa, and T. Tsujii. 1998. HPSG-
Style underspecifi ed japanese grammar with wide
coverage. In COLING-ACL-98, Montreal.

131

132

Appendix 1: Sample of Parallel English-German sentences we generate.

Syntactic Phenomena

Engl-Germ.

English

German

Declarative-NoModif-SimpleTense

1-4

The boy sees a duck

Der Junge sieht eine Ente
Eine Ente sieht der Junge
Es sieht der Junge eine Ente
Es sieht eine Ente der Junge

Declarative-NoModif-CoumpoundTense

The boy has seen a duck

Der Junge hat eine Ente gesehen
Eine Ente hat der Junge gesehen
Es hat der Junge eine Ente gesehen
Es hat eine Ente der Junge gesehen

Declarative-Modif-SimpleTense

Today the boy sees a duck

The boy sees a duck today

Heute sicht der Junge eine Ente
Heute sieht eine Ente der Junge
Der Junge sieht eine Ente heute
Eine Ente sieht der Junge heute
Es sieht der Junge eine Ente heute
Es sieht eine Ente der Junge heute
Der Junge sieht heute eine Ente
Eine Ente sieht heute der Junge
Es sieht heute der Junge eine Ente
Es sieht heute eine Ente der Junge
Es sieht der Junge heute eine Ente
Es sieht eine Ente heute der Junge

Declarative-Modif-CoumpoundTense

2-12

Today the boy has seen a duck

The boy has seen a duck today

Heute hat der Junge eine Ente gesehen
Heute hat eine Ente der Junge gesehen
Der Junge hat eine Ente heute gesehen
Eine Ente hat der Junge heute gesehen
Es hat der Junge eine Ente heute gesehen
Es hat eine Ente der Junge heute gesehen
Der Junge hat heute eine Ente gesehen
Eine Ente hat heute der Junge gesehen
Es hat heute der Junge eine Ente gesehen
Es hat heute eine Ente der Junge gesehen
Es hat der Junge heute eine Ente gesehen
Es hat eine Ente heute der Junge gesehen

SubordinateWithCompl-NoModif-SimpleTense

He says that the boy sees a duck

Er sagt, dass der Junge eine Ente sieht
Er sagt, dass eine Ente der Junge sieht

SubordinateWithCompl-NoModif-CoumpoundTense

He says that the boy has seen a duck

Er sagt, dass der Junge eine Ente gesehen hat
Er sagt, dass eine Ente der Junge gesehen hat

SubordinateWithCompl-Modif-SimpleTense

He says that today the boy sees a duck

He says that the boy sees a duck today

Er sagt, dass heute der Junge eine Ente sieht
Er sagt, dass heute eine Ente der Junge sieht
Er sagt, dass der Junge eine Ente heute sieht
Er sagt, dass eine Ente der Junge heute sieht
Er sagt, dass eine Ente heute der Junge sieht
Er sagt, dass der Junge heute eine Ente sieht

SubordinateWithCompl-Modif-CoumpoundTense

2-6

He says that today the boy has seen a duck

He says that the boy has seen a duck today

FEr sagt, dass heute der Junge eine Ente gesehen hat
Er sagt, dass heute eine Ente der Junge gesehen hat
Er sagt, dass der Junge eine Ente heute gesehen hat
Er sagt, dass eine Ente der Junge heute gesehen hat
Er sagt, dass eine Ente heute der Junge gesehen hat
Er sagt, dass der Junge heute eine Ente gesehen hat

SubordinateNoCompl-NoModif-SimpleTense

He says the boy sees a duck

Er sagt der Junge sieht eine Ente
Er sagt eine Ente sieht der Junge
Er sagt es sieht der Junge eine Ente
Er sagt es sieht eine Ente der Junge

SubordinateNoCompl-NoModif-CoumpoundTense

He says the boy has seen a duck

Er sagt der Junge hat eine Ente gesehen
Er sagt eine Ente hat der Junge gesehen
Er sagt es hat der Junge eine Ente gesehen
Er sagt es hat eine Ente der Junge gesehen

SubordinateNoCompl-Modif-SimpleTense

He says today the boy sees a duck

He says the boy sees a duck today

Er sagt heute sieht der Junge eine Ente
Er sagt heute sieht eine Ente der Junge
Er sagt der Junge sieht eine Ente heute
Er sagt eine Ente sieht der Junge heute
Er sagt der Junge sieht heute eine Ente
Er sagt eine Ente sieht heute der Junge
Er sagt es sieht der Junge eine Ente heute
Er sagt es sieht eine Ente der Junge heute
Er sagt es sieht der Junge heute eine Ente
Er sagt es sieht eine Ente heute der Junge
Er sagt es sieht heute der Junge eine Ente
Er sagt es sieht heute eine Ente der Junge

SubordinateNoCompl-Modif-CoumpoundTense

2-12

He says today the boy has seen a duck

He says the boy sees a duck today

Er sagt heute hat der Junge eine Ente gesehen
Er sagt heute hat eine Ente der Junge gesehen
Er sagt der Junge hat eine Ente heute gesehen
Er sagt eine Ente hat der Junge heute gesehen
Er sagt der Junge hat heute eine Ente gesehen
Er sagt eine Ente hat heute der Junge gesehen
Er sagt es hat der Junge eine Ente heute gesehen
Er sagt es hat eine Ente der Junge heute gesehen
Er sagt es hat der Junge heute eine Ente gesehen
Er sagt es hat eine Ente heute der Junge gesehen
Er sagt es hat heute der Junge eine Ente gesehen
Er sagt es hat heute eine Ente der Junge gesehen

