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Abstract 

In this paper we discuss the performance 
of a text-based classification approach by 
comparing different types of features. We 
consider the automatic classification of 
gene names from the molecular biology 
literature, by using a support-vector ma-
chine method. Classification features 
range from words, lemmas and stems, to 
automatically extracted terms. Also, sim-
ple co-occurrences of genes within docu-
ments are considered. The preliminary 
experiments performed on a set of 3,000 
S. cerevisiae gene names and 53,000 
Medline abstracts have shown that using 
domain-specific terms can improve the 
performance compared to the standard 
bag-of-words approach, in particular for 
genes classified with higher confidence, 
and for under-represented classes.  

1 Introduction 

Dynamic development and new discoveries in the 
domain of biomedicine have resulted in the huge 
volume of the domain literature, which is con-
stantly expanding both in the size and thematic 
coverage (Blaschke et al., 2002). The literature, 
which is still the most relevant and the most useful 
knowledge source, is swamped by newly coined 
terms and relationships representing and linking 
newly identified or created compounds, genes, 
drugs, reactions, etc., which makes the existing 
terminological resources rarely up-to-date. There-
fore, domain knowledge sources need to frequently 

adapt to the advent of such terms by assorting them 
into appropriate classes, in order to allow biolo-
gists to rapidly acquire, analyse and visualise enti-
ties or group of entities (Stapley et al., 2002).  

Naming conventions solely cannot be used as 
reliable classification criteria, since they typically 
do not systematically reflect any particular func-
tional property or relatedness between biological 
entities. On the other hand, it has proved surpris-
ingly difficult to automatically predict classes for 
some types of biological entities based solely on 
experimental data (e.g. the prediction of protein 
cellular locations from sequences (Eisenhaber and 
Bork, 1998) or the amino acid composition of pro-
teins (Nishikawa and Ooi, 1982)).  

In order to overcome this problem, several lit-
erature-based classification methods have been 
developed (Collier et al. 2001; Hatzivassiloglou et 
al., 2001). Classification methods typically rely on 
supervised machine learning techniques that ex-
amine the wider context in which terms are used. 
For example, Raychaudhuri et al. (2002) used 
document-based word counts and naive Bayesian 
classification, maximum entropy modelling and 
nearest-neighbour classification to assign the GO 
ontology codes to a set of genes. Recently, sup-
port-vector machines (SVMs, (Vapnik, 1995)) 
have been widely used as fast, effective and reli-
able means for text-based classification, both for 
document classification (Joachims, 1998) and clas-
sification of specific named entities (Stapley et al., 
2002; Kazama et al., 2002). 

Regardless of the learning approach and target 
entities (documents or terms), different types of 
text features have been employed for the classifica-
tion task. For example, a bag-of-words approach 
was used by Stapley et al. (2002) to classify pro-



teins, while Collier et al. (2001) used orthographic 
features to classify different biological entities. On 
the other hand, Hatzivassiloglou et al. (2001) ex-
perimented with morphological, distributional and 
shallow-syntactic information to discriminate be-
tween proteins, genes and RNAs.  

In this paper we analyse the impact of different 
types of features on the performance of an SVM-
based classifier. More precisely, we discuss the 
multi-class SVM performance with respect to the 
type of features used, ranging from document iden-
tifiers, through words, lemmas and stems, to auto-
matically extracted terms.   

The paper is organised as follows. After pre-
senting the related work on feature selection in 
Section 2, the methods used for engineering fea-
tures in our approach are explained in Section 3. 
Section 4 discusses the experiments and results. 

2 Related work 

An SVM is a binary classification method that 
combines statistical learning and optimisation tech-
niques with kernel mapping (Vapnik, 1995). The 
main idea of the method is to automatically learn a 
separation hyperplane from a set of training 
examples, which splits classified entities into two 
subsets according to a certain classification prop-
erty. The optimisation part is used to maximise the 
distance (called the margin) of each of the two 
subsets from the hyperplane.     

The SVM approach has been used for different 
classification tasks quite successfully, in particular 
for document classification, where the method out-
performed many alternative approaches (Joachims, 
1998). Similarly, SVMs have been used for term 
classification. For example, a bag-of-simple-words 
approach with idf-like weights was used to learn a 
multi-class SVM classifier for protein cellular lo-
cation classification (Stapley et al., 2002). Proteins 
were represented by feature vectors consisting of 
simple words co-occurring with them in a set of 
relevant Medline abstracts. The precision of the 
method was better than that of a classification 
method based on experimental data, and similar to 
a rule-based classifier.  

Unlike many other classification methods that 
have difficulties coping with huge dimensions, one 
of the main advantages of the SVM approach is 
that its performance does not depend on the dimen-
sionality of the space where the hyperplane separa-

tion takes place. This fact has been exploited in the 
way that many authors have suggested that “there 
are few irrelevant features” and that “SVMs elimi-
nate the need for feature selection” (Joachims, 
1998). It has been shown that even the removal of 
stop-words is not necessary (Leopold and Kinder-
mann, 2002). 

Few approaches have been undertaken only re-
cently to tune the original SVM approach by se-
lecting different features, or by using different 
feature weights and kernels, mostly for the docu-
ment classification task. For example, Leopold and 
Kindermann (2002) have discussed the impact of 
different feature weights on the performance of 
SVMs in the case of document classification in 
English and German. They have reported that an 
entropy-like weight was generally performing bet-
ter than idf, in particular for larger documents. 
Also, they suggested that, if using single words as 
features, the lemmatisation was not necessary, as it 
had no significant impact on the performance.   

Lodhi et al. (2002) have experimented with dif-
ferent kernels for document classification. They 
have shown that a string kernel (which generates 
all sub-sequences of a certain number of charac-
ters) could be an effective alternative to linear ker-
nel SVMs, in particular in the sense of efficiency.  

In the case of term classification, Kazama et al. 
(2002) used a more exhaustive feature set contain-
ing lexical information, POS tags, affixes and their 
combinations in order to recognise and classify 
terms into a set of general biological classes used 
within the GENIA project (GENIA, 2003). They 
investigated the influence of these features on the 
performance. For example, they claimed that suffix 
information was helpful, while POS and prefix 
features did not have clear or stable influence.  

While each of these studies used some kind of 
orthographical and/or lexical indicators to generate 
relevant features, we wanted to investigate the us-
age of semantic indicators (such as domain-
specific terms) as classification features, and to 
compare their performance with the classic lexi-
cally-based features. 

3 Feature selection and engineering 

The main aim while selecting classification fea-
tures is to find (and use) textual attributes that can 
improve the classification accuracy and accelerate 
the learning phase. In our experiments we exam-



ined the impact of different types of features on the 
performance of an SVM-based gene name classifi-
cation task. The main objective was to investigate 
whether additional linguistic pre-processing of 
documents could improve the SVM results, and, in 
particular, whether semantic processing (such as 
terminological analysis) was beneficial for the 
classification task. In other words, we wanted to 
see which textual units should be generated as in-
put feature vectors, and what level of pre-
processing was appropriate in order to produce 
more accurate predictions. 

We have experimented with two types of tex-
tual features: in the first case, we have used a clas-
sic bag-of-single-words approach, with different 
levels of lexical pre-processing (i.e. single words, 
lemmas, and stems). In the second case, features 
related to semantic pre-processing of documents 
have been generated: a set of automatically ex-
tracted multi-word terms (other than gene names to 
be classified) has been used as a feature set. Addi-
tionally, we have experimented with features 
reflecting simple gene-gene co-occurrences within 
the same documents.  

3.1 Single words as features 
The first set of experiments included a classic bag-
of-single-words approach. All abstracts (from a 
larger collection, see Section 4) that contained at 
least one occurrence of a given gene or its aliases 
have been selected as documents relevant for that 
gene. These documents have been treated as a sin-
gle virtual document pertinent to the given gene. 
All words co-occurring with a given gene in any of 
the abstracts were used as its features.  

A word has been defined as an alphanumeric 
sequence between two standard separators, with all 
numeric expressions that were not part of other 
words filtered out. In addition, a standard list of 
around 300 stop-words has been used to exclude 
some frequent non-content words. 

An idf-like measure has been used for feature 
weights: the weight of a word w for gene g is given 
by 
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where Rg  is a set of relevant documents for the 
gene g,  fj(w) is the frequency of w in document j, 
and Nw is the global frequency of w. Gene vectors, 

containing weights for all co-occurring words, 
have been used as input for the SVM. 

It is widely accepted that rare words do not 
have any significant influence on accuracy (cf. 
(Leopold and Kindermann, 2002)), neither do 
words appearing only in few documents. In our 
experiments (demonstrated in Section 4), we com-
pared the performance between the ‘all-words ap-
proach’ and an approach featuring words appearing 
in at least two documents. In the latter case, the 
dimension of the problem (expressed as the num-
ber of features) was significantly reduced (with 
factor 3), and consequently the training time was 
shortened (see Section 4). 

Since many authors claimed that the biomedical 
literature contained considerably more linguistic 
variations than text in general (cf. Yakushiji et al., 
2001), we applied two standard transformations in 
order to reduce the level of lexical variability. In 
the first case, we used the EngCG POS tagger 
(Voutilainen and Heikkila, 1993) to generate lem-
mas, so that lemmatised words were used as fea-
tures, while, in the second case, we generated 
stems by the Porter’s algorithm (Porter, 1980). 
Analogously to words, the same idf-based measure 
was used for weights, and experiments were also 
performed with all features and with the features 
appearing in no less than two documents. 

3.2 Terms as features 
Many literature-mining techniques rely heavily on 
the identification of main concepts, linguistically 
represented by domain specific terms (Nenadic et 
al., 2002b). Terms represent the most important 
concepts in a domain and have been used to char-
acterise documents semantically (Maynard and 
Ananiadou, 2002). Since terms are semantic indi-
cators used in scientific discourse, we hypothesised 
that they might be useful classification features.  

The high neology rate for terms makes existing 
glossaries incomplete for active and time-limited 
research, and thus automatic term extraction tools 
are needed for efficient terminological processing. 
In order to automatically generate term as features, 
we have used an enhanced version of the C-value 
method (Frantzi et al., 2000), which assigns term-
hoods to automatically extracted multi-word term 
candidates. The method combines linguistic forma-
tion patterns and statistical analysis. The linguistic 
part includes part-of-speech tagging, syntactic pat-
tern matching and the use of a stop list to eliminate 



frequent non-terms, while statistical termhoods 
amalgamate four numerical characteristic of a can-
didate term, namely: the frequency of occurrence, 
the frequency of occurrence as a nested element, 
the number of candidate terms containing it as a 
nested element, and term’s length.   

Due to the extensive term variability in the do-
main, the same concept may be designated by 
more than one term. Therefore, term variants con-
flation rules have been added to the linguistic part 
of the C-value method, in order to enhance the re-
sults of the statistical part. When term variants are 
processed separately by the statistical module, their 
termhoods are distributed across different variants 
providing separate frequencies for individual vari-
ants instead of a single frequency calculated for a 
term candidate unifying all of its variants. Hence, 
in order to make the most of the statistical part of 
the C-value method, all variants of the candidate 
terms are matched to their normalised forms by 
applying rule-based transformations and treated 
jointly as a term candidate  (Nenadic et al., 2002a). 
In addition, acronyms are acquired prior to the se-
lection of the term candidates and also mapped to 
their expanded forms, which are normalised in the 
same manner as other term candidates.  

Once a corpus has been terminologically proc-
essed, each target gene is assigned a set of terms 
appearing in the corresponding set of documents 
relevant to the given gene. Thus, in this case, gene 
vectors used in the SVM classifier contain co-
occurring terms, rather than single words. As term 
weights, we have used a formula analogous to (1). 
Also, similarly to single-word features, we have 
experimented with terms appearing in at least two 
documents. 

3.3 Combining word and term features 
The C-value method extracts only multi-word 
terms, which may be enriched during the normali-
sation process with some single-word terms, sourc-
ing from e.g. acronyms or orthographic variations. 
In order to assess impact of both single and multi-
word terms as features, we experimented with 
combining single-word based features with multi-
word terms by using a simple kernel modification 
that concatenates the corresponding feature vec-
tors. Thus, gene vectors used in this case contain 
both words and terms that genes co-occur with. 

3.4 Document identifiers as features 
Term co-occurrences have been traditionally used 
as an indication of their similarity (Ushioda, 1986), 
with documents considered as bags of words in the 
majority of approaches. For example, Stapley et al. 
(2000) used document co-occurrence statistics of 
gene names in Medline abstracts to predict their 
connections. The co-occurrence statistics were rep-
resented by the reciprocal Dice coefficient. Similar 
approach has been undertaken by Jenssen et al. 
(2001): they identified co-occurrences of gene 
names within abstracts, and assigned weights to 
their “relationship” based on frequency of co-
occurrence.  

In our experiments, abstract identifiers (Pub-
Med identifiers, PMIDs) have been used as fea-
tures for classification, where the dimensionality of 
the feature space was equal to the number of 
documents in the document set. As feature 
weights, binary values (i.e. a gene is present/absent 
in a document) were used.  

We would like to point out that – contrary to 
other features – this approach is not a general 
learning approach, as document identifiers are not 
classification attributes that can be learnt and used 
against other corpora. Instead, this approach can be 
only used to classify new terms that appear in a 
closed corpus used for training. 

4 Experiments and discussions 

An experimental environment was set up by using 
the following resources:  

a) corpus: a set of documents has been ob-
tained by collecting Medline abstracts (NLM, 
2003) related to the baker’s yeast (S. cerevisiae), 
resulting in 52,845 abstracts; this set, containing 
almost 5 million word occurrences, was used as 
both training and testing corpus. 

b) classification entities: a set of 5007 S. cere-
visiae gene names has been retrieved from the 
SGD (Saccharomyces Genome Database) gene 
registry1, which also provided synonyms and ali-
ases of genes; 2975 gene names appearing in the 
corpus have been used for the classification task. 

c) classification scheme: each gene name has 
been classified according to a classification scheme 
based on eleven categories (see Table 1) of the up-

                                                           
1 http://genome-www.stanford.edu/Saccharomyces/registry.html  



per part of the GO ontology (Ashburner et al., 
2000)2. 

d) training and testing sets: positive examples 
for each class were split evenly between the train-
ing and testing sets, and, also, the number of nega-
tive examples in the training set was set equal to 
the number of positive examples within each class. 
The only exception was the metabolism class, 
which had far more positive than negatives exam-
ples. Therefore, in this case, we have evenly split 
negative examples between the training and testing 
sets. Table 1 presents the distribution of positive 
and negative examples for each class. 

d) SVM engine: for training the multi-class 
SVM, we used SVM Light package v3.50 
(Joachims, 1998) with a linear kernel function with 
the regulation parameter calculated as avg(<x,x>)-1.  

  
 

examples Category 
(GO code) training testing 1 testing 2 

autophagy 
(GO:0006914) 12/12 11/2940 11/11 

cell organisation 
(GO:0016043) 379/379 378/1839 378/378 

cell cycle 
(GO:0007049) 226/226 225/2298 225/225 

intracellular 
protein transport 
(GO:0006886) 

135/135 134/2571 134/134 

ion homeostasis 
(GO:0006873) 37/37 37/2864 37/37 

meiosis 
(GO:0007126) 45/45 44/2841 44/44 

metabolism 
(GO:0008152) 1118/370 1117/370 370/370 

signal  
transduction 
(GO:0007165) 

68/68 68/2771 68/68 

sporulation (sc) 
(GO:0007151) 27/27 27/2894 27/27 

response to 
stress 
(GO:0006950) 

91/91 91/2702 91/91 

transport 
(GO:0006810) 284/284 284/2123 284/284 

  
Table 1. Classification categories and the number 

of examples in the training and the testing sets 

                                                           
2 The January 2003 release of the GO ontology was used. A 
similar classification scheme was used in (Raychaudhuri et al., 
2002). 

Features have been generated according to the 
methods explained in Section 3 (Table 2 shows the 
number of features generated). As indicated earlier, 
the experiments have been performed by using ei-
ther all features or by selecting only those that ap-
peared in at least two documents. As a rule, there 
were no significant differences in the classification 
performance between the two.  

 

feature no. of 
all features 

no. of features 
appearing in >1 docs 

words 160k 60k 
lemmas 150k 54k 
stems 140k 50k 
terms 127k 62k 

  
Table 2. The number of features generated 

 
To evaluate the classification performance we 

have firstly generated precision/recall plots for 
each class. In the majority of classes, terms have 
demonstrated the best performance (cf. Figures 1 
and 2). However, the results have shown a wide 
disparity in performance across the classes, de-
pending on the size of the training set. The classes 
with fairly large number of training entities (e.g. 
metabolism) have been predicted quite accurately 
(regardless of the features used), while, on the 
other hand, under-represented classes (e.g. sporu-
lation) performed quite modestly (cf. Figure 1).   

 

 
Figure 1. Precision/recall plots for some classes  

using words and terms  
 
Comparison between performances on different 

classes is difficult if the classes contain fairly dif-
ferent ratios of positive/negative examples in the 



testing sets, as it was the case in our experiments 
(see Table 1, column testing 1). Therefore, we re-
evaluated the results by selecting – for each class – 
the same number of positive and negative exam-
ples (see Table 1, column testing 2), so that we 
could compare relative performance across classes. 
The results shown in Figure 2 actually indicate 
which classes are “easier” to learn (only the per-
formance of single-words and terms are presented). 

To assess the global performance of classifica-
tion methods, we employed micro-averaging of the 
precision/recall data presented in Figure 2. In mi-
cro-averaging (Yang, 1997), the precision and re-
call are averaged over the number of entities that 
are classified (giving, thus, an equal weight to the 
performance on each gene). In other words, micro-
average shows the performance of the classifica-

tion system on a gene selected randomly from the 
testing set. 

The comparison of micro-averaging results for 
words, lemmas and stems has shown that there was 
no significant difference among them. This out-
come matches the results previously reported for 
the document classification task (Leopold and 
Kindermann, 2002), which means that there is no 
need to pre-process documents. 

Figure 3 shows the comparison of micro-
averaging plots for terms and lemmas. Terms per-
form generally much better at lower recall points, 
while there is just marginal difference between the 
two at the higher recall points. Very high precision 
points at lower recall mean that terms may be use-
ful classification features for precise predictions 
for genes classified with the highest confidence. 

 
 

 
Figure 2. Precision/recall plots for the 11 classes using words and terms  

(horizontal lines indicate the performance of a random classifier) 



 
Figure 3. Micro-averaging plot for 11 classes using 

lemmas and terms 
 
The results obtained by combining terms and 

words have not shown any improvements over us-
ing only terms as classification features. We be-
lieve that adding more features has introduced 
additional noise that derogated the overall per-
formance of terms. 

Finally, Figure 4 presents the comparison of 
classification results using terms and abstract iden-
tifiers. Although PMIDs outperformed terms, we 
reiterate that – while other features allow learning 
more general properties that can be applied on 
other corpora – PMIDs can be only used to classify 
new terms that appear in a closed training/testing 
corpus. 

 
 

 
Figure 4. Micro-averaging plot for 11 classes using 

PMIDs and terms 
 
 

5 Conclusion 

Due to an enormous number of terms and the 
complex and inconsistent structure of the biomedi-
cal terminology, manual update of knowledge re-
positories are prone to be both inefficient and 
inconsistent (Nenadic et al., 2002b; Stapley et al., 
2002). Therefore, automatic text-based classifica-
tion of biological entities (such as gene and protein 
names) is essential for efficient knowledge man-
agement and systematic approach that can cope 
with huge volume of the biomedical literature. Fur-
thermore, classified terms irrefutably have a posi-
tive impact on improving the results of IE/IR, 
knowledge acquisition, document classification 
and terminology management (Blaschke et al., 
2002).  

In this paper we have examined the procedures 
for engineering text-based features at various lev-
els of linguistic pre-processing, and considered 
their impacts on the performance of an SVM-based 
gene name classifier. The experiments have shown 
that simple linguistic pre-processing (such as lem-
matisation and stemming) does not have significant 
influence on the performance, i.e. there is no need 
to pre-process documents. Also, reducing the fea-
ture space by selecting only features that appear in 
more documents does not result in decrease of the 
performance, but can significantly reduce the time 
needed for training. PMID-based classification has 
shown very good performance, but a PMID-based 
classifier can be applied only on the training set of 
documents. 

The experiments have also shown that using 
semantic indicators (represented by dynamically 
extracted domain-specific terms) can improve the 
performance compared to the standard bag-of-
words approach, in particular at lower recall 
points, and for rare classes. This means that terms 
can be used as reliable features for classifying 
genes with higher confidence, and for under-
represented classes. However, terminological 
analysis requires considerable pre-processing time.  

Our further research will focus on generating 
the biological interpretation and justification of the 
classification results by using terms (that have 
been used as key distinguishing features for classi-
fication) as semantic indicators of the correspond-
ing classes.  
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