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Abstract

Support Vector Machines have achieved
state of the art performance in several clas-
sification tasks. In this article we apply
them to the identification and semantic an-
notation of scientific and technical termi-
nology in the domain of molecular biol-
ogy. This illustrates the extensibility of
the traditional named entity task to spe-
cial domains with extensive terminologies
such as those in medicine and related dis-
ciplines. We illustrate SVM'’s capabilities
using a sample of 100 journal abstracts
texts taken from thghuman, blood cell,
transcription facto} domain of MED-
LINE. Approximately 3400 terms are an-
notated and the model performs at about
74% F-score on cross-validation tests. A
detailed analysis based on empirical ev-
idence shows the contribution of various
feature sets to performance.

}@nii.ac.jp

processes and their affect on human health. These
facts can then be used to populate databases, aid in
searching or document summarization and a variety
of tasks which require the computer to have an in-
telligent understanding of the contents inside a doc-
ument.

Our aim here is to show a state of the art method
for identifying and classifying technical terminol-
ogy. This task is an extension of timamed entity
task defined by the DARPA-sponsored Message Un-
derstanding Conferences (MUCs) (MUC, 1995) and
is aimed at acquiring the shallow semantic building
blocks that contribute to a high level understanding
of the text. Although our study here looks at shallow
semantics that can be captured using IE our basic
goal is to join this with deep semantic representa-
tions so that computers can obtain a full understand-
ing of the facts in a text using logical inference and
reasoning. The scenario is that human experts will
create taxonomies and axiomanfologie$ and by
providing a small set of annotated examples, ma-
chine learning can take over the role of instance cap-
turing though information extraction technology.

1 Introduction Recent studies into the use of supervised learning-

With the rapid growth in the number of publishedbased models for the named entity task have
papers in the scientific fields such as medicine thefown that models based on hidden Markov mod-
has been growing interest in the application of In€ls (HMMs) (Bikel et al., 1997), and decision trees
formation Extraction (IE), (Thomas et al., 1999)(Sekine et al., 1998), and maximum entropy (Borth-
(Craven and Kumlien, 1999), to help solve somavick et al., 1998) are much more generalisable and
of the problems that are associated with informaadaptable to new classes of words than systems
tion overload. IE can benefit the medical scienceased on hand-built patterns (including wrappers)
by enabling the automatic extraction of facts relate@nd domain specific heuristic rules such as (Herzig
to prototypicalevents such as those contained in psand Johns, 1997).

tient records or research articles regarding molecular The method we use is based on support vec-



tor machines (SVMs)(Vapnik, 1995), a state of the The particular difficulties with identifying and
art model that has achieved new levels of perforlassifying terms in scientific and technical domains
mance in many classification tasks. In previouare the size of the vocabulary (Lindberg et al.,
work we have shown SVMs to be superior to sevi993), an open growing vocabulary (Lovis et al.,
eral other commonly used machine learning metht995), irregular naming conventions as well as ex-
ods for named entity in previous experiments suctensive cross-over in vocabulary between named en-
as HMMs and C4.5(qjtations omittedl This pa- tity classes. The irregular naming arises in part be-
per explores the underlying SVM model and showsause of the number of researchers and practitioners
through detailed empirical analysis the key featurefsom different fields who are working on the same
and parameter settings. knowledge discovery area as well as the large num-
To show the application of SVMs to term ex-ber of entities that need to be named. Despite the
traction in unstructured texts related to the medibest efforts of major journals to standardize the ter-
cal sciences we are using a collection of abstractginology, there is also a significant problem with
from PubMed's MEDLINE (MEDLINE, 1999). The synonymy so that often an entity has more than
MEDLINE database is an online collection of ab-one name that is widely used. In molecular bi-
stracts for published journal articles in biology andlogy for example class cross-over of terms may
medicine and contains more than nine million artiarise because many DNA and RNA are named af-
cles. The collection we use in our tests is a corier the protein with which they transcribe. Tlsie-
trolled subset of MEDLINE obtained using threemantic ambiguityvhich is dependent on often com-
search keywords in the domain of molecular biolplex contextual conditions is one of the main rea-
ogy. From the retrieved abstracts 100 were rarsons why we need learnable models and why it is
domly chosen for annotation by a human expert aglifficult to re-use existing term lists and vocabular-
cording to classes in a small top-level ontology.  ies such as MeSH(NLM, 1997), UMLS (Lindberg et
In the remainder of this paper in Section (2) wel., 1993) or those found in databases such as Swis-
outline the background to the task and the data séProt (Bairoch and Apweiler, 1997). An additional
we are using; in Section (3) we described the basRbstacle to re-use is that the classification scheme
advantages of SVMs and the formal model we argsed within an existing thesaurus or database may
using as well as implementation specific issues sudpt be the same as the one in the users’ ontology
as the choice of feature set and report experimentdhich may change from time to time as the consen-
results. In Section (4) we provide extensive resultgus view of the structure of knowledge is refined.
and a discussion of four sets of experiments we con- Our work has focussed on identifying names be-
ducted that show the best feature sets and parame@nging to the classes shown in Table 1 which are all

settings in our sample domain. taken from the domain of molecular biology . Exam-
ple sentences from a marked up abstract are given in
2 Background Figure 1. The ontology (Tateishi et al., 2000) that

underlies this classification scheme describes a sim-
The names that we are trying to extract fall intgle top-level model which is almost flat except for
a number of categories that are outside the definine sourceclass which shows places where genetic
tions used for the traditional named-entity task useglctivity occurs and has a number of sub-types. Fur-
in MUC. For this reason we consider the task ofher discussion of our use of deep semantic struc-
term identification and classification to be ar- tures in the ontology is given elsewhérand we
tended named entitiask (NE+) in which the goal will now focus our attention on the machine learning
is to find types as well as individuals and where thenodel used to capture low level semantics.
term classes belong to an explicitly definedtol- The training set we used in our experiments called
ogy. The use of an ontology allows us to associatgjo1 consists of 100 MEDLINE abstracts, marked

human-readable terms in the domain with a set Q](p in XML by a doctoral-qua”ﬁed domain expert
computer-readable classes, relations, properties and

axioms (Gruber, 1993). "Now being submitted for publication



for the name classes given in Table 1. The number

Class # Description o
. . of named entities that were marked up by class are
PROTEIN 2125 proteins, protein groups, . .
. also given in Table 1 and the total number of words
families, complexes and . ,
in the corpus is 29940. The abstracts were chosen
substructures. from a sub-domain of molecular biology that we for-
DNA 358  DNAs, DNA groups, _ 9y
. mulated by searching under the termsman blood
regions and genes cell, transcription factorin the PubMed database
RNA 30  RNAs, RNA groups, ’ P ' the :
. An example can be seen in Figure 1
regions and genes
SOURCE.cl 93 cell line 3 Method
SOURCE.ct 417 celltype _
SOURCE.mo 21 mono-organism 3.1 Basic model
SOURCE.mu 64 multiorganism The named entity task can be formulated as a type of
SOURCE.wvi 90 virus classification task. In the supervised machine learn-
SOURCE.sl 77 sublocation ing approach which we adopt here we aim to esti-
SOURCE.ti 37  tissue mate a classification functiofy
Table 1: Markup classes used in Biol with the num- f: XN — {+1} (1)

ber of word tokens for each class. ) S
so that error on unseen examples is minimized,

using training examples that aledimensional vec-
tors z; with class labelg);. The sample se$ with
m examples is

Tl - Differential interactions of <NAME cl="PROTEIN”"
>Rel </INAME >- <NAME c|="PROTEIN" >NF-kappa B
<INAME > complexes with<NAME cl="PROTEIN" >I
kappa B alpha</NAME > determine pools of constitutive and
inducible<NAME cl="PROTEIN”" >NF-kappa B</NAME > _ N

activity_ S = (xl)yl))(anyQ)v"'7(xm7ym) € X X {:l:(]-z})

AB - The <NAME cl="PROTEIN" >Rel </NAME >- The classification function returns eithet if the
<NAME cl="PROTEIN" >NF-kappa B </NAME > fam-  taqt 4ata is a member of the class-drif it is not.

ily of transcription factors plays a crucial role in the regula- SVMs use linear models to discriminate between
tion of genes involved in inflammatory and immune responseg, o classes. This raises the question of how can they
We demonstrate that in vivo, in contrast to the other meMpa used to capture non-linear classification func-

bers of the family,<NAME cl="PROTEIN" >RelB <INAME " tj459 The answer to this is by the use of a non-
>associates efficiently only withc NAME cl="PROTEIN" linear mapping function called a kernel
>NF-kappa Bl </NAME > ( <NAME cl="PROTEIN" ’

>p105-p50</NAME >) and <NAME cl="PROTEIN" >NF- &N T 3)
kappa B2</NAME > ( <NAME cl="PROTEIN” >p100-p52 '
<INAME >), but not with <NAME cl="PROTEIN" >cRel which maps the input spacg” into a feature

<INAME > or <NAME cl="PROTEIN” >p65 </NAME >. Spacel’. The kernel functiork requires the evalu-
The <NAME cl="PROTEIN” >RelB </NAME >- <NAME  ation of a dot product

cI="PROTEIN" >p52 </NAME >heterodimers display a

much lower affinity for <NAME cl=PROTEIN" >| kappa k(zi, z;) = (®(z5) - D(z5)) 4)
B alpha </NAME > than <NAME cI="PROTEIN" >RelB
<INAME >- <NAME cl="PROTEIN" >p50 </NAME >
heterodimers ok NAME cl="PROTEIN" >p65 </NAME >
complexes.

Clearly the complexity of data being classified de-
termines which particular kernel should be used and
of course more complex kernels require longer train-
ing times.

Figure 1: Example MEDLINE sentence marked up BY Substituting®(z;) for each training example
in XML for molecular biology named-entities. :cn S we (Ljferlve the final form of the optimal decision
unction f,



. We implemented our method using the Tiny SVM
f(z) = sgn(Zy-a-k(m ;) +b) (5) package from NAISF which is an implementation
— T of Vladimir Vapnik's SVM combined with an op-

whereb € R is the bias and the Lagrange pa_tlmlzatlon algorithm (Joachims, 1999). The multi-

rametersy; (o; > 0) are estimated using quadraticc!]‘f.ISS mogetlhls built Iup from ?OTb'm?g binary clas-
optimization to maximize the following function siiers and then applying majority voting.

)

3.2 Generalising with features

m 1™ In order for the model to be successful it must recog-
w(a) = Zo‘i ) Zaio‘jyiyjk(%xj) ®)  nize regularities in the training data that relate pre-
=1 I classified examples of terms with unseen terms that
under the constraints that will be encountered in testing.
Following on from previous studies in named en-
s B 7 tity we chose a set of linguistically motivated word-
; iy =0 (7) level features that include surface word forms, part
of speech tags using the Brill tagger (Brill, 1992)

and and orthographic features. Additionally we used
head-noun features that were obtained from pre-
0<ai<C (8) analysis of the training data set using the FDG shal-
fori =1,...,m. C is a constant that controls thelow parser from Conexor (Tapanainen aadvdnen,
ratio between the complexity of the function and thd997). A significant proportion of the terms in
number of misclassified training examples. our corpus undergo a local syntactic transforma-

The number of parameters to be estimatedyin tions such as coordination which introduces ambi-
therefore never exceeds the number of exampleguity that needs to be resolved by shallow parsing.
The influence ofa; basically means that training For examplethe c- and v-rel (proto) oncogenesd
examples witho; > 0 define the decision func- NF-kappaB and | kappa B protein familiels these
tion (the support vectors) and those examples wittases the head noun featura@scogeneand fam-

a; = 0 have no influence, making the final modelly would be added to each word in the constituent
very compact and testing (but not training) very fastphrase. Head information is also needed when de-
The pointz is classified as positive (or negative) ifciding the semantic category of a long term such as

f(z) >0 (or f(z) <0). tumor necrosis factor-alphahich should be a PRO-
The kernel function we explored in our exper-TEIN, whereastumor necrosis factor (TNF) gene
iments was the polynomial functioh(z;,z;) = andtumor necrosis factor promoter regicshould

(z; - x; + 1) for d = 2 which was found to be the both be types of DNA.
best by (Takeuchi and Collier, 2002). Once input Table 2 shows the orthographic features that we
vectors have been mapped to the feature space thged. We hypothesize that such features will help the
linear discrimination function which is found is themodel to find similarities between known words that
one which gives the maximum the geometric margiwere found in the training set and unknown words
between the two classes in the feature space. (of zero frequency in the training set) and so over-
Besides efficiency of representation, SVMs areome the unknown word problem.
known to maximize their generalizability, making Inthe experiments we report below we use feature
them an ideal model for the NE+ task. Generalizvectors consisting of differing amounts of ‘context’
ability in SVMs is based on statistical learning theby varying the window around the focus word which
ory and the observation that it is useful sometimeis to be classified into one of the semantic classes.
to misclassify some of the training data so that théhe full window of context considered in these ex-
margin between other training points is maximizedperiments ist3 about the focus word.
This is particularly useful for real world data Setsms available from http:// http://cl.aist-nara.ac.jp/
that often contain inseparable data points. taku-ku/software/ TinySVM/



Feature Example | Feature Example  SOURCE.mo, SOURCE.mu and SOURCE.ti actu-
DigitNumber 15 CloseSquare | I : h . hi b
SingleCap M Colon : ally perform worse when using anything but sur-
GreekLetter alpha SemiColon face word forms (shown in Table 5). One possi-
CapsAndDigits 12 Percent % i i i t all of th classes
TwoCaps RAIGDS | OpenParen  ( ble explanation for this is that a ese
LettersAndDigits  p52 CloseParen ) have very small numbers of samples an(_JI thg effect
InitCap Interleukin | Comma : of adding features may be to blur the distinction be-
LowCaps kappaB | FullStop tween these and other more numerous classes in the
Lowercase kinases Determiner the o X .
Hyphon - Conjunction  and model. However it is interesting to note that this
Backslash / Other Y # does not happen with the RNA class which is also
OpenSquare [

very small.

Table 2: Orthographic features with examples 4.2 Experiment 2: Effect of Feature Sets

The effects of feature sets is of major importance in
4 Experiment and Discussion modelling named entity. In general we would like
to identify only the necessary features that are re-

Results are given as F-scores (van Rijsbergen, 197§)ired and to remove those that do not contribute to
using the CoNLL evaluation script and are definedp, increase in performance. This also saves time in
asF = (2PR)/(P+R). whereP denotes Precision training and testing.
and R Recall. P is the ratio of the number of cor-  The results from Tables 3 and 4 at 100 per cent.
rectly found NE chunks to the number of found NEygining data are summarized in Table 5 and clearly
chunks, andt is the ratio of the number of correctly jjjystrate the value of surface word level features
found NE chunks to the number of true NE chunksgompined with orthographic and head noun features.
All results are calculated using 10-fold cross Va”daOrthographic features allow us to capture many gen-
tion. eralities that are not obvious at the surface word
level such askappaB alphaandlkappaB betaboth
being PROTEINs andL-10 and IL-2 both being
The effect of context window size is shown alongPROTEINS.
the top column of Tables 3 and 4. It can be seen The orthographic-head noun feature combination
that without exception more training data results ifiOr hd) gives the best combined-class performance
higher overall F-scores except at 10 per cent. whetsf 74.23 at 100 per cent. training data on a -2+2 win-
the result seems to be biased by the small samplgow. Overall orthographic features combined with
perhaps because one abstract is partly included $urface word features gave an improvement of be-
the training and testing sets. As we would expeatveen 4.9 and 22.0 per cent. at 100 per cent. data
larger training sets reduce the effects of data sparsgepending on window size over surface words alone.
ness and allow more accurate models to be inducethis was the biggest contribution by any feature ex-

The rate of increase in improvement however igsept the surface words. Head information for exam-
not uniform according to the feature sets that arple allowed us to correctly capture the fact that in
used. For surface word features and head nouhe phraseNF-kappaB consensus sitiee whole of
features the improvement in performance is consig: is a DNA, whereas using orthographic informa-
tently increasing whereas the improvement for usingjon alone the SVM could only say thitF-kappaB
orthographic and part of speech features is quite exras a PROTEIN and ignoringonsensus site\We
ratic. This may be an effect of the small sample ofee a similar case in the phragemary NK cells
training data that we used and we could not find anyhich is correctly classified as SOURCE.ct using
consistent explanation why this occurred. head noun and orthographic features but dxly

As we observed before, the best overall resuttells are found using orthographic features. This
comes from usinddr hd, i.e. surface words, or- mistake is a natural consequence of a limited con-
thographic and head features. However the tdextual view which the head noun feature helped to
tal score hides the fact that three classes, i.eactify.

4.1 Experiment 1: Effect of Training Set Size



Part of speechROS when combined with sur- ming. Theoretically the existing SVM model cannot
face word features gave an improvement of betweearonsider evidence from outside the context window,
7.9 and 11.7 per cent. at 100 per cent. data. The particular evidence related to named entity class
influence of POS though does not appear to be susecores in the history and later in the sentence.
tained when combined with other features and we
found that it actually degraded performance slightly
in many cases. This may possibly be due to eReferences
ther overlapping knowledge or more likely subtlea Bairoch and R. Apweiler. 1997. The SWISS-PROT
inconsistencies between POS features and say, orprotein sequence data bank and its new supplement
thographic features. This could have occurred dur- TFEMBL. Nucleic Acids ResearcR5:31-36.

ing training when the POS tagger was trained on 88 Bikel, S. Miller, R. Schwartz, and R. Wesichedel.

out (_)f domain (news) text co_IIection._ Itis po§sible 1997. Nymble: a high-performance learning name-
that if the POS tagger was trained on in-domain texts finder. InProceedings of the Fifth Conference on Ap-
it would make a greater and more consistent con- plied Natural Language Processing (ANLP'97), Wash-
tribution. An example where orthographic features Zlgtg?n D.C., USA. pages 194-201, 31 March — 3
allowed correct classification but adding POS fea- pril.
tures resulted in failure ig50in the phraseonsist- A Borthwick, J. Sterling, E. Agichtein, and R. Grishman.
ing of 50 (p50) - and 65 (p65) -kDa proteinélso 1998. Exploiting diverse knowledge sources via max-
in the phrasec-Jun transactivation domaiwhere |mug] entrc;;:.[)r)]/ 'g_“;mvsd E”ﬁ'ty rec\c;gnltton. '?:TO'
i - . ceedings of the Sixth Workshop on Very Large Corpora
only c Juns_hould be tagged as a protein, by using (WVLC'98), Montreal, Canadaages 152—160.
orthographic features and POS the model tags the
whole phrase as a PROTEIN. This is probably bet. Brill. 1992. A simple rule-based part of speech tagger.
cause POS tagging gives a NN feature value (com- :;1 Third Confirence_ on ?DP'Cl:ed Natural Llaltj'guage
. rocessing — Association for Computational Linguis-
mon noun) to each word, Thls. 'S \'/er'y general and tics, Trento, Italy pages 152-155, 31st March — 3rd
does not allow the model to discriminate between April.
them.
The fourth feature we investigated is related td- Craven and J. Kumlien. 1999. Constructing biolog-
syntactic rather than lexical knowledge. We felt ical knowledge bases by extracting |nformat|0n from
. . text sources. IrProceedings of the 7th International
though that there should exist a strong semantic re- conference on Intelligent Systemps for Molecular Bi-
lation between a word in a term and the head noun ology (ISMB-99)pages 77-86, Heidelburg, Germany,
of that term. The results in Table 5 show that while August 6-10.
the overall contribution of theéleadfeature is quite

o . T. R. Gruber. 1993. A translation approach to
small, it is consistent for almost all classes.

portable ontology specificationsKnowledge Acqui-
sition, 6(2):199-221.

5 Conclusion _ _ _

T. Herzig and M. Johns. 1997. Extraction of medical

. e information from textual sources: a statistical vari-
The method we have shown for identifying and clas ant of the boundary word method. Rroceedings of

§ifying technical terms has the adva.ntage of be- he American Medical Informatics Association (AMIA)
ing portable, not requiring large domain dependent 1997 Annual Fall Symposium, Nashville, U25-29
dictionaries and no hand-made patterns were used.October.
Additionally, since all the word level features are . . .
found aut Y tically th . d for int T. Joachims. 1999. Making large-scale SVM learning
Qun automatica y_ ere '_5_ NO need Tor INeIVeN- - ,ractical. In B. Scholkopf, C. Burges, and A. Smola,
tion to create domain specific features. Indeed the editors,Advances in Kernel Methods - Support Vector
only thing that is required is a quite small corpus of Learning MIT Press.
text containing entities tagged by a domain experltj d AB. Lindb LK h Bet 4T M

. _Donald A.B. Lindberg, L. Humphreys, Betsy, and T. Mc-
For future work we are now looking at how to bal Cray, Alexa. 1993. The unified medical language
ance the scores from SVM for each word-class over system.Methods of Information in Medicin@2:281—

the whole of a sentence using dynamic program- 291.



Feature Set & Percentage of data used in experiment
Window Size 10 20 30 40 50 60 70 80 90 100

Wd -10 58.52 4730 5144 5240 5237 5230 51.29 5324 5557 56.06
wd -1+1 556.35 48.15 53.91 54.50 56.02 55.30 55.92 58.98 60.28 61.55

wd -2+2 46.87 40.73 4792 49.64 5331 53.20 5501 56.95 5940 6p.04
wd -3+2 46.12 38,55 4419 4793 4950 5050 51.21 54.76 56.66 60.25
Wd -3+3 44.83 3537 42.67 4524 46.78 49.10 49.66 54.01 5559 58.83
Or-10 60.33 55.08 63.49 6341 64.09 63.04 6297 6264 6459 6b.63
Or-1+1 65.35 58.69 66.63 68.18 69.20 68.74 69.55 69.32 71.02 72.13
Or -2+2 60.84 58.90 66.44 67.17 _ 69.8868.81 69.68 69.62 71.41 72.12
Or-3+2 62.48 59.21 65.64 66.69 6756 67.25 6837 6894 69.92 7169
Or -3+3 59.61 58.65 6495 65.68 67.11 66.65 67.85 68.84 69.54 7[1.78

Head -10 58.51 47.10 5199 5274 5244 5201 53.09 5379 5597 57.01
Head -1+1 57.50 50.00 55.81 57.88 58.03 57.84 58.81 61.08 62.64 63.93
Head -2+2 49.43 4592 53.40 5375 5752 56.94 59.381.29 63.36 64.67
Head -3+2 46.51 39.42 4939 49.75 5454 5481 56.95 5813 5925 6[1.96
Head -3+3 4579 40.81 4752 48.11 5358 53.50 5595 57.02 59.06 6[1.52
POS -10 61.62 5289 61.14 62.04 6262 6151 61.05 60.78 62.71 62.63
POS -1+1 61.24 57.25 63.83 62.94 65.35 64.82 67.40 66.47 67.43 68.37
POS -2+2 57.52 53.11 59.39 59.98 62.86 6216 63.72 64.17 6456 66.92
POS -3+2 56.81 54.55 56.53 56.26 59.60 59.40 6142 6186 63.41 64.90
POS -3+3 5476 53.28 56.79 55.02 57.46 57.66 59.60 59.89 62.39 6B.50

Table 3: F-scores on Biol showing the effects of training set size, feature sets, and context window sizes.
Wd surface word level feature§r: Orthographic feature$jead Head noun feature®0S part of speech
features.

Feature Set & Percentage of data used in experiment

Window Size 10 20 30 40 50 60 70 80 90 100

Or hd -10 62.16 57.80 6431 6570 65.20 63.84 6490 64.73 66.46 6[.31
Or hd -1+1 64.84 6052 6842 6825 6882 69.34 7131 7188 7260 7B.38
Or hd -2+2 61.16 61.10 68.06 67.42 69.32 69.62 7091 7131 72.34.23

Or hd -3+2 61.54 60.06 65.87 66.33 6743 6836 70.28 70.15 70.81 7R.95
Or hd -3+3 59.68 57.03 6458 6576 66.84 67.16 69.07 69.22 70.73 7R.12
Or POS -10 61.48 5404 6320 6392 64.11 64.74 63.23 63.62 6487 66.28
Or POS -1+1 64.57 5889 66.52 66.77 67.83 67.90 69.32 69.07 70.84 7[.70
Or POS -2+2 61.48 5856 63.37 6544 67.01 66.74 68.21 6855 70.09 71.87
Or POS -3+2 61.08 57.14 64.23 63.39 6553 6511 67.31 67.78 68.64 7[.54
Or POS -3+3 5792 57.12 62.86 6236 6548 64.41 66.10 66.64 68.22 70.46
POS hd -10 6490 5539 6114 6165 6191 61.29 6188 6051 63.27 68.82
POS hd -1+1 62.25 57.25 63.66 64.81 64.64 6557 67.78 67.63 68.69 6D.68
POS hd -2+2 58.08 53.23 5891 60.28 6255 62.06 64.19 6451 66.18 6[.66
POS hd -3+2 57.09 5320 56.58 57.75 59.34 59.14 6219 6293 64.23 6H.41
POS hd -3+3 5469 51.09 55.67 5546 58.31 5828 60.88 61.17 6294 64.31
OrPOShd-10 | 63.70 56.63 6329 65.11 6472 64.14 6440 64.04 66.01 6).41
Or POS hd -1+1| 66.20 59.65 66.49 67.91 68.44 68.14 70.01 7061 7180 7R.95
Or POS hd -2+2| 61.62 58.03 64.76 65.16 66.45 67.26 69.00 69.86 70.83 7R.56
Or POS hd -3+2| 62.06 57.28 63.74 64.50 66.10 66.25 68.01 69.05 69.44 71.59
Or POS hd -3+3| 59.12 56.51 62.43 62.61 65.37 65.09 66.89 67.80 69.36 7[1.25

Table 4: F-scores on Biol showing the effects of training set size, feature sets, and context window sizes.
Wd surface word level feature§r: Orthographic feature$jead Head noun feature®0S part of speech
features.



NE+ Class Feature Set
wd Or Head POS Orhd OrPOS POShd OrPOShd

DNA 4453 56.49 50.88 47.3362.78 58.12 47.30 59.19
PROTEIN 65.07 7750 67.96 72.1078.99 77.03 72.89 77.58
RNA 12.12 4211 12.90 24.2443.24 37.84 6.67 29.41

SOURCE.cl | 52.63 57.14 51.52 54.7959.21 55.90 56.94 59.87
SOURCE.ct | 65.83 66.39 66.22 63.7069.32 67.03 65.65 68.94
SOURCE.mo| 32.00 16.67 9.09 17.39 17.39 16.67 17.39 17.39
SOURCE.mu| 61.02 58.41 55.24 57.14 5192 5455 53.33 51.97
SOURCE.sl | 55.22 62.86 62.69 51.2068.53 62.41 54.84 63.38
SOURCE.ti | 23.26 18.18 0.00 14.63 5.00 14.29 0.00 0.00
SOURCE.vi | 76.54 75.16 79.50 73.6880.25 74.84 75.00 73.33

Table 5: Class by class performance using a -2+2 window shown against featuré&/setsurface word
level featuresOr: Orthographic feature$jead Head noun feature®0S part of speech features.
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