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Abstract

Many researchershave used lexical networks
andontologiesto mitigatesynorymy andpolysemy
problemsin Question Answering (QA), systems
coupledwith taggersqueryclassifiersand answer
extractorsin comple« and ad-hocways. We seek
to make QA systemseproduciblewith sharedand
modesthuman effort, carefully separatingknowl-
edge from algorithms. To this end, we propose
an aesthetically‘clean” Bayesiannferencescheme
for exploiting lexical relationsfor passage-scoring
for QA . The factorswhich contritute to the effi-
cag of Bayesiarinferencingonlexical relationsare
softword sensalisambiguationparametersmooth-
ing which ameliorateshe datasparsityproblemand
estimationof joint probability over words which
overcomesthe deficieny of nawve-bayes-lik ap-
proaches. Our systemis superiorto vectorspace
ranking techniquesfrom IR, and its accurag ap-
proacheshatof thetop contenderatthe TREC QA
tasksin recentyears.

1 Intr oduction

This paperdescribesanapproactto probabilisticin-

ferenceusinglexical relations suchasexpressedy

aWordNet,anontology or acombinationwith ap-
plicationsto passage-scoringr open-domaimues-
tion answering QA).

The useof lexical resourcesn Information Re-
trieval (IR) is not new; for almosta decade,the
IR community has consideredthe use of natural
languageprocessingechniquegLewis and Jones,
1996)to circumwentsynorymy, polysemyandother
barriersto purelystring-matchingearchenginesin
particular a numberof researcherbave attempted
to usethe EnglishWordNetto “bridge the gap” be-
tweenqueryandresponselnterestingly the results
have mostly beeninconclusve or negatve (Fell-
baum,1998a).A numberof explanationshave been
offeredfor thislack of successsomeof whichare

e presenceof unnecessaryinks and absenceof
necessarylinks in the WordNet (Fellbaum,
1998Db),

e hurdle of Word SenseDisambiguation(WSD)
(Sandersonl994)

e ad-hocnessn the distanceand scoring func-
tions(Abeetal., 1996).

1.1 Questionanswering(QA)

Unlike IR systemswhich returna list of documents
in responsdo a query from which the usermust
extract the answermanually the goal of QA is to

extract from the corpusdirect answerdo questions
posedn anaturallanguage.

An important step before answer extraction is
to identify andrate candidatepassages from docu-
mentswhich might containthe answer The notion
of a passagés somevhatarbitrary: variousnotions
of apassagdase emeged(Vorhees2000);For our
purposesa passageomprisesM consecutie sen-
tencespr N consecutie words.

In contrastto IR, wherelinguistic resourcehave
not beenfound very useful, QA has always de-
pendedon a mixture of stocklexical networks and
custom ontologies (language-indepeedt concep-
tual hierarchiesyraftedthroughhumanunderstand-
ing of the task at hand (Harabagiuet al., 2000;
Clarke et al., 2001). Ontologies,hand-craftecand
customizedsometimegrom the WordNetitself, are
employed for questiontype classification relation-
shipsbetweerplacesmeasuresgtc.

The scoring (and thereby ranking) of passages
throughlexical networks or ontologiesis moresuc-
cessfulin QA thanin classiclR becausef the na-
ture of the QA task.Passage-scoring QA benefits
from indirectmatcheghroughanontology

By separatinghepassage-scorirggorithmfrom
theknowledgebasewe cankeepimproving our sys-
temby continuallyupgradinghelexical relationsin
the knowledgebaseandretrainingour inferenceal-
gorithm.

Map: 3§2 describedhe relatedwork. §3 givesthe

motivation behindour approactandthebackground
information (WordNet and Bayesianinferencing).
84 describeur QA system.Resultsare presented
in §5, andconcludingremarksmadein §6.



2 Relatedwork

Information Retrieval (IR) systems such as
SMART (Buckley, 1985) rank documents for
relevancew.r.t. to a userquery basedon keyword
matchbetweerthe queryanda documentgachrep-
resentedn the well-knovn “vector spacemodel”.
The degree of matchis measureds the cosineof
theanglebetweemueryanddocumentectors.

In QA, anlIR subsystenis typically usedto short-
list passagewhich arelikely to embedthe answer
Usually severalenhancement@@remadeto stockIR
systemdo meetthis task.

First, the cosinemeasureusedin stock vector
spacesystemswill be biasedagainst long docu-
mentseven if they embedthe answerin a narrov
zone. This problemcan be amelioratedby repre-
sentingsuitably-sizegassagavindows (ratherthan
whole documentskys vectors. While scoring pas-
sageausingthe cosinemeasurewe canalsoignore
passagéermswhich do notoccurin thequery

The secondssueis oneof proximity. A passage
is likely to be promisingif querywordsoccurclose
to oneanother Commercialsearchenginesreward
proximity of matchedquery terms, but in undocu-
mentedways. Clarke etal. (Clarke etal., 2001)ex-
ploit term proximity within documentdor passage
scoring.

The third and mostimportantlimitation of stock
IR systemsis the inability to bridge the lexical
chasmbetweenquestionand potential answervia
lexical networks. Onequeryfrom TREC (Vorhees,
2000) asks,“Who paintedOlympia?” The answer
is in the passage:*Manet, who, after all, created
Olympia,getsno credit”

QA systemsuse a gamutof techniquesto deal
with this problem. FALCON (Harabagiuet al.,
2000) (oneof the bestQA systemsdn recentTREC
competitions) integrates syntactic, semantic and
pragmatic knowledge for QA. It usesWordNet-
basedquery expansionto try to bridge the lexical
chasm. WordNetis customizednto a answeitype
taxonomyto infer the expectedanswertype for a
guestion. Named-entityrecognitiontechniquesare
also emplo/ed to improve quality of passagese-
trieved. Theanswersarefinally filteredby justifying
themusing abductve reasoning.Mulder (Kwok et
al.,2001)usesasimilar approacho performQA on
Webscale.Thewell-knovn START system(Katz, )
goesevenfurtherin thisdirection.

Discussion: In generalthe TREC QA systemdli-
vide QA into two tasks: identifying relevant doc-
umentsand extracting answerpassagefrom them.
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For theformertask,mostsystemausetraditionalIR
enginescoupledwith ad-hocqueryexpansionbased
on WordNet. Handcraftecknowledge basesgues-
tion/answertype classifiersanda variety of heuris-
tics are usedfor the latter task. Successn QA
comesat the costof greateffort in custom-designed
wordnetsand ontologies,and expansion,matching
and scoring heuristicswhich needto be upgraded
asthe knowledge basesare enhanced.ldeally, we
shouldusea knowledge basewhich canbe readily
extendedanda corescoringalgorithmwhichis ele-
gantand“universal”.

3 Proposedapproach

3.1 Aninferencingapproachto QA

Givenaquestiomanda passagé¢hatcontainghean-
swer how dowe correlatethetwo ? Take for exam-
ple, thefollowing question

Whattype of animalis Winnie the Pooh?

andtheanswerpassagés

A Canadiantown that claimsto be the birthplace
of Winnie the Poohwantsto erecta giant statueof
the famousbear; but Walt Disney Studioswill not
permitit.

It is clearthatthereis alinkagebetweertheques-
tion word animal and the answerword bear. That
theword bearoccurredn theansweyin the context
of Winnie, meansthat therewas a hidden”cause”
for theoccurrencef bear, andthatwasthe concept
of { animal}.

In general,therecould be multiple wordsin the
guestiormandanswethatareconnectedyy mary hid-
dencauses.This scenariois depictedin figure §1.
The causeghemseles may have hiddencausesas-
sociatedwith them.

L QUESTIONJ L ANSWER

NODES NODES
. Observed nodes(WORDS)

Hidden Causes that are switched ofCONCEPTS)

o
O

Hidden Causes that are switched off CONCEPTS)

Figurel: Motivation



Thesecausalrelationshipsarerepresenteteh on-
tologiesandWordNets.Thefamiliar EnglishWord-
Net, in particular encodegelationsbetweenwords
and concepts. For instanceWordNet gives the hy-
pernymyrelation betweenthe concepts{ animal
and{ beas.

3.2 WordNet

WordNet(Fellbaum,1998b)is anonlinelexical ref-
erencesystemin which English nouns,verbs, ad-
jectives and adwerbs are organizedinto synorym
sets or synsets each representingone underly-
ing lexical concept. Noun synsetsare relatedto
eachotherthroughhypernymy(generalization)hy-
ponymy(specialization) holonymy(whole of) and
mewonymy(partof) relations.Of these (hypernymy
hyponymy and (mewonymyholonymy are comple-
mentarypairs.

The verb and adjective synsetsare very sparsely
connectedvith eachother No relationis available
betweemounandverb synsets However, 4500ad-
jective synsetsarerelatedto nounsynsetswith per-
tainyms(pertainingto) andattra (attributedwith) re-
lations.

© (from CANIS, GENUS_CANIS)

]
[ DOG, DOMESTIC_DOG, CANIS_FAMILIARIS ]

meronymy

hyponymy

CORGI, WELSH_CORGI

FLAG

Figure2: lllustrationof WordNetrelations.

Figurg2 shaws that the synset{ dog, domes-
tic_dog, canisfamiliaris} hasa hyporymy link to
{ comi, welshcogi} andmerorymy link to { flag}
(“a conspicuouslymarked or shapedtail”). While
the hyporymy link helps us answerthe question
(TREC#371)“A cowi is a kind of what?”, the
merorymy connectiorhereis perhapsnoreconfus-
ing thanuseful: this senseof flag is rare.

3.3

It is surprisinglydifficult to make the simple idea
of bridging passagdo query through lexical net-
works performwell in practice. Continuingthe ex-
ample of Winnie the bear (section§3.1), the En-
glishWordNethasfive synset®nthepathfrom bear
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Inferencingon lexical relations

to animat {carnvore..}, {placentalmammal..},
{mammal..}, {vertebrate}, {chordate.}.

Someof theseintervening synsetswould be ex-
tremelyunlikely to be associateavith a corpusthat
is notaboutzoology;acommonpersorwould more
naturallythink of a bearasa kind of animal, skip-
ping throughtheinterveningnodes.

It is, however, dangerougo designan algorithm
whichis generallyeageito skipacrosdinksin alex-
ical network. E.g.,few QA applicationsareexpected
to needan expansionof “bottle” beyond “vessel”
and “container” to “instrumentality” and beyond.
Anotherexamplewould be the shallav verb hierar
chy in the English WordNet, with completelydis-
similar verbswithin very few links of eachother
Thereis alsothe problemof missinglinks.

Anotherimportantissueis which ‘hiddencauses’

(synsets)shouldbe inferred to have causedwords
in the text. This is a classical problem called
word sensedisambiguation(WSD). For instance,
the word dog belongsto 6 noun synsetsin Word-
Net. Which of the6 synsetshouldbetreatedasthe
‘hidden cause’that generatedhe word dog in the
passageouldbeinferredfrom thefactthatcollie is
relatedto dog only throughoneof thelatter’s senses
- it'ssenses{dog,domestiaog,Canisfamiliaris}.
But this problemof finding the ‘appropriate’hidden
causesin generaljn non-trivial. Giventhatstate-of-
the-artWSD systemsperform not betterthan 74%
(Sanderson;1994) (Lewis and Jones,1996) (Fell-
baum,1998b),in this paper we usea probabilistic
approachto WSD - called‘soft WSD’ (Pushpak)
; hiddennodesare consideredo have probabilisti-
cally ‘caused'wordsin thequestiorandansweilorin
otherwords, causesare probabilistically ‘switched
on’.

Clearly ary scoringalgorithmthat seeksto uti-
lize WordNetlink information must also discrimi-
nate betweenthembased(at least)on usagestatis-
tics of the connectedsynsets. Also requiredis an
estimateof the likelihood of instantiatinga synset
into atoken becauset was“activated” by a closely
relatedsynset. We find a Bayesianbelief network
(BBN) a naturalstructureto encodesuchcombined
knowledgefrom WordNetandcorpus.

3.4 BayesianBelief Network

A BayesiarNetwork (Heckerman,1995)for a setof
randomvariablesX = {X, Xo,...,X,} consists
of adirectedagyclic graph(DAG) thatencodes set
of conditionalindependencassertionsaboutvari-
ablesin X andasetof local probabilitydistributions



associatewvith eachvariable.Let Pa; denoteheset
of immediateparentsof X; in the DAG, andpa; a
specificinstantiationof theserandomvariables.

The BBN encodes the joint distribution
Pr(z1,x9,...,2,) as

n
Pr(z1,29,...,2,) = HPr($i|pai) 1)
=1

Eachnodein the DAG encodesPr(z;|pa;) as a
“conditional probability table” (CPT). Figure §3
shaws a Bayesianbelief network interpretationfor
apartof WordNet. The synset{corgi, welshcorgi}
hasa causalrelationfrom {dog, domesticdog, ca-
nis_familiaris}. A possibleconditionalprobability
table for the network is shavn to the right of the
structure.

(PARENT)

[ DOG, DOMESTIC_DOG, CANIS_FAMILIARIS ]

CHILD

Present | Absent

0.9 0.1  PRresent

CORGI, WELSH_CORGI

(CHILD) 0.01

0.99 Absent

—zmxu>»7T

Figure3: Causarelationsbetweertwo synsets.

Theideaof constructingBBN from WordNethas
beenproposedy (Rebeccal998). But thatideais
centeredarounddoing hard-senselisambiguation
to find the‘correct’ senseeachword in thetext.

In this paper we particularly explore the idea of
doing soft sensedisambiguationi.e. synsetsare
probabilistically consideredto be causesof their
constituenwords. Moreover, WSD is notanendin
itself. Thegoalis to connectthe wordswithin ques-
tion andanswelpassageandalsoacrosghequestion
andanswermassageWsSD s only a by-product.

Our goal is to build a QA systemwhich imple-
mentsa cleardivision of labor betweenthe knowl-
edgebaseand the scoring algorithm, codifies the
knowledgebasein a uniform manney and thereby
enablesgenericalgorithmanda sharedgxtensible
knowledgebase Basedonthediscussiorabove, our
knowledgerepresentatiomustbe probabilistic,and
our systemmustcombineandberobustto multiple,
noisysource®f informationfrom queryandanswer
terms.

Moreover, we would like to be ableto learn im-
portantpropertiesof our knowledgebasefrom con-
tinual training of our systemwith corpussamples
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aswell as samplesof successfulnd unsuccessful
(questionanswer)pairs. In essenceywe would like
to automateasfar aspossible the customizatiorof
lexical networks to QA tasks. Given the English
WordNet,it shouldbe possibleto reconstrucbural-
gorithmcompletelyfrom this paper

Toward theseends, we describehow to induce
a BayesianBelief Network (BBN) from a lexical
network of relations. Specifically we proposea
semi-supervisedearningmechanismwhich simul-
taneoushtrainsthe BBN andassociategext tokens
,which are words, to synsetsin the WordNetin a
probabilisticmanner(“soft WSD”). Finally, we use
the trainedBBN to scorepassagef responsdo a
guestion.

3.5 Building aBBN from WordNet

Our model of the BBN is that each synsetfrom

WordNetis a booleaneventassociatedvith a ques-
tion, a passagepr both. Textual tokens are also
events.Eacheventis anodein the BBN. Eventscan
causeothereventsto happenn a probabilisticman-
ner, which is encodedn CPTs. The specificform

of CPTwe useis thewell-knovn noisy-OR of Pearl
(Pearl,1988).

We introducea nodein the BBN for eachnoun,
verb, andadjectve synsetin WordNet. We alsoin-
troduceanodefor each(non-stop-wrd) tokenin the
corpusand all questions. Hyporymy, merorymy,
and attribute links are introducedfrom WordNet.
Sensdinks are usedto attachtokensto potentially
matchingsynsets.E.g.,the string “flag” may be at-
tachedto synsetnodes{sag,droop,swag, flag} and
{aconspicuouslynarled or shapedail}. (Thepur
poseof probabilisticdisambiguations to estimate
the probability that the string “flag” wascausedby
eachconnectedynsetnode.)

This processcreatesa hierarchyin which the
parent-childrelationshipis definedby the semantic
relationsin WordNet. A is aparentof B iff A isthe
hypernynor holonymor attribute-ofor A is asynset
containingthe word B. The processy which the
BayesiarNetwork is built from the WordNethyper
graphof synsetsandandfrom themappingbetween
wordsandsynsetss depictedn figure4. We define
going-upthe hierarchyasthetraversalfrom child to
parent.

Ideally, we shouldupdatethe entire BBN andits
CPTswhile scanningover the training corpus. In
practice,BBN training andinferenceare CPU-and
memory-intensie processes.

We compromiséy first attachinghetokennodes
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Figure4: Building a BBN from WordNetand associatedext
tokens.

to their synsetsand thenwalking up the WordNet
hierarchyup to a maximumheightdecidedpurely
by CPU and memorylimitations. We believe that
the probabilisticinfluencefrom distantnodesis too
feebleandunreliableto warrantmodeling.

4 Our QA system

The overall questionansweringsystemthatwe pro-
poseis depictedin figure 5. The correspondingal-
gorithmis outlinedin figure6.

EXTRACTION

TFIDF

Retrieval
of

50 Documents

Question

BAYESIAN NETWORK

WA

PASSAGE
RANKING

-

. Ranked Passages.
{ pLp2....pn

Figure5: Theoverall QA system.

The questiontriggersthe TFIDF retrieval mod-
ule to pick up 50 mostrelevant documents.These
documentsaresubjectedo aslidingwindow to pro-
duce K passagesf length N each. The Bayesian
belief network describedn section3.5 ranksthese
passages.The first ranked passagéas supposedo
containthe answer The belief network parameters
aretheCPTswhichareinitializedasnoisy-orCPTs.
The Bayesiarbelief network is trainedoffline using

1: Constructa BayesianNetwork structureusingthe Word-
Netstructure

2: Train the Bayesiannetwork parameterson the corpus
containingtheanswers

3: Do questiomansweringwith trainedBayesiarNetwork

Figure6: Theover-all questionansweringalgorithm

1: while CPTsdo notcorverge do

2:  for eachwindow of M wordsin thetext do

3 Clamptheword nodesin the BayesiariNetwork to a
stateof ‘present’

4 for eachnodein Bayesiametwork do

5: find its joint probabilitieswith all configurations

of its parentnodeg(E Step)

6 end for

7.  endfor

8:  Updatethe conditional probability tablesfor all ran-
domvariables(M Step)

9: endwhile

Figure7: Trainingthe BayesiariNetwork for acorpus

the ExpectatiorMaximizationalgorithm(Dempster
1977)onwindows sliding over thewhole corpus.

4.1 Training the belief network

Thefigure 7 describeghe algorithmfor trainingthe
BBN obtainedfrom the WordNet. We initialize the
CPTsasnoisy-or The instancesve usefor train-

ing are windows of length M eachfrom the cor

pus. Sincethe corpusis normally not taggedwith

WordNetsensesall variables,otherthanthe words
obsered in the window (i.e. the synsetnodesin

the BBN) arehiddenor unobsered. Hencewe use
the ExpectatiorMaximizationalgorithm(Dempster
1977) for parameterearning. For eachinstance,
we find the expectedvaluesof the hiddenvariables,
giventhe presenstateof eachof the obsered vari-

ables. Theseexpectedvaluesare usedafter each
passthroughthe corpusto updatethe CPT for each
node. The iterationsthroughthe corpusare done
till the sumof the squaresof Kullback-Lieblerdi-

vergencedetweenCPTsin successk iterationsdo

not differ morethana threshold,or in otherwords,
till the corvergencecriterionis met. Figure§7 out-

lines the algorithm for training the BayesianNet-

work over a corpus. We basically customizethe
BayesianNetwork CPTsto a particular corpusby

learningthelocal CPTs.

4.2 Ranking answerpassages

Given a question,we rank the passagesvith the
joint probability of the questionwords, given the
candidateanswer Every questionor answercan
be looked upon as an eventin which the its word

nodesare switchedto the state‘present’. There-
fore, if p1,po....p, arepassageandq is the ques-
tion, theansweris thatpassage; which maximizes
P(q|p;) overall passagep; deemedascandidaten-
swers.Pr(¢|p;) is thejoint probability of thewords
of g, eachbeingin state‘present’in the Bayesian
network, given that all the word nodesfor p; are
clampedto the state'present’in the belief network.



: Loadthe BayesiarNetwork parameters
. for eachquestionq do
for eachcandidatepassage do
clamp the variables (nodes)correspondingto the
passagevordsin network to a stateof ‘present’
Findthejoint probabilityof all questionwordsbeing
in state'present’i.e., Pr(g|p)
endfor
endfor
: Reportthe passagei decreasingrderof Pr(q|p)

oNo G hRwdbkE

Figure8: Rankinganswempassagefor givenquestion

Figure §8 outlinesthe actualpassageanking algo-
rithm.

The reasonfor choosingPr(g|p;) over Pr(p;|q)
is that (a) ¢ typically containsvery few words.
Pr(pi|q), thereforemaynothelpin bridgingthere-
lation betweenanswerwords. (b) The passagevill
be penalizedf containsmary wordswhich arenot
presentin the questionand are alsonot closelyre-
lated to the questionwords throughthe WordNet.
This could happendespitethe fact that the passage
containsa few words which are all presentin the
questionand/orare semanticallyclosely relatedto
the question,in addtionto containingthe answer
to the question. Also, (c) if passageg;’'s are of
varying lengths,Pr(¢|p;)’s arebroughtto the same
scale—thabf questionwordswhich arefixedacross
passages/snippetshereasPr(p;|q) canbeaffected
andpenalizedoy long snippets.

In fact, our apprehensiongboutusing Pr(p;|q)
will be justified in the experimentalsection- the
QA performaceobtainedusing Pr(p;|q) is drasti-
cally poorer- in factit is worsethanthe baseline
QA algorithm.

Dealing with non-WordNet words: Suppose,
thereis aword w in the questionwhich is not there
in theWordNet.Lik e theanswermpassagesye could
have ignoredsuchwords. But, the questionmay be
seekingan answerto preciselysucha word. Also,
the numberof wordsbeingvery smallin the ques-
tion, nowordin the questionshouldbeignored.We
dealwith this situationin the following way. We
call a word, a connectingword if it the key word
thatlinks the passagéeo the question.Note thatfor
WordNetwords, the connectingnodeswere Word-
Net concepts. In the caseof non-WordNetwords,
we don't have ary hidden,connectinghodes.Sowe
considerthe words themseles to be possiblecon-
nections.

Let connectw be arandomvariablewhich takes
thestate'present’if w is aconnectingvord between
the questionandthe answer It’'s stateis ‘absent’if
it is not a connectingword. Let wq, wp berandom
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variablesthatare ‘present’if w occursin the ques-
tion or answerrespectiely, elsethey are ‘absent’.
By Bayesrule, we getthefollowing probability that
theword w occursin the question,giventhatit oc-
cursin theanswer(1=Present)=absent).

Pr(wg=1llwp=1)~

Pr(wq = 1|connectw = 1) x Pr(wp = 1|connectw = 1) x
Pr(connectw = 1)+
Pr(wq = 0|connectw = 0) x Pr(wp = 0|connectw = 0) x

Pr(connectw = 0)

where Pr(connectw 1), Pr(wq =
1lconnectw = 1), Pr(wp = 1l|connectw = 1),
and Pr(connectw = 1) andtheir complementsre
estimatedrom questiomnswelpairs. Moreover, the
occurrencef non WordNetwordsis assumedo be
independentf eachotherandalsoof theoccurrence
of WordNetwords.

5 Experimentsand results

We perform extensve experimentsto evaluateour
system,usingthe TREC http://trec. ni st.
gov/ dat a/ ga. ht mM QA benchmark. We find
thatour algorithmis a substantiaimprovementbe-
yond a baselinelR approachto passageanking.
Basedon publishednumbersiit alsoappeardo be
in the sameleagueasthe top performersat recent
TREC QA events. We also note that training our
systemimproves the quality of our ranking, even
thoughWSD accurag doesnot increasewhich af-
firmsthebeliefthatpassagscoringneednotdepend
on perfectWSD, givenwe usearohbust, ‘soft WSD'.
Seesections3.3.

5.1 Experimental setup

We use the Text REtrieval Conference(TREC)
(Vorhees,2000) corpusand question/answerfom
its QA track. The corpusis 2 GB of newspaperarti-
cles.Thereis aset@ of about690factualquestions.
For eachquestionwe retrieve thetop 50 documents
using a standardTFIDF-basedIR enginesuchas
SMART. We usedthe questionsetand correspond-
ing top 50documentollectionfrom TREC2001for
our experiments.We usedMXPOST (Ratnaparkhi,
1996),a maximumentrofy basedPOStagger The
partof speechagis usedwhile mappingdocument
and questiontermsto their correspondingiodesin
the BBN.

Thepassagéengthwe chosewas N = 20 words.
Unless otherwise stated explicitly, the maximum



heightupto which the BBN wasusedfor inferenc-
ing for eachQ-passag@air can be assumedo be
4,

5.2 Evaluation

TREC QA evaluation hastwo runs basedon the
lengthof systemresponseo a question.In thefirst
the responsds a passagelp to 250 bytesin size.
The secondmoreambitiousrun asksfor shorterre-
sponsesf upto 50 bytes.(Morerecently TREChas
updatedts requirement$o demandexact, extracted
answers.)

To determindf theresponsés actuallyananswer
to the question, TREC providesa setof regular ex-
pressiongor eachquestion.The presencef ary of
thesein the responsendicatesthatit is a valid an-
swer For evaluationthe systemis requiredto sub-
mit its top five responsedor eachquestion. This
is usedto calculatethe performanceneasuranean
reciprocalrank (MRR) for the systemgdefinedas

1 1
). 2
|Q| ((12622 rankq> 2)

Hererank, is thefirst rankat which correctanswer

occursfor questiong € Q. If for a questiong the

correctansweris not in the top 5 responseshen
L_ is takento bezero.

rankg

MRR =

5.3 Results

IR baseline: IR technologyis widely accessible,
andformsour baseline We construct250-bytewin-
dows of text aspassageandcomputethe similarity
betweenthesepassageandthe query Becauseve
would notliketo penalizepassage®r having terms
notin thequestion(providedthey have atleastsome
gueryterms),we useanasymmetricTFIDF similar
ity. Underthis measurethescoreof apassagés the
sumof the IDFs of the questiontermscontainedn
thepassagelf D is thedocumentollectionand D;
is the setof documentsontainingt, thenonecom-
monform of IDF weighting(usedby SMART again)
is

1+ |D|
|Dy|

IDF(t) = log (3)

ThelR baselineMRR is only about0.3,whichis
farshortof Falcon,whichhasanMRR of almost0.7.
The baselineMRR is low for the obvious reasons:
thelR enginecannotbridgethelexical gap.

System MRR
AsymmetricTFIDF | 0.314
UntrainedBBN 0.429
TrainedBBN 0.467
Tablel: MRRsfor baselinepuntrainedandtrainedBBNs

System MRR

FALCON 0.76

University of Waterloo | 0.46

Queengollege, CUNY | 0.46

Table2: MRRsfor bestperformingsystemsn TREC9

Base BBN: Initialized with our default parame-
ters,our BBN-basedapproachachieazesan MRR of

0.429,whichis alreadyasignificantstepupfromthe
IR baseline A largecomponenbf thisimprovement
is causedy conflatingdifferentstringsto common
synsets.

Trained BBN: We recalibratedour systemafter
training the BBN with the corpus. This resultedin
a visible improvementin our MRR, from 0.429to
0.467,which takes us into the sameleagueasthe
systemsfrom University of Waterloo and Queens
College,reportedat TREC QA.

Tablesg1 and§2 summarizeour MRR resultsand
juxtaposethemwith the publishedMRRs for some
of the best-performingQA systemin TREC 2000.
Giventhatwe have investedzero customizatioref-
fort in WordNet,it is impressie thatour MRR com-
paresfavorablywith all but the bestsystem.

Experiments for varying heights of BBN: The
MRR obtainedwentdown to 0.34 whenthe height
of thetracedBBN wasrestrictedo 1, i.e. onlywords
andtheir immediatesynsetswvere considered.It is
significantto notethat even with immediatesynset
expansionthereis amaiginal improvementover as-
symmetricTFIDF. The MRR improvedto 0.42 and
0.45 whenthe heightwasincreasedo 2 and3 re-
spectvely. Theseresultsaretabulatedin table§3.

Experiments for restricting to WordNets of dif-
ferent parts of speech: The MRR found by us-
ing only the noun WordNet was 0.415. Words
in the remaining parts of speechwere treatedas

Height | MRR
1 0.342
2 0.421
3 0.450
4 0.467

Table3: MRRsfor BBNs truncatedat differentheights



WordNet for diff POS | MRR
Noun 0.415
Adjective 0.340

Verb 0.32
Noun+Adjectve 0.442
Noun+\erb 0.393
Verb+Adjectve 0.332
Noun+\erb+Adjectve | 0.467

Table4: MRRsfor BBNs restrictecto diff partsof WordNet

Expt setup MRR

P(Q|A) with only WNetwords | 0.370
No Bayesiannferencing 0.30
P(Psg|Question) 0.021

Table5: MRRsfor otherexperiments

non WordNetwordsin this experiment. The MRR

droppedto 0.340 whenonly the adjectve WordNet
was used. The MRR found using only the verb
WordNetwasa low 0.32. This is becausehe verb
WordNetis very shallav andmary semanticallydis-

tantverbsareconnectealoselytogether The MRR

scoreobtainedby consideringnoun+adjectie part
of WordNetwas(0.442, thatobtainedby considering
noun+erb partof WordNetwas0.393 andthatob-

tainedby consideringverb+adjectie part of Word-

Netwas0.333. Theseresultsaresummarizedn ta-

ble §4. The resultsseemto justify the obseration

thatthe verb WordNetin its currentform is shallav

in heightandhashigh in/out degreefor eachnode;
this is mainly due to the high ambiguity of verbs.
But coupledwith nounandadjectve WordNets the
verbWordNetimprovesoverall performance.

Miscellaneousexperiments: The MRR obtained
by consideringonly WordNet words was 0.370
which indicatesthatwe cannotafford to ignorethe
non-WordNet words. Also it seemsthat induc-
ing ‘semantic-similarity’ betweernwords not in the
WordNetvocalulary is not so muchrequired. By
skippingBayesiannferencingaltogetherwe getan
MRR of 0.30 which is the sameasfor asymmetric
TFIDF mentionedearlier The MRR drasticallyfell
to 0.021 when P(Psg|Question) wasusedto rank
the passagesThis partly justifiesthe apprehension
aboutfinding the probability of passag@ivenques-
tion which wasexpressedearlier- thatis, passages
getpenalizedf they containlots of wordswhichare
not eithernottherein the questionor arenotrelated
to wordsin the question. Theseresultsare summa-
rizedin table§5.

The effect of WSD: It is interestingto notethat
trainingdoesnot substantiallyaffectdisambiguation
accurag (which staysatabout75%),andMRR im-
provesdespitethis fact. This seemdo indicatethat
learningjoint distributions betweenqueryand can-
didateansweikeywords(via synsenhodeswhichare
“bottleneck”variablesn BBN parlance)s asimpor-
tantfor QA asis WSD. Furthermorewe conjecture
that“soft” WSD is key to maintainingQA MRR in
thefaceof modestWSD accurag.

5.4 Analysis

In thefollowing, we analysenow Bayesiarinferenc-
ing on lexical relationscontritutestowardsranking
passages.

How joint probability helps Forfindingtheprob-
ability of questiongivena passageye take thejoint
probability of the questionwords, conditionedon
the (evidenceof) answerwords. Thuswe attempt
to overcomethe usualbottleneckof assumptiorof
independencef wordsasin thenave Bayesmodel.
Therelationsof questiorwordsbetweerthemseles
andwith wordsin theanswelis whatpreciselyhelps
in giving a joint probability thatis differentfrom a
naive productof mamginals. Thiswill beillustrated
in section§5.5.

How parameter smoothing helps If a question
word doesnot occur in the answer the mamginal

probability of thatword shouldbehighiif it strongly
relatesto oneor morewordsin the answerthrough
WordNet. Without using WordNet, one could re-
sortto finding this maginal probability from a cor-

pus. Theseprobabilitiesare remarkablylow even
for wordsthatarevery semanticallyrelatedto words
in theanswerandthis will beillustratedin the case
studiesin section§5.5. This problemcould be at-
tributedto datasparsity

5.5 Casestudies

Casel: This exampleshavs thatthe passagen

figure §10 containsthe correctanswerto the ques-
tion in figure §9 andwasgivenrank1. Theinterest-
ing obsenation is that the wordskind andtype are
relatedcorrectlythroughthe WordNetto give high

maiginal probability to the word kind (0.557435)in

the question,even thoughit doesnot occurin the
answer Thisis depictedn figure§12.

Themamginal probability of the sameword (given
thatits is absentin the answerpassage)as deter
minedby corpusstatisticsis 0.00020202 whichis
very small. Thisillustratesthe advantageof param-
etersmoothing.



TREC QuestionID 371: A comi is a kind of
what?

Figure9: SamplequestionQ1

Bayesian Marginal Probs: corgi: 1.000000
kind: 0.557435 ....cogis: They are of course
collie-typedogsoriginally bredfor cattleherding,
As suchthey will chasearything particularly an-
kles....

Figure10: Answerfor Q1, Rank1, Score(JoinfProbability)=
0.893133(DocumentiD:AP881106-0015)

Bayesian Marginal Probs: corgi:1.000000
kind:0.006421 ....currentfavorite. So are bull-
dogs. JackRussellterriersare popularwith the
horsy set. “ The short-lggedwelsh.comi is big
( QueenPelizabethii has at leastone ). And
so, of course,s the_englishbull_terrier (thanksto
AnheuseiBusch,Bud Light and Spuds.MacKen-
zie). Barbara.....

Figurell: Non-answefor Q1,Rank2, Score(JoinProbability)
=0.647734(DocumentiD:WSJ900423-0005)

v
v
[TAXONOMICiGROUP,TAXON j

[ KIND, SORT, FORM, VARIETY j /

TYPE (subdivision)

CATEGORY

SYMBOL

TYPE (character)

CHARACTER, TYPE....

TYPE (bio)
TYPE (metal block) TYPE (same symbol tokens)

Figurel2: Relationbetweerkindin questiorandtypein answer

KIND

Question
Word

Additionally, the joint probability of ques-
tion words given the passagewords of fig-
ure §10 (0.893133) is not the product of their
mawginals (P(corgi|PASSAGE) 1.000000,
P(kind|PASSAGE) = 0.557435). Thereasorfor
this is thatthe word dog thatoccursin the answer
passagés relatedto the word corgie in the question
throughWordNetasshavn in figure§13. It canbe
seeneasily that theselexical relationsincreasethe
joint probability of thequestionvords,giventhean-
swerwords,over the productof the maginalsof the
individual words.

In contrast, the passageof figure §11 which
containsno answerto the question,also contains
no word which is closely related to the word
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(from CANIS, GENUS_CANIS)

!

DOG, MAN
DOG, DOMESTIC_DOG, CANIS_FAMILIARIS
l PAWL, DOG...
CORGI, WELSH_CORGI
Answer
W}’dy ANDIRON, DOG...

Question
Word

FRUMP, DOG
DOG, BOUNDER

Figure13: Relationbetweendog in answerandcorgi in ques-
tion

kind through WordNet. Therefore, the mamginal
probabilities as well as the joint probability of
samequestionwords given this passagarelow as
comparedo the passagef figure§10. As a result
thesecondrassaggetsa low rank.

Case2: The passagdn figure §15 was highest
ranked for the questionin figure§14, eventhoughit
doesnot containthe answercential america This
is becauseall questionwordsoccurin the passage
and therefore,the passagagetsa rank of 1. This
highlights a limitation of our mechanism. On the
otherhand,the passageanked 2"¢ containsthe an-
swer It getsa joint probability scoreof 0.890192,
even thoughthe word belizedoesnot occurin the
answer This is becauséelize is connectedo the
word central americaand alsoto country through
WordNet. The passageshavn in figure§17, which
doesnot containthe answeyr got a pretty low rank
of 10 becausat induceda low joint probability of
0.033451 onthe questioneventhoughthe word be-
lize waspresenin the passagehecausdocatewas
absentin the passageandit is notimmediatly con-
nectedto otherwordsin the passageThis againil-
lustratesthe advantageof using Bayesianinferenc-
ing on lexical relations.

Case3:. Herewe presentan exampleto illustrate
wherethe mechanisncan go wrong dueto the of

absencef links. The passagén figure §19 induces
a conditionaljoint probability of 1 on the question
in figure §18, becausehe passageontainsall the
wordspresenin thequestion.The passag&owever
doesnot answerthe question. On the other hand,
thepassagshavn in figure§20 containgheanswey
but inducesa lower joint probabilityon the question
- becausedhe verb standfor is not closelyrelated,
through WordNetto ary of the wordsin the pas-
sage. In fact, onewould have expectedstandsfor

and standfor to be relatedto eachother through



TREC QuestionID : 202 Whereis Belize lo-
cated?

TREC Question ID
standfor ?

: 224 What does laser

Figure14: SamplequestionQ2

Figure18: SamplequestionQ3

BayesianMar ginal Probs: belize: 1.000000/o-
cate: 1.000000 ....settlerdhasbeenconfirmedto
the eastof the historic monumentghat are being
usedasareferencepointwith Belize. Shepointed
outthatin casethey prove thesettlements located
in the protectedMayanbiosphereareaandthat it
wasestablishedllegally , the settlerswill have to
leave thearea, but the.....

Figure15: Non-Answerto Q2, Rank= 1, Score(JoinProbabil-
ity) = 1, DoclID: FBIS3-10202

BayesianMar ginal Probs: belize: 0.889529/o-
cate: 1.000000 ....confirmedthat the Belizean
Governmenwill assumeesponsibilityfor its own
defenseasof 1 Januaryl994andannouncedhat
it had startedthe “ immediatewithdraval of the
UK troopsstationedn thatcountrylocatedin the
central americanisthmus. Lourdes......

Figure16: Answerto Q2, Rank= 2, Score(JoinProbability)=
0.890192PocID: FBIS3-50428

BayesianMar ginal Probs: belize: 1.000000/o-
cate: 0.033451 ....preparedo begin negotiationg
ontheterritorial disputewith Guatemala_: adding
that a commissionhasbeencreatedfor this pur
poseandonly thefinal detailsmustbesettled. The
GuatemalarGovernmenthasrecognizedBelize’s
independence.: therefore, we have acceptedhe
factthata.....

Figure17: Non-answeffor Q2, Rank= 10, Score(JoinProba-
bility) = 0.452310DocID: FBIS4-56830

WordNet.

6 Discussionand futur e work

We have describeda passage-scoringlgorithmfor
QA via Bayesianinferenceon lexical relations. By
separatinghe inferencealgorithmfrom the design
of the knowledgebase we madeour systemexten-
sible andtrainablefrom a corpus. The accurag of

our systemis betterthanlIR-like scoringtechniques,

and comparedavorably with well-knovn QA sys-
tems,asshavn in section5.

Ourwork hingesuponthe existenceof lexical re-
lationsin the WordNet. We would like to point out
herethat no specialefforts were madein the con-
struction of the BayesianNetwork from WordNet
nor did we attemptto fill in the desirable'missing
links’ betweenwords or synsetdn WordNetor re-
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Bayesian marginal Probs: laser: 1.000000
stand for: 1.000000 ....Yu.A. Rezunkv , can-
didate of technicalsciences, departmenhead,
V.S. Sirazetding , candidateof technicalsciences
, manageof teststandfor adaptve lasersystems
A.V . Charukhche,.....

Figure19: Non-Answerto Q3, Rank= 1, Score(JoinProbabil-
ity) = 1, DoclD: FBIS4-47304

Bayesian marginal Probs: laser: 1.000000
stand_for: 0.073516 ...Laser standsfor light
amplification by stimulated emissionof radia-
tion. Both masersandlasersaredevicescontain-
ing crystal, gasor othersubstancethatgetatoms
so excited as they bounceback and forth in step
betweentwo mirrors thatthey finally burstoutin
onecoherent....

Figure20: Answerto Q3, Rank= 25, Score(JoinProbability)
=0.890192DoclID: FBIS3-50428

Bayesian marginal Probs: laser: 1.000000
stand for: 0.060797

Corpus based-maginal Probs: laser: 0.990561
stand_for: 2.886e-05 ....surbceplasmaby inter-
actionof laserradiationandsolid targetscovering
the10[ .sup] 5[ /] -10[ .sup] 10[/].. range
of radiationintensity being essentiallyconsidered
herealongwith negative andpositie.....
Figure21: Non-answeffor Q3, Rank= 50, Score(JoinProba-
bility) = 0.86329DocID: FBIS4-22835

move spuriouslinks in WordNet. Thus,we areable
to find probabilitiesbasedon semanticrelationsto
theextentgivenby links in WordNetandwe areable
to uncorrelatedvordsfrom eachotherto the extent
they aredisconnected WordNet. To someextent,
we attemptto learnthe BayesianNetwork parame-
tersandthis doesresultin improvementin Question
AnsweringperformanceButit will beinterestingo
seeif training the network with biggercorporaim-
provestheperformancdurther Anotherexperiment
thatremaingo betriedis trainingthe BayesiarNet-
work with samplesof successfuland unsuccessful
(questionanswer)pairs.

Onething to noteis thatif all the questionwords
arecontainedn the passagethe passagevill geta
high rank becausat will inducea joint probability
scoreof 1 onthe question.This canhappenevenif
theansweris not containedn the passage.



Anotherlimitation is thecomputationahndmem-
ory cost. On an averageit took 0.03 secondsfor
Bayesiarnnferencingon a passageThememoryre-
guirementgoesupto 30MB. One future work will
compriseof reducingthe online memoryandcom-
putationalrequirementdy simplifying the network
structure and/or making certain computationsof-
fline.

We would alsolike to find betterinitial valuesto
speeduplearningandavoid local optima. We would
like to re-introducethe notion of lexical proximity
into our inferenceprocessso asto furtherimprove
theaccurag of WSD. We alsowish to explore how
continualfeedbackand retraining of the BBN can
improve theaccurag of our system.
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