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Abstract
Many researchershave used lexical networks

andontologiesto mitigatesynonymy andpolysemy
problems in Question Answering (QA), systems
coupledwith taggers,queryclassifiers,andanswer
extractorsin complex and ad-hocways. We seek
to make QA systemsreproduciblewith sharedand
modesthumaneffort, carefully separatingknowl-
edge from algorithms. To this end, we propose
anaesthetically“clean” Bayesianinferencescheme
for exploiting lexical relationsfor passage-scoring
for QA . The factorswhich contribute to the effi-
cacy of BayesianInferencingonlexical relationsare
softword sensedisambiguation, parametersmooth-
ing whichamelioratesthedatasparsityproblemand
estimationof joint probability over words which
overcomesthe deficiency of naive-bayes-like ap-
proaches. Our systemis superiorto vector-space
ranking techniquesfrom IR, and its accuracy ap-
proachesthatof thetopcontendersat theTRECQA
tasksin recentyears.

1 Intr oduction

Thispaperdescribesanapproachto probabilisticin-
ferenceusinglexical relations,suchasexpressedby
a WordNet,anontology, or a combination,with ap-
plicationsto passage-scoringfor open-domainques-
tion answering(QA).

The useof lexical resourcesin Information Re-
trieval (IR) is not new; for almost a decade,the
IR community has consideredthe use of natural
languageprocessingtechniques(Lewis and Jones,
1996)to circumventsynonymy, polysemy, andother
barriersto purelystring-matchingsearchengines.In
particular, a numberof researchershave attempted
to usetheEnglishWordNetto “bridge thegap” be-
tweenqueryandresponse.Interestingly, theresults
have mostly been inconclusive or negative (Fell-
baum,1998a).A numberof explanationshave been
offeredfor this lackof success,someof whichare� presenceof unnecessarylinks andabsenceof

necessarylinks in the WordNet (Fellbaum,
1998b),

� hurdleof Word SenseDisambiguation(WSD)
(Sanderson,1994)� ad-hocnessin the distanceand scoring func-
tions(Abe etal., 1996).

1.1 Questionanswering(QA)

Unlike IR systemswhich returna list of documents
in responseto a query, from which the usermust
extract the answermanually, the goal of QA is to
extract from thecorpusdirect answersto questions
posedin anaturallanguage.

An important step before answerextraction is
to identify andratecandidatepassages from docu-
mentswhich might containtheanswer. The notion
of a passageis somewhatarbitrary: variousnotions
of apassagehave emerged(Vorhees,2000);For our
purposes,a passagecomprises� consecutive sen-
tences,or � consecutive words.

In contrastto IR, wherelinguistic resourceshave
not been found very useful, QA has always de-
pendedon a mixture of stock lexical networks and
customontologies(language-independent concep-
tualhierarchies)craftedthroughhumanunderstand-
ing of the task at hand (Harabagiuet al., 2000;
Clarke et al., 2001). Ontologies,hand-craftedand
customized,sometimesfrom theWordNetitself, are
employed for questiontype classification,relation-
shipsbetweenplaces,measures,etc.

The scoring (and thereby, ranking) of passages
throughlexical networksor ontologiesis moresuc-
cessfulin QA thanin classicIR becauseof the na-
tureof theQA task.Passage-scoringin QA benefits
from indirectmatchesthroughanontology.

By separatingthepassage-scoringalgorithmfrom
theknowledgebase,wecankeepimproving oursys-
temby continuallyupgradingthelexical relationsin
theknowledgebaseandretrainingour inferenceal-
gorithm.
Map: � 2 describesthe relatedwork. � 3 givesthe
motivationbehindourapproachandthebackground
information (WordNet and Bayesianinferencing).� 4 describesour QA system.Resultsarepresented
in � 5, andconcludingremarksmadein � 6.

1



2 Relatedwork

Information Retrieval (IR) systems such as
SMART (Buckley, 1985) rank documents for
relevancew.r.t. to a userquery, basedon keyword
matchbetweenthequeryandadocument,eachrep-
resentedin the well-known “vector spacemodel”.
The degreeof matchis measuredas the cosineof
theanglebetweenqueryanddocumentvectors.

In QA, anIR subsystemis typically usedto short-
list passageswhich arelikely to embedtheanswer.
Usually, severalenhancementsaremadeto stockIR
systemsto meetthis task.

First, the cosinemeasureusedin stock vector-
spacesystemswill be biasedagainst long docu-
mentseven if they embedthe answerin a narrow
zone. This problemcan be amelioratedby repre-
sentingsuitably-sizedpassagewindows (ratherthan
whole documents)as vectors. While scoringpas-
sagesusingthecosinemeasure,we canalsoignore
passagetermswhichdo notoccurin thequery.

Thesecondissueis oneof proximity. A passage
is likely to bepromisingif querywordsoccurclose
to oneanother. Commercialsearchenginesreward
proximity of matchedquery terms,but in undocu-
mentedways.Clarke et al. (Clarke et al., 2001)ex-
ploit term proximity within documentsfor passage
scoring.

The third andmost importantlimitation of stock
IR systemsis the inability to bridge the lexical
chasmbetweenquestionand potential answervia
lexical networks. Onequeryfrom TREC(Vorhees,
2000)asks,“Who paintedOlympia?” The answer
is in the passage:“Manet, who, after all, created
Olympia,getsnocredit.”

QA systemsuse a gamutof techniquesto deal
with this problem. FALCON (Harabagiuet al.,
2000)(oneof thebestQA systemsin recentTREC
competitions) integrates syntactic, semantic and
pragmatic knowledge for QA. It uses WordNet-
basedquery expansionto try to bridge the lexical
chasm. WordNet is customizedinto a answer-type
taxonomyto infer the expectedanswertype for a
question. Named-entityrecognitiontechniquesare
also employed to improve quality of passagesre-
trieved.Theanswersarefinally filteredby justifying
themusingabductive reasoning.Mulder (Kwok et
al., 2001)usesasimilarapproachto performQA on
Webscale.Thewell-known START system(Katz, )
goesevenfurtherin thisdirection.
Discussion: In general,theTRECQA systemsdi-
vide QA into two tasks: identifying relevant doc-
umentsandextractinganswerpassagesfrom them.

For theformertask,mostsystemsusetraditionalIR
enginescoupledwith ad-hocqueryexpansionbased
on WordNet. Handcraftedknowledgebases,ques-
tion/answertype classifiersanda variety of heuris-
tics are used for the latter task. Successin QA
comesat thecostof greateffort in custom-designed
wordnetsandontologies,andexpansion,matching
and scoringheuristicswhich needto be upgraded
as the knowledgebasesareenhanced.Ideally, we
shouldusea knowledgebasewhich canbe readily
extended,andacorescoringalgorithmwhich is ele-
gantand“universal”.

3 Proposedapproach

3.1 An inferencingapproachto QA

Givenaquestionandapassagethatcontainsthean-
swer, how do we correlatethetwo ? Take for exam-
ple, thefollowing question

Whattypeof animalis Winnie thePooh?

andtheanswerpassageis

A Canadiantown that claims to be the birthplace
of Winnie thePoohwantsto erecta giantstatueof
the famousbear;but Walt Disney Studioswill not
permitit.

It is clearthatthereis a linkagebetweentheques-
tion word animal andthe answerword bear. That
thewordbearoccurredin theanswer, in thecontext
of Winnie, meansthat therewas a hidden”cause”
for theoccurrenceof bear, andthatwastheconcept
of � animal� .

In general,therecould be multiple words in the
questionandanswerthatareconnectedby many hid-
dencauses.This scenariois depictedin figure � 1.
Thecausesthemselvesmayhave hiddencausesas-
sociatedwith them.

QUESTION ANSWER
NODESNODES

Hidden Causes that are switched on

Observed nodes(WORDS) 

Hidden Causes that are switched off(CONCEPTS)

(CONCEPTS)

Figure1: Motivation
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Thesecausalrelationshipsarerepresentedin on-
tologiesandWordNets.Thefamiliar EnglishWord-
Net, in particular, encodesrelationsbetweenwords
andconcepts.For instanceWordNetgives the hy-
pernymyrelation betweenthe concepts� animal�
and � bear� .
3.2 WordNet

WordNet(Fellbaum,1998b)is anonlinelexical ref-
erencesystemin which English nouns,verbs,ad-
jectives and adverbs are organizedinto synonym
sets or synsets, each representingone underly-
ing lexical concept. Noun synsetsare related to
eachotherthroughhypernymy(generalization),hy-
ponymy(specialization),holonymy(whole of) and
meronymy(partof) relations.Of these,(hypernymy,
hyponymy) and (meronymy,holonymy) are comple-
mentarypairs.

The verb andadjective synsetsarevery sparsely
connectedwith eachother. No relationis available
betweennounandverbsynsets.However, 4500ad-
jective synsetsarerelatedto nounsynsetswith per-
tainyms(pertainingto) andattra (attributedwith) re-
lations.

DOG, DOMESTIC_DOG, CANIS_FAMILIARIS 

CORGI, WELSH_CORGIFLAG

meronymy

(from CANIS, GENUS_CANIS)

hyponymy

Figure2: Illustrationof WordNetrelations.

Figure� 2 shows that the synset � dog, domes-
tic dog, canisfamiliaris� hasa hyponymy link to� corgi, welshcorgi � andmeronymy link to � flag�
(“a conspicuouslymarked or shapedtail”). While
the hyponymy link helps us answerthe question
(TREC#371) “A corgi is a kind of what?”, the
meronymy connectionhereis perhapsmoreconfus-
ing thanuseful: this senseof flag is rare.

3.3 Inferencingon lexical relations

It is surprisinglydifficult to make the simple idea
of bridging passageto query through lexical net-
worksperformwell in practice.Continuingtheex-
ample of Winnie the bear (section � 3.1), the En-
glishWordNethasfivesynsetsonthepathfrom bear

to animal: � carnivore...� , � placentalmammal...� ,� mammal...� , � vertebrate..� , � chordate...� .
Someof theseintervening synsetswould be ex-

tremelyunlikely to beassociatedwith a corpusthat
is notaboutzoology;acommonpersonwouldmore
naturally think of a bearasa kind of animal,skip-
ping throughtheinterveningnodes.

It is, however, dangerousto designan algorithm
whichis generallyeagerto skipacrosslinks in alex-
ical network. E.g.,few QA applicationsareexpected
to needan expansionof “bottle” beyond “vessel”
and “container” to “instrumentality” and beyond.
Anotherexamplewould betheshallow verbhierar-
chy in the English WordNet, with completelydis-
similar verbswithin very few links of eachother.
Thereis alsotheproblemof missinglinks.

Anotherimportantissueis which ‘hiddencauses’
(synsets)shouldbe inferred to have causedwords
in the text. This is a classical problem called
word sensedisambiguation(WSD). For instance,
the word dog belongsto 6 noun synsetsin Word-
Net. Whichof the � synsetsshouldbetreatedasthe
‘hidden cause’that generatedthe word dog in the
passagecouldbeinferredfrom thefactthatcollie is
relatedto dog only throughoneof thelatter’s senses
- it’ssenseas � dog,domesticdog,Canisfamiliaris� .
But thisproblemof finding the‘appropriate’hidden
causes,in general,in non-trivial. Giventhatstate-of-
the-artWSD systemsperformnot betterthan74%
(Sanderson,1994) (Lewis and Jones,1996) (Fell-
baum,1998b),in this paper, we usea probabilistic
approachto WSD - called ‘soft WSD’ (Pushpak,)
; hiddennodesareconsideredto have probabilisti-
cally ‘caused’wordsin thequestionandansweror in
other words,causesareprobabilistically‘switched
on’.

Clearly, any scoringalgorithm that seeksto uti-
lize WordNet link information must also discrimi-
natebetweenthembased(at least)on usagestatis-
tics of the connectedsynsets. Also requiredis an
estimateof the likelihood of instantiatinga synset
into a tokenbecauseit was“activated” by a closely
relatedsynset. We find a Bayesianbelief network
(BBN) a naturalstructureto encodesuchcombined
knowledgefrom WordNetandcorpus.

3.4 BayesianBelief Network

A BayesianNetwork (Heckerman,1995)for asetof
randomvariables	�
��
	��
��	�������������	���� consists
of adirectedacyclic graph(DAG) thatencodesaset
of conditional independenceassertionsaboutvari-
ablesin 	 andasetof localprobabilitydistributions
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associatedwith eachvariable.Let ����� denotetheset
of immediateparentsof 	�� in theDAG, and  !� � a
specificinstantiationof theserandomvariables.

The BBN encodes the joint distribution"$#�%'& �
� & ���������(� & �*) as

"$#+%'& �
� & �+�������(� & �*),
 �-�/.!� "$#�%'& �10  2� � ) (1)

Each node in the DAG encodes
"$#(%'& � 0  2� � ) as a

“conditional probability table” (CPT). Figure � 3
shows a Bayesianbelief network interpretationfor
a partof WordNet.Thesynset� corgi, welshcorgi �
hasa causalrelationfrom � dog, domesticdog, ca-
nis familiaris� . A possibleconditionalprobability
table for the network is shown to the right of the
structure.

DOG, DOMESTIC_DOG, CANIS_FAMILIARIS 

CORGI, WELSH_CORGI

               
Present    Absent

0.9               0.1      Present

0.01             0.99     Absent

P
A
R
E
N
T

      CHILD 

(CHILD)

(PARENT)

Figure3: Causalrelationsbetweentwo synsets.

Theideaof constructingBBN from WordNethas
beenproposedby (Rebecca,1998). But that ideais
centeredarounddoinghard-sensedisambiguation-
to find the‘correct’ senseeachword in thetext.

In this paper, we particularlyexplore the ideaof
doing soft sensedisambiguationi.e. synsetsare
probabilistically consideredto be causesof their
constituentwords.Moreover, WSD is not anendin
itself. Thegoalis to connectthewordswithin ques-
tion andanswerpassageandalsoacrossthequestion
andanswerpassage.WSD is only aby-product.

Our goal is to build a QA systemwhich imple-
mentsa cleardivision of labor betweenthe knowl-
edgebaseand the scoring algorithm, codifies the
knowledgebasein a uniform manner, and thereby
enablesagenericalgorithmandashared,extensible
knowledgebase.Basedonthediscussionabove,our
knowledgerepresentationmustbeprobabilistic,and
our systemmustcombineandberobust to multiple,
noisysourcesof informationfrom queryandanswer
terms.

Moreover, we would like to be ableto learn im-
portantpropertiesof our knowledgebasefrom con-
tinual training of our systemwith corpussamples

as well as samplesof successfuland unsuccessful
(question,answer)pairs. In essence,we would like
to automateasfar aspossible,thecustomizationof
lexical networks to QA tasks. Given the English
WordNet,it shouldbepossibleto reconstructoural-
gorithmcompletelyfrom thispaper.

Toward theseends,we describehow to induce
a BayesianBelief Network (BBN) from a lexical
network of relations. Specifically, we proposea
semi-supervisedlearningmechanismwhich simul-
taneouslytrainstheBBN andassociatestext tokens
,which are words, to synsetsin the WordNet in a
probabilisticmanner(“soft WSD”). Finally, we use
the trainedBBN to scorepassagesin responseto a
question.

3.5 Building a BBN from WordNet

Our model of the BBN is that eachsynsetfrom
WordNetis a booleaneventassociatedwith a ques-
tion, a passage,or both. Textual tokens are also
events.Eacheventis anodein theBBN. Eventscan
causeothereventsto happenin aprobabilisticman-
ner, which is encodedin CPTs. The specificform
of CPTweuseis thewell-known noisy-ORof Pearl
(Pearl,1988).

We introducea nodein the BBN for eachnoun,
verb,andadjective synsetin WordNet. We alsoin-
troduceanodefor each(non-stop-word) tokenin the
corpusand all questions. Hyponymy, meronymy,
and attribute links are introducedfrom WordNet.
Senselinks areusedto attachtokensto potentially
matchingsynsets.E.g., thestring “flag” maybeat-
tachedto synsetnodes� sag,droop,swag,flag� and� a conspicuouslymarkedor shapedtail � . (Thepur-
poseof probabilisticdisambiguationis to estimate
theprobability that thestring “flag” wascausedby
eachconnectedsynsetnode.)

This processcreatesa hierarchy in which the
parent-childrelationshipis definedby thesemantic
relationsin WordNet. 3 is a parentof 4 if f 3 is the
hypernymor holonymor attribute-ofor 3 is asynset
containingthe word 4 . The processby which the
BayesianNetwork is built from theWordNethyper-
graphof synsetsandandfrom themappingbetween
wordsandsynsetsis depictedin figure4. Wedefine
going-upthehierarchyasthetraversalfrom child to
parent.

Ideally, we shouldupdatetheentireBBN andits
CPTswhile scanningover the training corpus. In
practice,BBN trainingandinferenceareCPU-and
memory-intensive processes.

Wecompromiseby first attachingthetokennodes
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Add words as children

to their synsets

WORDNET 

HYPERGRAPH

WORDNET

Word − Synset maps

CONDITONAL

PROBABILITY 

TABLES FOR 

EACH NODE NETWORK

BELIEF

BAYESIAN

+ =

Figure4: Building a BBN from WordNetandassociatedtext
tokens.

to their synsetsand then walking up the WordNet
hierarchyup to a maximumheight decidedpurely
by CPU and memorylimitations. We believe that
theprobabilisticinfluencefrom distantnodesis too
feebleandunreliableto warrantmodeling.

4 Our QA system

Theoverall questionansweringsystemthatwe pro-
poseis depictedin figure5. The correspondingal-
gorithmis outlinedin figure6.

Question

50 Documents

Retrieval
Of

TFIDF

N−Word windows

BAYESIAN NETWORK

Offline TrainingCORPUS

PASSAGE
EXTRACTION

PASSAGE 
RANKING

Ranked  Passages

p1, p2 ....... pn

Figure5: Theoverall QA system.

The questiontriggers the TFIDF retrieval mod-
ule to pick up 50 most relevant documents.These
documentsaresubjectedto aslidingwindow to pro-
duce 5 passagesof length � each. The Bayesian
belief network describedin section3.5 ranksthese
passages.The first ranked passageis supposedto
containthe answer. The belief network parameters
aretheCPTs,whichareinitializedasnoisy-orCPTs.
TheBayesianbelief network is trainedoffline using

1: Constructa BayesianNetwork structureusingtheWord-
Net structure

2: Train the Bayesiannetwork parameterson the corpus
containingtheanswers

3: Do questionansweringwith trainedBayesianNetwork

Figure6: Theover-all questionansweringalgorithm

1: while CPTsdonotconvergedo
2: for eachwindow of 6 wordsin thetext do
3: Clampthewordnodesin theBayesianNetwork to a

stateof ‘present’
4: for eachnodein Bayesiannetwork do
5: find its joint probabilitieswith all configurations

of its parentnodes(E Step)
6: end for
7: end for
8: Updatethe conditionalprobability tablesfor all ran-

domvariables(M Step)
9: endwhile

Figure7: TrainingtheBayesianNetwork for acorpus

theExpectationMaximizationalgorithm(Dempster,
1977)onwindows slidingover thewholecorpus.

4.1 Training the belief network

Thefigure7 describesthealgorithmfor trainingthe
BBN obtainedfrom theWordNet. We initialize the
CPTsasnoisy-or. The instanceswe usefor train-
ing are windows of length � eachfrom the cor-
pus. Sincethe corpusis normally not taggedwith
WordNetsenses,all variables,otherthanthewords
observed in the window (i.e. the synsetnodesin
theBBN) arehiddenor unobserved. Hencewe use
theExpectationMaximizationalgorithm(Dempster,
1977) for parameterlearning. For eachinstance,
we find theexpectedvaluesof thehiddenvariables,
giventhepresentstateof eachof theobservedvari-
ables. Theseexpectedvaluesare usedafter each
passthroughthecorpusto updatetheCPTfor each
node. The iterationsthroughthe corpusare done
till the sumof the squaresof Kullback-Lieblerdi-
vergencesbetweenCPTsin successive iterationsdo
not differ morethana threshold,or in otherwords,
till theconvergencecriterion is met. Figure � 7 out-
lines the algorithm for training the BayesianNet-
work over a corpus. We basically customizethe
BayesianNetwork CPTsto a particularcorpusby
learningthelocal CPTs.

4.2 Ranking answerpassages

Given a question,we rank the passageswith the
joint probability of the questionwords, given the
candidateanswer. Every questionor answercan
be looked upon as an event in which the its word
nodesare switchedto the state‘present’. There-
fore, if 78�
�97��+�:�:�:� 7�� arepassagesand ; is the ques-
tion, theansweris thatpassage7�� which maximizes<=% ;>0 7��?) overall passages7�� deemedascandidatean-
swers.

"$#�% ;>0 7��@) is thejoint probabilityof thewords
of ; , eachbeing in state‘present’ in the Bayesian
network, given that all the word nodesfor 7�� are
clampedto thestate‘present’in thebelief network.
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1: LoadtheBayesianNetwork parameters
2: for eachquestionq do
3: for eachcandidatepassagep do
4: clamp the variables(nodes)correspondingto the

passagewordsin network to a stateof ‘present’
5: Findthejoint probabilityof all questionwordsbeing

in state‘present’i.e., ACB1D:E+F GIH
6: end for
7: end for
8: Reportthepassagesin decreasingorderof ACB1D:E+F GIH

Figure8: Rankinganswerpassagesfor givenquestion

Figure � 8 outlinesthe actualpassagerankingalgo-
rithm.

The reasonfor choosing
"$#+% ;C0 7��J) over

"$#�% 7��K0 ;I)
is that (a) ; typically contains very few words."$#�% 7��10 ;I) , therefore,maynothelpin bridgingthere-
lation betweenanswerwords. (b) Thepassagewill
be penalizedif containsmany wordswhich arenot
presentin the questionandarealsonot closelyre-
lated to the questionwords throughthe WordNet.
This could happendespitethe fact that the passage
containsa few words which are all presentin the
questionand/orare semanticallyclosely relatedto
the question,in addtion to containingthe answer
to the question. Also, (c) if passages7�� ’s are of
varying lengths,

"L#(% ;>0 7��?) ’s arebroughtto thesame
scale—thatof questionwordswhicharefixedacross
passages/snippets,whereas,

"L#(% 7��10 ;I) canbeaffected
andpenalizedby longsnippets.

In fact, our apprehensionsaboutusing
"$#�% 7��K0 ;I)

will be justified in the experimentalsection- the
QA performaceobtainedusing

"$#�% 7 � 0 ;I) is drasti-
cally poorer- in fact it is worsethan the baseline
QA algorithm.
Dealing with non-WordNet words: Suppose,
thereis a word M in thequestionwhich is not there
in theWordNet.Liketheanswerpassages,wecould
have ignoredsuchwords. But, thequestionmaybe
seekingan answerto preciselysucha word. Also,
the numberof wordsbeingvery small in the ques-
tion, no word in thequestionshouldbeignored.We
deal with this situation in the following way. We
call a word, a connectingword if it the key word
that links thepassageto thequestion.Note that for
WordNetwords,the connectingnodeswereWord-
Net concepts. In the caseof non-WordNet words,
we don’t have any hidden,connectingnodes.Sowe
considerthe words themselves to be possiblecon-
nections.

Let NPO+QRQTS
NVUWM be a randomvariablewhich takes
thestate‘present’if M is aconnectingwordbetween
thequestionandtheanswer. It’s stateis ‘absent’if
it is not a connectingword. Let M�; , M$7 berandom

variablesthat are‘present’ if M occursin theques-
tion or answerrespectively, elsethey are ‘absent’.
By Bayesrule,we getthefollowing probabilitythat
theword M occursin thequestion,given that it oc-
cursin theanswer(1=Present,0=absent).A>B1D:XTE$Y[Z�F X�G\Y]Z�H�^A>B1D:XTE_Y[Z�F `badcIcfe�`bg9XhY[Z�HRijA>BKD:X�GkY[Z�F `WaKcIcfe1`@g9XhY[Z1HdiACBdD:`badcIcfe�`bg'XlY[Z1HJmA>B1D:XTE_Yon+F `badcIcfe�`bg9XhYonVHRijA>BKD:X�GkYon+F `WaKcIcfe1`@g9XhYonPHdiACB1D:`WaKcfcfe�`bg'XlYlnPH

where
<qp>% NPO+QRQTS
NVUbM 
 r�) , <spC% Mj; 
rf0 NPO+QRQTS
NVUbMt
ur�) , <qp>% M$7v
wrf0 NPO+QRQTS
NVUWMt
wr�) ,

and
<spC% NPO+QRQTS
NVUWMx
yr�) andtheir complementsare

estimatedfromquestionanswerpairs.Moreover, the
occurrenceof nonWordNetwordsis assumedto be
independentof eachotherandalsoof theoccurrence
of WordNetwords.

5 Experiments and results

We perform extensive experimentsto evaluateour
system,using the TREC http://trec.nist.
gov/data/qa.html QA benchmark. We find
thatour algorithmis a substantialimprovementbe-
yond a baselineIR approachto passageranking.
Basedon publishednumbers,it alsoappearsto be
in the sameleagueas the top performersat recent
TREC QA events. We also note that training our
systemimproves the quality of our ranking, even
thoughWSD accuracy doesnot increase,which af-
firmsthebeliefthatpassagescoringneednotdepend
onperfectWSD,givenweusearobust,‘soft WSD’.
Seesection� 3.3.

5.1 Experimental setup

We use the Text REtrieval Conference(TREC)
(Vorhees,2000)corpusandquestion/answersfrom
its QA track. Thecorpusis 2GB of newspaperarti-
cles.Thereis aset z of about690factualquestions.
For eachquestion,weretrieve thetop {�| documents
using a standardTFIDF-basedIR enginesuch as
SMART. We usedthequestionsetandcorrespond-
ing top50documentcollectionfrom TREC2001for
our experiments.We usedMXPOST(Ratnaparkhi,
1996),a maximumentropy basedPOStagger. The
partof speechtag is usedwhile mappingdocument
andquestiontermsto their correspondingnodesin
theBBN.

Thepassagelengthwechosewas ��
~}�| words.
Unless otherwisestatedexplicitly, the maximum
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heightupto which the BBN wasusedfor inferenc-
ing for eachQ-passagepair can be assumedto be�
.

5.2 Evaluation

TREC QA evaluation has two runs basedon the
lengthof systemresponseto a question.In thefirst
the responseis a passageup to 250 bytes in size.
Thesecond,moreambitiousrun asksfor shorterre-
sponsesof upto 50bytes.(Morerecently, TREChas
updatedits requirementsto demandexact,extracted
answers.)

To determineif theresponseis actuallyananswer
to thequestion,TRECprovidesa setof regularex-
pressionsfor eachquestion.Thepresenceof any of
thesein the responseindicatesthat it is a valid an-
swer. For evaluationthe systemis requiredto sub-
mit its top five responsesfor eachquestion. This
is usedto calculatetheperformancemeasuremean
reciprocal rank (MRR) for thesystem,definedas

���\� 
 r0�z�0
��L�
�d��� r#d���C� �

�� � (2)

Here
#K���>� � is thefirst rankat which correctanswer

occursfor question;��~z . If for a question; the
correct answeris not in the top 5 responsesthen��9���V�d� is takento bezero.

5.3 Results

IR baseline: IR technologyis widely accessible,
andformsourbaseline.Weconstruct250-bytewin-
dows of text aspassagesandcomputethesimilarity
betweenthesepassagesandthequery. Becausewe
wouldnot like to penalizepassagesfor having terms
not in thequestion(providedthey haveat leastsome
queryterms),weuseanasymmetricTFIDF similar-
ity. Underthismeasure,thescoreof apassageis the
sumof the IDFs of thequestiontermscontainedin
thepassage.If � is thedocumentcollectionand ���
is thesetof documentscontainingU , thenonecom-
monformof IDF weighting(usedby SMART again)
is �W���

% U�),
  :¡�¢ r¤£~0 �]00 ���d0 � (3)

TheIR baselineMRR is only about0.3,which is
farshortof Falcon,whichhasanMRR of almost0.7.
The baselineMRR is low for the obvious reasons:
theIR enginecannotbridgethelexical gap.

System MRR
AsymmetricTFIDF 0.314

UntrainedBBN 0.429
TrainedBBN 0.467

Table1: MRRsfor baseline,untrainedandtrainedBBNs

System MRR
FALCON 0.76

Universityof Waterloo 0.46
QueensCollege,CUNY 0.46

Table2: MRRsfor bestperformingsystemsin TREC9

Base BBN: Initialized with our default parame-
ters,our BBN-basedapproachachievesanMRR of
0.429,whichis alreadyasignificantstepupfrom the
IR baseline.A largecomponentof thisimprovement
is causedby conflatingdifferentstringsto common
synsets.
Trained BBN: We recalibratedour systemafter
training the BBN with the corpus. This resultedin
a visible improvementin our MRR, from 0.429to
0.467,which takes us into the sameleagueas the
systemsfrom University of Waterloo and Queens
College,reportedatTRECQA.

Tables� 1 and � 2 summarizeourMRR resultsand
juxtaposethemwith thepublishedMRRs for some
of the best-performingQA systemin TREC 2000.
Giventhatwe have investedzero customizationef-
fort in WordNet,it is impressive thatourMRR com-
paresfavorablywith all but thebestsystem.
Experiments for varying heights of BBN: The
MRR obtainedwent down to |*�¦¥ � whenthe height
of thetracedBBN wasrestrictedto r , i.e. onlywords
andtheir immediatesynsetswereconsidered.It is
significantto notethat even with immediatesynset
expansion,thereis amarginal improvementoveras-
symmetricTFIDF. TheMRR improved to |*� � } and|*� � { when the heightwas increasedto } and ¥ re-
spectively. Theseresultsaretabulatedin table � 3.
Experiments for restricting to WordNets of dif-
ferent parts of speech: The MRR found by us-
ing only the noun WordNet was |*� � r
{ . Words
in the remainingparts of speechwere treatedas

Height MRR
1 0.342
2 0.421
3 0.450
4 0.467

Table3: MRRsfor BBNs truncatedatdifferentheights
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WordNet for diff POS MRR
Noun 0.415

Adjective 0.340
Verb 0.32

Noun+Adjective 0.442
Noun+Verb 0.393

Verb+Adjective 0.332
Noun+Verb+Adjective 0.467

Table4: MRRsfor BBNsrestrictedto diff partsof WordNet

Expt setup MRR<�% z=0 3q) with only WNet words 0.370
No BayesianInferencing 0.30<�%9<¨§�© 0�z�ª«S § UW¬@O+Q!) 0.021

Table5: MRRsfor otherexperiments

non WordNetwordsin this experiment. The MRR
droppedto |*�¦¥ � | whenonly theadjective WordNet
was used. The MRR found using only the verb
WordNetwasa low |*�¦¥�} . This is becausethe verb
WordNetis veryshallow andmany semanticallydis-
tantverbsareconnectedcloselytogether. TheMRR
scoreobtainedby consideringnoun+adjective part
of WordNetwas |*� ��� } , thatobtainedby considering
noun+verb partof WordNetwas |*�¦¥�­�¥ andthatob-
tainedby consideringverb+adjective part of Word-
Net was |*�¦¥�¥�¥ . Theseresultsaresummarizedin ta-
ble � 4. The resultsseemto justify the observation
that theverbWordNetin its currentform is shallow
in heightandhashigh in/out degreefor eachnode;
this is mainly due to the high ambiguity of verbs.
But coupledwith nounandadjective WordNets,the
verbWordNetimprovesoverall performance.

Miscellaneousexperiments: The MRR obtained
by consideringonly WordNet words was |*�¦¥I®+|
which indicatesthatwe cannotafford to ignorethe
non-WordNet words. Also it seemsthat induc-
ing ‘semantic-similarity’betweenwordsnot in the
WordNet vocabulary is not so much required. By
skippingBayesianinferencingaltogether, we getan
MRR of |*�¦¥�| which is the sameasfor asymmetric
TFIDF mentionedearlier. TheMRR drasticallyfell
to |*�¯|I}*r when

<=%9<°§�© 0�zqª«S § UW¬@O+Q!) wasusedto rank
thepassages.This partly justifiestheapprehension
aboutfinding theprobabilityof passagegivenques-
tion which wasexpressedearlier- that is, passages
getpenalizedif they containlotsof wordswhichare
noteithernot therein thequestionor arenot related
to wordsin thequestion.Theseresultsaresumma-
rizedin table � 5.

The effect of WSD: It is interestingto note that
trainingdoesnotsubstantiallyaffectdisambiguation
accuracy (which staysat about75%),andMRR im-
provesdespitethis fact. This seemsto indicatethat
learningjoint distributionsbetweenqueryandcan-
didateanswerkeywords(viasynsetnodes,whichare
“bottleneck”variablesin BBN parlance)is asimpor-
tant for QA asis WSD.Furthermore,we conjecture
that “soft” WSD is key to maintainingQA MRR in
thefaceof modestWSD accuracy.

5.4 Analysis

In thefollowing, weanalysehow Bayesianinferenc-
ing on lexical relationscontributestowardsranking
passages.
How joint probability helps Forfindingtheprob-
ability of questiongivenapassage,wetake thejoint
probability of the questionwords, conditionedon
the (evidenceof) answerwords. Thus we attempt
to overcomethe usualbottleneckof assumptionof
independenceof wordsasin thenaiveBayesmodel.
Therelationsof questionwordsbetweenthemselves
andwith wordsin theansweris whatpreciselyhelps
in giving a joint probability that is differentfrom a
naive productof marginals. This will be illustrated
in section� 5.5.
How parameter smoothing helps If a question
word doesnot occur in the answer, the marginal
probabilityof thatwordshouldbehigh if it strongly
relatesto oneor morewordsin theanswerthrough
WordNet. Without using WordNet, one could re-
sort to finding this marginal probability from a cor-
pus. Theseprobabilitiesare remarkablylow even
for wordsthatareverysemanticallyrelatedto words
in theanswerandthis will be illustratedin thecase
studiesin section � 5.5. This problemcould be at-
tributedto datasparsity

5.5 Casestudies

Case1: This exampleshows that the passagein
figure � 10 containsthe correctanswerto the ques-
tion in figure � 9 andwasgivenrank r . Theinterest-
ing observation is that the wordskind and typeare
relatedcorrectly throughthe WordNetto give high
marginal probability to theword kind (0.557435)in
the question,even thoughit doesnot occur in the
answer. This is depictedin figure � 12.

Themarginalprobabilityof thesameword(given
that its is absentin the answerpassage),as deter-
minedby corpusstatisticsis 0.00020202- which is
very small. This illustratestheadvantageof param-
etersmoothing.
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TREC Question ID 371: A corgi is a kind of
what?

Figure9: SamplequestionQ1

Bayesian Mar ginal Probs: corgi: 1.000000,
kind: 0.557435 ....corgis: They are of course
collie-typedogsoriginally bredfor cattleherding.
As suchthey will chaseanything particularlyan-
kles....

Figure10: Answerfor Q1, Rank1, Score(JointProbability)=
0.893133,(DocumentID:AP881106-0015)

Bayesian Mar ginal Probs: corgi:1.000000,
kind:0.006421 ....currentfavorite. So are bull-
dogs. JackRussellterriersare popularwith the
horsy set. “ The short-leggedwelshcorgi is big
( QueenPelizabethii has at least one ). And
so,of course,is the englishbull terrier (thanksto
Anheuser-Busch,Bud Light andSpuds.MacKen-
zie). Barbara.....

Figure11: Non-answerfor Q1,Rank2,Score(JointProbability)
= 0.647734,(DocumentID:WSJ900423-0005)

TYPE

KIND

CHARACTER, TYPE....

CATEGORY

KIND, SORT, FORM, VARIETY

TYPE (bio)

TYPE (subdivision)

TYPE (character)

TYPE  (same symbol tokens)TYPE (metal block)

SYMBOL

TAXONOMIC_GROUP, TAXON

Question
Word

Answer
Word

Figure12: Relationbetweenkind in questionandtypein answer

Additionally, the joint probability of ques-
tion words given the passagewords of fig-
ure � 10 ( |*�¦±�­�¥*r
¥�¥ ) is not the product of their
marginals (

<=% NPO p+© ¬V0 < 3q²$²³3q´�µ�)¶
 r��¯|�|�|�|�|�| ,<=%J· ¬?Q8¸¹0 < 3q²$²³3q´�µº)¤
»|*�¦{�{I® � ¥�{ ). Thereasonfor
this is that theword dog that occursin the answer
passageis relatedto thewordcorgie in thequestion
throughWordNetasshown in figure� 13. It canbe
seeneasily that theselexical relationsincreasethe
joint probabilityof thequestionwords,giventhean-
swerwords,over theproductof themarginalsof the
individual words.

In contrast, the passageof figure � 11 which
containsno answerto the question,also contains
no word which is closely related to the word

DOG

CORGI

CORGI, WELSH_CORGI

DOG, DOMESTIC_DOG, CANIS_FAMILIARIS

FRUMP, DOG

(from CANIS, GENUS_CANIS)

DOG, BOUNDER

ANDIRON, DOG...

PAWL, DOG...

DOG,  MAN

Answer
Word

Question

Word

Figure13: Relationbetweendog in answerandcorgi in ques-
tion

kind through WordNet. Therefore, the marginal
probabilities as well as the joint probability of
samequestionwordsgiven this passagearelow as
comparedto the passageof figure� 10. As a result
thesecondpassagegetsa low rank.

Case 2: The passagein figure � 15 was highest
ranked for thequestionin figure� 14, eventhoughit
doesnot containthe answercentral america. This
is because,all questionwordsoccurin the passage
and therefore,the passagegetsa rank of r . This
highlights a limitation of our mechanism. On the
otherhand,thepassageranked } ��¼ containsthean-
swer. It getsa joint probability scoreof |*�¦±�­�|Cr
­�} ,
even thoughthe word belizedoesnot occur in the
answer. This is becausebelize is connectedto the
word central americaand also to country through
WordNet. The passageshown in figure� 17, which
doesnot containthe answer, got a pretty low rank
of 10 becauseit induceda low joint probability of|*�¯|I¥�¥ � {*r on thequestioneventhoughtheword be-
lize waspresentin thepassage,becauselocatewas
absentin thepassageandit is not immediatlycon-
nectedto otherwordsin thepassage.This againil-
lustratesthe advantageof usingBayesianinferenc-
ing on lexical relations.
Case3: Herewe presentan exampleto illustrate
wherethe mechanismcan go wrong due to the of
absenceof links. Thepassagein figure � 19 induces
a conditionaljoint probability of r on the question
in figure � 18, becausethe passagecontainsall the
wordspresentin thequestion.Thepassagehowever
doesnot answerthe question. On the other hand,
thepassageshown in figure � 20containstheanswer,
but inducesa lower joint probabilityon thequestion
- becausethe verb standfor is not closely related,
throughWordNet to any of the words in the pas-
sage. In fact, onewould have expectedstandsfor
and standfor to be relatedto eachother through
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TREC Question ID : 202 Whereis Belize lo-
cated?

Figure14: SamplequestionQ2

BayesianMar ginal Probs: belize: 1.000000,lo-
cate: 1.000000 ....settlershasbeenconfirmedto
the eastof the historic monumentsthat arebeing
usedasareferencepointwith Belize. Shepointed
out thatin casethey prove thesettlementis located
in the protectedMayanbiosphereareaandthat it
wasestablishedillegally , thesettlerswill have to
leave thearea, but the.....

Figure15: Non-Answerto Q2,Rank= 1, Score(JointProbabil-
ity) = 1, DocID: FBIS3-10202

BayesianMar ginal Probs: belize: 0.889529,lo-
cate: 1.000000 ....confirmedthat the Belizean
Governmentwill assumeresponsibilityfor its own
defenseasof 1 January1994andannouncedthat
it had startedthe “ immediatewithdrawal of the
UK troopsstationedin thatcountrylocatedin the
central american isthmus. Lourdes......

Figure16: Answerto Q2,Rank= 2, Score(JointProbability)=
0.890192,DocID: FBIS3-50428

BayesianMar ginal Probs: belize: 1.000000,lo-
cate: 0.033451 ....preparedto begin negotiations
ontheterritorialdisputewith Guatemala; : adding
that a commissionhasbeencreatedfor this pur-
poseandonly thefinal detailsmustbesettled. The
GuatemalanGovernmenthasrecognizedBelize ’s
independence; : therefore, we have acceptedthe
factthata .....

Figure17: Non-answerfor Q2, Rank= 10, Score(JointProba-
bility) = 0.452310,DocID: FBIS4-56830

WordNet.

6 Discussionand futur e work

We have describeda passage-scoringalgorithmfor
QA via Bayesianinferenceon lexical relations.By
separatingthe inferencealgorithmfrom the design
of theknowledgebase,we madeour systemexten-
sible andtrainablefrom a corpus. The accuracy of
oursystemis betterthanIR-likescoringtechniques,
andcomparesfavorably with well-known QA sys-
tems,asshown in section5.

Our work hingesupontheexistenceof lexical re-
lationsin theWordNet. We would like to point out
herethat no specialefforts were madein the con-
structionof the BayesianNetwork from WordNet
nor did we attemptto fill in the desirable‘missing
links’ betweenwordsor synsetsin WordNetor re-

TREC Question ID : 224 What does laser
standfor ?

Figure18: SamplequestionQ3

Bayesian marginal Probs: laser: 1.000000,
stand for: 1.000000 ....Yu.A. Rezunkov , can-
didate of technicalsciences, departmenthead,
V.S.Sirazetdinov , candidateof technicalsciences
, managerof teststandfor adaptive lasersystems,
A.V . Charukhchev ,.....

Figure19: Non-Answerto Q3,Rank= 1, Score(JointProbabil-
ity) = 1, DocID: FBIS4-47304

Bayesian marginal Probs: laser: 1.000000,
stand for: 0.073516 ...Laser standsfor light
amplification by stimulated emissionof radia-
tion. Both masersandlasersaredevicescontain-
ing crystal, gasor othersubstancesthatgetatoms
so excited as they bounceback and forth in step
betweentwo mirrors that they finally burst out in
onecoherent.....

Figure20: Answerto Q3, Rank= 25, Score(JointProbability)
= 0.890192,DocID: FBIS3-50428

Bayesian marginal Probs: laser: 1.000000,
stand for: 0.060797
Corpus based-marginal Probs: laser: 0.990561,
stand for: 2.886e-05 ....surfaceplasmaby inter-
actionof laserradiationandsolid targetscovering
the 10 ½ .sup ¾ 5 ½ / ¾ -10 ½ .sup ¾ 10 ½ / ¾ . range
of radiationintensitybeingessentiallyconsidered
herealongwith negative andpositive.....

Figure21: Non-answerfor Q3, Rank= 50, Score(JointProba-
bility) = 0.86329,DocID: FBIS4-22835

move spuriouslinks in WordNet.Thus,we areable
to find probabilitiesbasedon semanticrelationsto
theextentgivenby links in WordNetandweareable
to uncorrelatedwordsfrom eachotherto theextent
they aredisconnectedin WordNet. To someextent,
we attemptto learnthe BayesianNetwork parame-
tersandthisdoesresultin improvementin Question
Answeringperformance.But it will beinterestingto
seeif training thenetwork with biggercorporaim-
provestheperformancefurther. Anotherexperiment
thatremainsto betried is trainingtheBayesianNet-
work with samplesof successfuland unsuccessful
(question,answer)pairs.

Onething to noteis that if all thequestionwords
arecontainedin thepassage,thepassagewill geta
high rank becauseit will inducea joint probability
scoreof r on thequestion.This canhappenevenif
theansweris not containedin thepassage.
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Anotherlimitation is thecomputationalandmem-
ory cost. On an averageit took 0.03 secondsfor
Bayesianinferencingonapassage.Thememoryre-
quirementgoesupto 30MB. One future work will
compriseof reducingthe online memoryandcom-
putationalrequirementsby simplifying thenetwork
structureand/or making certain computationsof-
fline.

We would alsolike to find betterinitial valuesto
speeduplearningandavoid localoptima.Wewould
like to re-introducethe notion of lexical proximity
into our inferenceprocess,soasto further improve
theaccuracy of WSD.We alsowish to explorehow
continualfeedbackand retrainingof the BBN can
improve theaccuracy of oursystem.
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