
Extraction of User Preferences from a Few Positive Documents

Byeong Man Kim, Qing Li
Dept. of Computer Sciences

Kumoh National Institute of Technology
Kumi, kyungpook, 730-701,South Korea

(Bmkim, liqing)@se.Kumoh.ac.kr

Jong-Wan Kim
School of Computer & Information

Taegu University
Kyungsan-City, Kyungpook, South Korea

jwkim@biho.taegu.ac.kr

Abstract

In this work, we propose a new method
for extracting user preferences from a few
documents that might interest users. For
this end, we first extract candidate terms
and choose a number of terms called ini-
tial representative keywords (IRKs) from
them through fuzzy inference. Then, by
expanding IRKs and reweighting them us-
ing term co-occurrence similarity, the fi-
nal representative keywords are extracted.
Performance of our approach is heavily
influenced by effectiveness of selection
method for IRKs so we choose fuzzy in-
ference because it is more effective in
handling the uncertainty inherent in se-
lecting representative keywords of docu-
ments. The problem addressed in this
paper can be viewed as the one of finding
a representative vector of documents in
the linear text classification literature. So,
to show the usefulness of our approach,
we compare it with two famous methods -
Rocchio and Widrow-Hoff - on the
Reuters-21578 collection. The results
show that our approach outperforms the
other approaches.

1 Introduction

Agent technology is able to provide increasingly
more services for individuals, groups, and organi-
zations. Agents, which have been developed for

Internet, have addressed many tasks such as infor-
mation finding, filtering and presentation, contract
negotiation, and electronic commerce (Soltysiak
and Crabtree, 2000). Most of them rely on the
knowledge of the user. The inclusion of user in-
formation becomes a key area.

A user model that represents some aspects of a
user’s information needs or preferences can be use-
ful in any information system design, and in the
case of information filtering (Kim et al., 2000).
User models can be constructed by hand, or
learned automatically based on feedback provided
by the users. Some systems require users to explic-
itly specify their profiles, often as a set of key-
words or categories. But it is difficult for a user to
exactly and correctly specify their information
needs. The machine learning techniques offer the
potential to automatic construction and continuous
refinement of user model.

The research systems adopting the machine
learning techniques have been applied feedback
techniques that explicitly provide relevance judg-
ments on documents. Studies have shown that such
explicit feedback from the user is clearly useful
(Goldberg, 1992; Yan and Garcia-Molina, 1995),
but, in practice, many users are unwilling to pro-
vide relevance judgments on documents (Pazzani,
M., Billsus, 1997; Baeza-Yates and Ribeiro-Neto,
1999) . Users may have problems to decide about
some documents. An alternative is to use implicit
feedback where document relevance is inferred
from user’s behavior, which has received increased
attention in recent years (Nichols, 1997; Konstan et
al., 1997; Kim, 2000)

This paper focuses upon the extraction of user
preferences from a few documents that might in-
terest a user. It does not consider how to provide
relevance judgment on documents, i.e. it assumes

This work was supported by grant No. 2000-1-51200-008-2
 from the Korea Science & Engineering Foundation

that relevant documents are given explicitly or im-
plicitly. Our approach is based on the vector space
model (Baeza-Yates and Ribeiro-Neto, 1999),
where text-based documents are represented as
vectors of term weights. So, the problem addressed
in this paper is how to extract representative key-
words from documents provided by a user and
what weights should be assigned to these keywords.
We present a new technique to solve this problem.

The proposed method is composed of two parts,
one is to select initial representative keywords
(IRKs) and the other is to automatically expand
and reweight IRKs. For the first part, we can con-
sider feature selection methods (Yang and Peder-
sen, 1997) that focus on performance improvement
and dimensionality reduction of document classifi-
ers for a huge amount of documents covering vari-
ous categories. However, since this kind of
methods select features using information of other
categories and negative document sets as well as
positive ones, it is impossible to apply these to the
target problem in this paper that extract feature
keywords from only few positive documents in the
same category. As alternatives, we can consider
the Rocchio algorithm and Widrow-Hoff algorithm
used as a training algorithm for linear text classi-
fier since these algorithms can extract keywords
and assign weights to them effectively with only
positive document sets. However, here, a new
technique that adopts fuzzy inference to extract or
generate IRKs from a few example documents (the
set of documents judged relevant by the users) is
suggested since the existing algorithms did not
show good results as we expected.

For the second part, we can choose one of
query term expansion and term weight modifica-
tion methods based on vector model (Xu and Croft ,
1996; Mitra et al.,1998; Baeza-Yates and Ribeiro-
Neto, 1999). Instead, we take a new approach
where the term co-occurrence similarity is intro-
duced as a measure of similarity between the dis-
tributions within the feedbacked documents of a
given term and the initial query. With this similar-
ity and the document frequency in feedbacked
documents, the weight of the term in the new query
was calculated.

In the next section, Rocchio and Widrow-Hoff
algorithms are reviewed. Section 3 presents a
method for user’s preference extraction. The ex-
periments to test the proposed method will be out-
lined in Section 4. Finally, conclusion is followed.

2 Background

To extract a user’s preference from example docu-
ments is the same problem as finding their
representative vector in linear text classifiers. A
variety of algorithms for training linear classifiers
have been suggested. Among them, here, we only
review two widely used algorithms, Rocchio algo-
rithm and Widrow-Hoff algorithm, for comparing
with our method.

The Rocchio algorithm (David et al., 1996) is a
batch algorithm. So, it produces a new weight vec-
tor w from an existing weight vector oldw by ana-
lyzing the entire set of training data at once. The
j th′ component of w is :

c

Ci
ji

c

Ci
ji

joldj nn

x

n

x
ww

−

∑
−

∑
+= ∉∈

,,

, γβα (1)

where, ,i jx means j th′ component of i th′ docu-
ment vector ix and n is the number of training
documents. C is the set of positive training docu-
ments, and cn is the number of positive training
documents. The parameter βα , and γ control the
relative impact of the original weight vector, the
positive examples, and the negative examples, re-
spectively. However, in our experiments, α = 0,
β =1, and γ = 0 because only positive examples
are given in our application. Neither original
weight vector nor negative examples is given.

The Widrow-Hoff algorithm (David et al., 1996)
is an online algorithm where one training example
is presented at a time. It updates its current weight
vector based on the example and then discards the
example, retaining only the new weight vector. A
new weight vector wi+1 is computed from an old
weight vector iw and a training document ix with
class label iy . The class label iy is 1 if a training
document ix is in the set of positive or relevant
training documents, otherwise 0. In our application,

iy is always 1 because we deal with only positive
examples. The initial weight vector w1 is typically
set to zero vector, w1 = (0, ... 0).

1, , ,2 ()i j i j i i i i jw w w x y xη+ = − • − (2)

where, η is the learning rate which controls how
quickly the weight vector w is allowed to change
and ii xw • is the cosine value of the two vectors.

3 Extraction of user preferences

User preferences are extracted from a few example
documents through two steps: a) the first step gen-
erates a set of keywords called IRKs (Initial Repre-
sentative Keywords) which corresponds to the
initial user query in the relevance feedback tech-
niques of IR and b) these IRKs are expanded and
reweighted by a relevance feedback technique.

It is very important to select IRKs reflecting
user’s preferences well from example or training
documents (set of documents judged relevant by
the user) because we have to calculate term co-
occurrences similarity between these IRKs and
candidate terms within each example document.
Three factors of a term (term frequency, document
frequency within positive examples, and IDF) are
used to calculate the importance of a specific term.
Since these factors essentially have inexact and
uncertain characteristics, we combine them by
fuzzy inference instead of a simple equation.

The IRKs are selected based on the selection
criteria that each example document has at least
one or more IRKs. After selecting the IRKs, we
perform term modification process based on the
term co-occurrence similarity between these IRKs
and candidate terms. The Rocchio and Widrow-
Hoff algorithms do not consider the term co-
occurrence relationship within training documents.
But, we regard the term co-occurrence relationship
as the key factor to calculate the importance of
terms under the assumption that the IRKs reflect
user’s preferences well.

3.1 Calculation of the Representativeness of
Terms through Fuzzy Inference

The given positive examples are transformed into
the set of candidate terms through eliminating
stopwords and stemming by Porter’s algorithm.
The TF, DF, and IDF of each term are calculated
based on this set and used as inputs of fuzzy infer-
ence. From now on, we will explain these three
input variables. The TF (Term Frequency) is the
term frequency of a specific term not in a docu-
ment but in a set of documents, which is calculated
by dividing total occurrences of the term in a set of
documents by the number of documents in the set
containing the term. It needs to be normalized for
being used in fuzzy inference. The following
shows the normalized term frequency (NTF).

max

i

i
i

j
j

j

TF
DF

NTF
TF
DF

=
 
 
  

 (3)

where, iTF is the frequency of term ti in the exam-
ple documents, iDF is the number of documents
having term ti in the example document,

[]j jMax x means the maximum value of vari-

able jx .
The DF (Document Frequency) represents the

frequency of documents having a specific term
within the example documents. The normalized
document frequency, NDF, is defined in equation
(4), where iDF is the number of documents having
term ti in the example documents.

max

i
i

j j

DF
NDF

DF
= (4)

The IDF (Inverse Document Frequency) repre-
sents the inverse document frequency of a specific
term over an entire document collection not exam-
ple documents. The normalized inverse document
frequency, NIDF, is defined as follows:

, log
max

i
i i

j j i

IDF NNIDF IDF
IDF n

= = (5)

where, N is the total number of documents and in
is the number of documents containing term ti .

Figure 1. Fuzzy input/output variables

0 0.2 0.4 0.6 0.8 1

Z S M XX L
1

TW

11 0.2 0.7

L S L

10.80.61 0.1 0.3

M

1

NTF=S NDF, NIDF

1

(a) Input variable

(b) Output variable

Z: zero
S: small
M: middle
L : large
X: x large
XX:xx
larger

S

Figure 1 shows the membership functions of the
input/output variables - 3 inputs (NTF, NDF, NIDF)
and 1 output (TW) - used in our method. As you
can see in Figure 1(a), NTF variable has
{ S(Small), L(Large) }, and NDF and NIDF vari-
ables have { S(Small), M(Middle), L(Large) } as
linguistic labels (or terms). The fuzzy output vari-
able, TW (Term Weight) which represents the im-
portance of a term, has six linguistic labels as
shown in Figure 1(b).

The 18 fuzzy rules are involved to infer the
term weight (TW). The rules are constructed based
on the intuition that the important or representative
terms may occur across many positive example
documents but not in general documents, i.e., their
NDF and NIDF are very high. As shown in Table 1,
the TW of a term is Z in most cases regardless of
its NDF and NTF if its NIDF is S, because such
term may occur frequently in any document and
thus its NDF and NTF can be high. When NDF of
a term is high and its NIDF is also high, the term is
considered as a representative keyword and then
the output value is between X and XX. The other
rules were set similarly.

Table 1. Fuzzy inference rules
NIDF
NDF

S M L NIDF
NDF

S M L

S Z Z S S Z S M
M Z M L M Z L X
L S L X L S X XX

NTF = S NTF = L

We can get the term weight TW through the
following procedure. But, the output is in the form
of fuzzy set and thus has to be converted to the
crisp value. In this paper, the center of gravity
method is used to defuzzify the output (Lee, 1990).

• Apply the NTF, NDF, and NIDF fuzzy val-
ues to the antecedent portions of 18 fuzzy
rules.

• Find the minimum value among the mem-
bership degrees of three input fuzzy values.

• Classify every 18 membership degree into 6
groups according to the fuzzy output vari-
able TW.

• Calculate the maximum output value for
each group and then generate 6 output val-
ues.

3.2 Selection of Initial Representative Key-
words

After calculation of the term weights of candidate
terms through fuzzy inference, some candidate
terms are selected as IRKs based on their weights
with the constraint that each example document
should contain at least one or more IRKs. The al-
gorithm for selection of IRKs is given in Figure 2.
Let us consider the following example to under-
stand our selection procedure.
i) An example document set, DS, is composed of

documents d1, d2, d3, d4, d5, and d6. Each
document contains the following terms:

d1 = {a, b, f}, d2 = {a, c, d}, d3 = {d, e, f},

d4 = {d, f}, d5 = {b, c, e}, d6 = {e, f}

ii) A candidate term set, TS, is composed of {(a,
0.9), (b, 0.8), (c, 0.7), (d, 0.6), (e, 0.5), (f, 0.4)},
where (ti, TWi) represents that TWi is the term
weight of term ti.
If we apply the algorithm in Figure 2 to this ex-

ample, then temporary variables in line 2, 3 and 4
are initialized. The statement block from line 5 to
line 14 is executed repeatedly until at least one or
more IRKs are extracted from every example
document in DS. Let us assume that the documents
in the example document set are processed in se-
quence. After the first loop of the statement block
from line 5 to line 14 is executed, the output value
of ITS contains only term “a”. There is no change
in ITS after the second loop of the block because
term “a” has already been included in ITS. After
d3, the third loop of the block, is processed, a term
“d” is newly added to ITS. So, there is {a, d} in
ITS. After d4, d5, and d6 are sequentially proc-
essed, none, term “b”, and term “e” are added to
ITS, respectively. Therefore the algorithm return
ITS having a set of terms {a, b, d, e}. We can find
the algorithm in Figure 2 works well according to
our constraint.

Input: DS (Example Documents Set)
 TS (Candidate Terms Set)
 1] Procedure get_ITS(DS, TS)
 2] ITS: Initial Representative Terms Set, initialized to empty.
 3] TS': Temporary Terms Set, initialized to TS.
 4] d, t: Document and Term element respectively.
 5] Repeat
 6] Select a document element as d from DS.
 7] Repeat
 8] Select the highest element as t in TS'
 according to the weight.

 9] If t appears in d and not member in ITS
 Then Add t to ITS.
10] Remove t from TS.
11] Until t appears in d.
12] Remove d from DS.
13] Assign TS to TS'.
14] Until DS is empty.
15] Return ITS.

Figure 2. The algorithm for selection of initial rep-
resentative terms

3.3 Automatic Expansion and Reweighting of
IRKs

After the IRKs are selected, additional terms are
selected to be expanded in the order of their
weights calculated by the method in Section 3.1.
Let us assume that 5 terms are used to represent a
user's preference and the number of IRKs is 3.
Then, 2 terms with highest weights except IRKs
are selected additionally. The IRKs and these terms
constitute the final representative keywords
(FRKs) and are reweighted by considering the co-
occurrence similarity with IRKs. For this end, the
relevance degrees of the FRKs in every document
are calculated with the equation (6). Each positive
example document represents user’s preferable
content. In other words, each document tends to
contain general or specific or partial contents. We
regard the IRKs as the essential terms of the given
positive examples. So, the possibility that the re-
lated terms, e.g., synonym, collocated terms and so
on, occurred together with these IRKs in the same
document set increases.

1
)(

log1 1

2

+
∑ −

−= =

n

tfkf
RD

n

j
ikjk

pik (6)

where, RDik is the relevance degree between IRKs
and candidate term ti in document dk, kfjk is the fre-
quency of initial representative keyword j in
document dk, tfik is the frequency of candidate term
ti in document dk, n is the number of IRKs, p is a
control parameter. In our experiments, p is set to
10. The RDik is treated as 0 if it has negative value.

For example, let K be a set of IRKs consisting
of k1, k2 and k3 terms and their frequencies in
document d1 be 4, 3, and 1, respectively. Also, let
the frequency of term t1 be 2. Then, its relevance
degree is calculated as follows:

1
3

)1(12log1
222

1011 +
−++

−=RD = 0.762

As shown in the above equation, RDik is in-
versely proportional to the sum of term frequency
difference between initial representative term and
candidate term. So, the higher is the value of Rd,
the more similar the co-occurrence is, that is, the
equation reflects the co-occurrence similarity be-
tween initial representative terms and a candidate
term appropriately. After calculating the relevance
degree of a candidate term, the weight of the term
in the set of example documents is determined by
the following equation:

iikik

n

k
ikikri

IDFTFw

RDww

×=

∑ ×=
=1

)(
 (7)

where, wri is the weight of term ti in the document
set, wik is the weight of term ti in document dk, TFik
is the frequency of term ti in document dk, IDFi is
the inverse document frequency of term ti, and n is
the number of example documents.

The equation (7) is a modification of the Roc-
chio's in Section 2. Different from that equation,
we additionally use the term relevance degree be-
tween initial representative terms and a candidate
term. Let us assume that the IDF value of the can-
didate term t1 is 1.0 and it occurs 3, 2, and 1 within
document d1, d2 and d3, respectively. If the rele-
vance degrees for three documents are also as-
sumed to 0.3, 0.5, and 0.7, respectively, then the
weight of candidate term ti is calculated as below.

82.1))7.00.1()5.00.2()4.00.3((1 =×+×+×=rw

Finally, the weights of the FRKs are calculated
by the following equation:

rikii www += (8)

where, wki, is the initial weight of term ti. Instead
of using the weight obtained by fuzzy inference,
the initial weight wki of term ti is recalculated by
the equation (9), if the term is in IRKs and other-
wise 0. The equation is the one introduced to as-
sign a weight to an initial query term in IR systems
based on the vector space model (Baeza-Yates and
Ribeiro-Neto, 1999).









×









 ×
+=

ijj

i
ki n

N
freq
freq

w log
max

5.0
5.0 (9)

where, freqi is the frequency of initial representa-
tive keyword ti, ni is the frequency of documents in

which ti appear, and N is the total number of docu-
ments.

Let K = {t1, t3, t4} be the set of IRKs, WK =
{3.0, 2.0, 1.0} be the set of their weights calculated
by the equation (9), T = {t1, t2, t3, t4, t5} be the
set of FRKs, and WT = {5.0, 4.0, 3.0, 2.0, 1.0} be
their weights through the equation (7). Then, we
can get the final weights of FRKs, {8.0,4.0, 5.0,
3.0, 1.0}.

4 Experiments

We used Reuters-21578 data as an experimental
document set. This collection has five different sets
of contents related categories. They are
EXCHANGES, ORGS, PEOPLE, PLACES and
TOPICS. Some of the categories set have up to 265
categories, but some of them have just 39 catego-
ries. We chose the TOPICS categories set which
has 135 categories. We divided the documents ac-
cording to the “ModeApte” split. There are 9603
training documents and 3299 test documents.
Among the 135 categories, we first chose only 90
ones that have at least one training example and
one testing example. Then, we finally selected 21
categories that have from 10 to 30 training docu-
ments. The 3019 documents of those categories are
used as testing documents. The document fre-
quency information from 7770 training documents
in 90 categories is used to calculate IDF values of
terms. We did not consider negative documents
under the assumption that only positive documents
coincident with users’ preferences were given im-
plicitly or explicitly .

Documents are ranked by the cosine similarity
and the following F-measure (Baeza-Yates and
Ribeiro-Neto, 1999), which is a weighted combina-
tion of recall and precision and popularly used for
performance evaluation. Since the maximum value
for F can be interpreted as the best possible com-
promise between recall and precision, we use this
maximum value.

)/(2
11

2
jjjj

jj

j RPRP

RP

F +=
+

= (10)

where, Rj and Pj are the recall and precision for the
j’th document in the ranking and Fj is their har-
monic mean.

First, our method was compared to the Rocchio
and Widrow-Hoff algorithms. To see the effect of

the number of FRKs, we made experiments by
varying it from 5 to 30 in increment 5 and for the
case that all terms are used. Table 2 shows the
overall or summary result of the proposed method
compared to the two existing algorithms for
21categories. The result shows that our method is
better than the others in all cases, especially when
10 terms are used to represent user preferences.
Table 3 shows the detail result in that case, i.e. the
F-values and the performance improvement ratios
when 10 terms are used. The proposed method has
achieved about 20% over Rocchio algorithm and
10% over Widrow-Hoff algorithm on the average.
When 5 terms are used to represent user prefer-
ences, 19 categories among 21 categories are used
because “strategic-metal” and “pet-chem” catego-
ries do not satisfy the constraint in Section 3.2, i.e.,
5 terms are too few to cover all training documents.

Table 2. Performance of 21 categories in the
REUTERS corpus and comparison with two exist-
ing algorithms.

 Our Rocchio W.H.
5 0.582 0.511 0.566
10 0.594 0.496 0.540
15 0.571 0.490 0.529
20 0.552 0.489 0.522
25 0.545 0.491 0.493
30 0.541 0.495 0.500
All 0.490 0.467 0.483

It is not clear which component of our method
mainly contributes to such improvement since our
method consists of two main components - one is
for extracting IRKs, the other for expanding and
reweighting of IRKs. To analyze our method, we
made several variants of the proposed method and
did experiments with them. The variants are named
by the sequence of the following symbols.
IF, IR, IW: mean that IRKs are selected based on
the weight obtained by the method in Section 3.1,
the Rocchio algorithm, and the Widrow-Hoff algo-
rithm, respectively.
RC, RR, RW: mean that terms are reweighted by
the method in Section 3.3, the Rocchio algorithm,
and the Widrow-Hoff algorithm, respectively.
EC, EF, ER, EW: mean that expanded terms are
selected based on the weight obtained by applying
the method in Section 3.3, the method in Section
3.1, the Rocchio algorithm, and the Widrow-Hoff
algorithm, respectively.

For example, the proposed method in Section 3 is
named as IF_EF_RC, which means IRKs, and ex-
panded terms are selected based on the weight cal-
culated by the method in Section 3.1 and then
reweighted by the method in Section 3.3. For an-
other example, the method called by IF_RC_EC
means that IRKs are selected based on the weight
obtained by the method in Section 3.1 and then all
terms are reweighed by the method in Section 3.3
before expanded terms are selected.

In the proposed method, fuzzy inference tech-
nique is used to extract IRKs. So, we tried two
variants, IR_ER_RC and IW_EW_RC, where the
Rocchio and Widrow-Hoff algorithms are used
respectively to calculate the representativeness (or
weights) of terms instead of the method in Section
3.1, and then IRKs and expanded terms are se-
lected based on these weights. The variants all use
the reweighting scheme in Section 3.3. Table 4
shows that other keyword extraction algorithms do
not show any benefit over the fuzzy inference ap-
proach. We can also observe that when one of the
existing algorithms is combined with the second
component of our method, the performance im-
provement over the case that the algorithm solely
is used is negligible.

The method to extract IRKs reflecting user’s
preference directly affects the result of the term
reweighting process because the process is based
on the term co-occurrence similarity with the IRKs.
If the terms that are far from user’s preference are
extracted as IRKs, then some terms that actually
are improper in representing user’s information
needs may be assigned with high weights during
the reweighting process and then the final vector
generated from the results may be disqualified
from representing user’s preferences. So, we can
know that our fuzzy inference technique is effec-
tive to extract IRKs from the results in Table 4.

To demonstrate the usefulness of the second
part of our method, i.e., the expansion and re-
weighting technique, we also tried the 5 variants of
our method (IF_RC_EC, IF_RR_ER, IF_RW_EW,
IF_EF_RR, IF_EF_RW). Table 5 shows the all
variants are not better than the original though they
outperform Rocchio and Widrow-Hoff algorithms.

5 Conclusions

In this study, we apply fuzzy inference technique
and term reweighting scheme based on the term

co-occurrence similarity to the problem that extract
important keywords representing contents of
documents presented by users. We have conducted
extensive experiments on the Reuters-21578 col-
lection. The results show that our method outper-
forms two well-known training algorithms for
linear text classifiers. Moreover, some variants of
our method have been explored to analyze the
characteristics of our method. Though this paper
only describes how to extract user preferences
from example documents, the technique will be
applicable to several areas such as query modifica-
tion in IR, user profile modification in information
filtering, text summarization and so forth directly
or with some modifications.

Since only positive examples are considered in
our method, the method is not applicable to a
document set containing negative examples. For
covering negative examples, it needs to modify the
fuzzy inference rules with considering additional
input variables. The proposed method was also
designed for a small set of documents. So, we
could not achieve performance improvement as
described in this paper when our method is applied
to a large set of documents. However, such a prob-
lem will be alleviated if clustering techniques are
used together as in (Alberto et al., 2001; Lam and
Ho, 1998; Ugur et al., 2000).

Table 3. The detail result when 10 terms are used
for user preferences

 Our Rocchio W.H.
lumber 0.7273 0.4444 0.6667

dmk 0.4 0.4444 0.4
sunseed 0.5714 0.3333 0.3333

lei 1 0.8 1
soy-meal 0.6667 0.5143 0.5185

fuel 0.4615 0.4615 0.4615
heat 0.75 0.75 0.75

soy-oil 0.3704 0.2692 0.32
lead 0.5625 0.5 0.5

strategic- 0.13333 0.1053 0.1408
hog 0.8 0.6 0.8

orange 0.9091 0.9091 0.8571
housing 0.5714 0.6667 0.5714

tin 0.96 0.7857 0.9231
rapeseed 0.6154 0.5714 0.6154

wpi 0.5714 0.5882 0.5882
pet-chem 0.3704 0.2727 0.2759

silver 0.381 0.4 0.5

zinc 0.8966 0.6667 0.6842
retail 0.1667 0.0548 0.0548

sorghum 0.5882 0.2727 0.3871
Average 0.5940 0.4957 0.5404

Table 4. The performance of our method and its
two variants that use Rocchio and Widrow-Hoff
algorithms instead of fuzzy inference, respectively.

Table 5. The performance of our method and its
five variants that use different reweighting and ex-
panding approaches.

References
Alberto Diaz Esteban, Manuel J. Mana Lopez, Manuel

de Buenaga Rodriguez, Jose Ma Gomez Hidalgo and
Pablo Gervas Gomez-Navarro. 2001. Using linear
classifiers in the integration of user modeling and
text content analysis in the personalization of a web-
based Spanish news servic, In Proceedings. of the
Workshop on Machine Learning, Information Re-
trieval and User Modeling, 8th International Confer-
ence on User Modeling.

Baeza-Yates, R. and Ribeiro-Neto B.. 1999. Modern
Information Retrieval, ACM Press, USA.

David D. Lewis, Robert E. Schapire , James P. Callan
and Ron Papka. 1996. Training algorithms for linear
text classifiler, In Proc. of SIGIR-96, 19th ACM In-
ternational Conference on Research and Develop-
ment in Information Retrieval.

Goldberg D., Nichols D., Oki B. M., and Terry D.. 1992.
Using collaborative filtering to weave an information
tapestr, Communication of the ACM, 35(12), p61-70.

Kim, J., Oard, D.W., and Romanik, K.. 2000. User
modeling for information filtering based on implicit
feedback, In Proceedings. of ISKO-France.

Konstan J. A. , Miller B. N., Maltz D., Herlocker J. L.,
Gordon L.R. and Riedl J.. 1997. GroupLens: Apply-
ing collaborative filtering to Usenet News, Commu-
nication of the ACM, 40(3), p 77-87.

Lam K. and Ho C.. 1998. Using a generalized instance
set for automatic text categorization, In 21th Ann. Int.
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, p81-89.

Lee C.C.. 1990. Fuzzy logic in control systems: fuzzy
logic controller-part I, IEEE Trans. On Systems,
Man, and Cybernetics, 20 (2) , p408-418.

Mitra, M., Singhal, A., and Buckley, C.,. 1998. Improv-
ing Automatic Query Expansion, In Proceedings of
the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, p206-214, 1998.

Nichols D. M.. 1997. Implicit ratings and filteri”, In
Proceedings of the 5th DELOS Workshop on Filter-
ing and Collaborative Filtering, p10-12.

Pazzani, M. and Billsus, D.. 1997. Learning and revis-
ing user profiles: the identification of interesting Web
site, Machine Learning, 1997.

Seo, Y. and Zhang, B.. 2001. Personalized Web Docu-
ment Filtering Using Reinforcement Learning, Ap-
plied Artificial Intelligence.

Soltysiak, S. J. and Crabtree, I. B.. 2000. Automatic
Learning of User Profiles—Towards the Personaliza-
tion of Agent Services, BT Technology Journal, 16
(3), p110–117.

Ugur Çetintemel, Franklin Michael J. and Lee Giles C..
2000 . Self-Adaptive User Profiles for Large-Scale
Data Delivery, ICDE, p622-633.

Xu Jinix and Croft W. B.. 1996. Query Expansion Us-
ing Local and Global Document Analysis, In Pro-
ceeding of ACM SIGIR International Conference on
Research and Development in Information Retrieval,
p4-11.

Yan T. W. and Garcia-Molin H.. 1995. SIFT- A tool for
wide-area information dissemination, In Proceedings
of the 1995 USENIX Technical Conference, p177-
186.

Yang, Y. and Pedersen, J.. 1997. A comparative study
on feature selection in text categorization, In Pro-
ceedings of the 14th International Conference on
Machine Learning, p412-420.

 IF_EF_RC IR_ER_RC IW_EW_RC
5 0.582 0.509 0.571
10 0.594 0.505 0.528
15 0.571 0.502 0.537
20 0.552 0.491 0.526
25 0.545 0.487 0.518
30 0.541 0.497 0.510
All 0.490 0.478 0.490

IF_EF
_RC

IF_RC
_EC

IF_RR
_ER

IF_RW
_EW

IF_EF
_RR

IF_EF
_RW

5 0.582 0.571 0.546 0.580 0.545 0.570
10 0.594 0.520 0.498 0.549 0.551 0.561
15 0.571 0.514 0.491 0.508 0.518 0.517
20 0.552 0.513 0.495 0.533 0.497 0.538
25 0.545 0.509 0.498 0.503 0.491 0.521
30 0.541 0.515 0.506 0.512 0.498 0.511
All 0.490 0.488 0.478 0.494 0.465 0.483

