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Abstract

The approach to knowledge representation
taken in a multi-modal multi-domain dialogue
system - SMARTKOM - is presented. We fo-
cus on the ontological and representational is-
sues and choices helping to construct an ontol-
ogy, which is shared by multiple components of
the system, can be re-used in different projects
and applied to various tasks. Finally, examples
highlighting the usefulness of our approach are
given.

1 Introduction

The ways in which knowledge has been represented in
multi-modal dialogue systems (MMDS) show that indi-
vidual representations with different semantics and het-
erogeneously structured content can be found in vari-
ous formats within single natural language processing
(NLP) systems and applications. For example, a typi-
cal NLP system, such as TRAINS (Allen et al., 1996),
employs different knowledge representations for parsing,
action planning and generation, despite the fact that what
is being represented is common to all those representa-
tions, e. g., the parser representation for going from A to
B has no similarity to the action planner’s representation
thereof (Ferguson et al., 1996). Also central concepts, for
example city, are represented in multiple ways through-
out the system.

The origin for this state of affairs is that the respective
knowledge stores are hand-crafted individually for each
task. Sometimes they are compiled into code and cease
to be externally available. Where an explicit knowledge
representation is used, we find a multitude of formats and
inference engines, which often cause both performance
and tractability problems. In this paper we introduce the
results of an effort to employ a single knowledge repre-
sentation, i. e., an ontology, throughout a complete multi-
modal dialogue system. Therefore, we will describe the
underlying modeling principles and the benefits of such
a rigorously crafted knowledge store for the actual and
future MMDS.

In Section 2 we will introduce the representational for-
mats pertinent to our ontology, followed by a description
of our dialogue system in Section 3. In Section 4 we
discuss the modeling principles underlying the ontology.
Section 5 presents some examples of the various ways in
which the common ontology is employed throughout the
system. Concluding remarks are given in Section 6.

2 The Representational Formalism Used

Here we give a brief outline of the formalism pertinent
to the following description of the ontology. Efforts
originating in various W3C and Semantic Web projects
brought about several knowledge modeling standards:
Resource Description Framework (RDF), DARPA Agent
Mark-up Language (DAML), Ontology Interchange Lan-
guage (OIL), Web Ontology Language (OWL).1 Domain
and discourse knowledge represented in the ontology
may be encoded using XML-based semantic mark-up
languages, such as OIL, or DAML+OIL. In the work re-
ported here, we used an ontology defined in the OIL-
RDFS syntax. A detailed characterization of the for-
mal properties of the OIL language can be found in
Fensel et al. (2001). The FACT2 system can be used as
a reasoning engine for OIL ontologies, providing some
automated reasoning capabilities, such as class consis-
tency or subsumption checking. Graphical ontology en-
gineering front-ends and visualization tools are available
for editing, maintaining, and visualizing the ontology.3

The semantics of OIL is based on description logic ex-
tended with concrete datatypes. The language employs a
combination of frame- and description logic. It provides
most of the modeling primitives commonly used in the
frame-based knowledge representation systems. Frames
are used to represent concepts. These frames consist of
a collection of classes along with a list of slots and at-

1See www.w3c.org/RDF, www.ontoknowledge.org/oil,
www.daml.org and http://www.w3.org/2001/sw/WebOnt/ for
the individual specifications.

2See also www.cs.man.ac.uk/ � horroks/FaCT/.
3See OilEd (oiled.man.ac.uk) for editing and

FrodoRDFSViz (www.dfki.uni-kl.de/frodo/RDFSViz) for
visualization.



tributes. Under the term class or class expression a class
name, or an enumeration, or a property-restriction, or a
boolean combination of class expressions is to be under-
stood. Slots are interpreted as a collection of properties.
They are divided into those that relate classes to other
classes (so called object properties) and those that relate
classes to datatype values (so called datatype properties).
Slots can be filled by: class names, names of the atomic
elements, collection of the above (conjunctive sets - and,
disjunctive sets - or, or negation - not), concrete datatypes
(integers and strings).

Then, domain and range restrictions of the slots can
be defined. Domain restriction asserts that the property
only applies to the instances of particular class expres-
sions. Range restriction specifies that a property only as-
sumes values that are instances of the respective class ex-
pressions. Slot fillers can have several types of further
constraints, also called facets. These include value-type
restrictions (all fillers must be of a particular class), has-
value restrictions (there must be at least one filler of a
particular class). The value-type restriction corresponds
to the universal quantifier of the predicate logic. The has-
value restriction is analogous to the existential quantifier.
Another constraint on the slot fillers is cardinality, which
limits the number of possible fillers of the given class.
Atomic elements or individuals can also be associated
with a class definition via slot constraints.

The decision to restrict ourselves to schemes based on
the description logic is due to the fact that it allows to
represent enough knowledge for the effective operation
of envisaged NLP applications, e. g., those described in
Section 5. We used the OIL language in particular as
a whole range of software is freely available to support
ontology construction as mentioned above. Additionaly,
the usage of the ontology in Semantic Web applications
would be simplified.

3 The SMARTKOM Ontology

The SMARTKOM system (Wahlster et al., 2001) com-
prises a large set of input and output modalities which
the most advanced current systems feature, together with
an efficient fusion and fission pipeline. SMARTKOM fea-
tures speech input with prosodic analysis, gesture input
via infrared camera, recognition of facial expressions and
their emotional states. On the output side, the system fea-
tures a gesturing and speaking life-like character together
with displayed generated text and multimedia graphical
output. It currently comprises nearly 50 modules running
on a parallel virtual machine-based integration software
called Multiplatform.4

As mentioned in the introduction, complex MMDS

4The abbreviation stands for “MUltiple Language / Target
Integration PLATform FOR Modules”.

such as SMARTKOM require a homogeneous world
model. This model serves as a common knowledge rep-
resentation for various modules throughout the system. It
represents a general conceptualization of the world (top-
level or generic ontology) as well as of particular domains
(domain-specific ontologies). This way, the ontology rep-
resents language-independent knowledge. The language-
specific knowledge is stored elsewhere, e.g. in the lexi-
con containing lexical items together with their meanings
defined in terms of ontology concepts.

The ontology described herein was initially designed
as a general purpose component for knowledge-based
NLP. It includes a top-level developed following the pro-
cedure outlined by Russell and Norvig (1995) and orig-
inally covered the tourism domain encoding knowledge
about sights, historical persons and buildings. Then, the
existing ontology was adopted in the SMARTKOM project
and modified to cover a number of new domains, e. g.,
new media and program guides. The top-level ontology
was re-used with some slight extensions. Further devel-
opments were motivated by the need of a process hierar-
chy. This hierarchy models processes which are domain-
independent in the sense that they can be relevant for
many domains, e. g., InformationSearchProcess (see Sec-
tion 4.3 for more details).

Currently, the ontology employed by the system has
about 730 concepts and 200 relations. The acquisition
of the ontology went in two directions: top-down to cre-
ate a top level of the ontology and bottom-up to satisfy
the need of mapping lexical items to concepts. The pur-
pose of the top-level ontology is to provide a basic struc-
ture of the world, i. e., abstract classes to divide the uni-
verse in distinct parts as resulting from the ontological
analysis (Guarino and Poli, 1995). The domain concepts
emerged through a comprehensive corpus analysis. The
most important modeling decisions will be discussed in
Section 4. Once available, the ontology was augmented
with comments containing definitions, assumptions and
examples that facilitate its appropriate use in a multi-
component system such as SMARTKOM and its possible
re-use in other systems. Such descriptions of ontology
classes are particularly important as the meanings associ-
ated with them may vary considerably from one ontology
to another.

4 Our Approach to Knowledge
Representation

4.1 Type versus Role

Following the distinctions made by
Guarino and Welty (2000), we first defined a collec-
tion of concepts that have primary ontological status.
The guiding principle was to differentiate between the
basic ontological entities and the roles taken by them in



particular situations, events, or processes. For example,
a building can be a hospital, a railway station, a school,
etc. But while taking all these roles, it doesn’t cease to
be a building. Another example is a person who can take
the role of a school teacher, a mother, etc., but it still
remains a person for its entire life.

Here the question arises, how deep the differentiation
should go. Consider the example of a person: we give
a concept Person a primary ontological status, but what
about the concepts Man and Woman? Should they be
given the same status? Our answer is positive and is
based, on one hand, on the assumption that sex is the pri-
mary property that defines a person as a man or a woman,
on the other hand, a functional approach shows that rela-
tions of these two classes to other classes and their other
attributes can be determined by this property. In this way,
the basic top-level ontological categorization in our sys-
tem divides all concepts into two classes Type and Role
(see Figure 1). As the class Type includes concepts with
primary ontological status independent of the particular
application, every system using the ontology for its spe-
cific purposes deals with the class Role.

Top

Role Type

Event
Abstract Event 

Type Event Type

Abstract Object Abstract ProcessProcessPhysical Object

Abstract Event

Figure 1: Top-level part of the ontology.

Role is the most general class in the ontology repre-
senting concrete roles that any entity or process can per-
form in a specific domain. It is divided into Event and
AbstractEvent. Along with concrete events, i. e., free-
standing entities existing essentially in space or in time,
our model includes abstract objects, e. g., numbers or ab-
stract properties, such as spatial relations, and abstract
processes or rather abstracted states every real process
can go through, such as Start, Done, Interrupt, etc. These
are modeled separately thereby allowing a uniform de-
scription of the processes throughout the ontology.

4.2 Event versus Abstract Event

On the Role level we distinguish between Event and Ab-
stractEvent. Event is used to describe a kind of role any
entity or process may have in a real situation or process,
e.g. a school or an information search. It is contrasted
with AbstractEvent, which is abstracted from a set of sit-
uations and processes. It reflects no reality and is used
for the general categorization and description, e.g., Num-
ber, Set, SpatialRelation. AbstractEvent has subclasses
AbstractObject and AbstractProcess.

Event’s are further classified in PhysicalObject and
Process. In contrast to abstract objects, they have a lo-
cation in space and time. The class PhysicalObject de-
scribes any kind of objects we come in contact with -
living as well as non-living. These objects refer to dif-
ferent domains, such as Sight and Route in the tourism
domain, AvMedium and Actor in the TV and cinema do-
main, etc., and can be associated with certain relations in
the processes via slot constraint definitions.

4.3 Representing Processes

The modeling of Process as a kind of event that is contin-
uous and homogeneous in nature, follows the frame se-
mantic analysis used for generating the FRAMENET data
(Baker et al., 1998). Based on the analysis of our dia-
logue data, we developed the following classification of
processes (see Figure 2):

� GeneralProcess, a set of the most general processes
such as duplication, imitation or repetition pro-
cesses;

� MentalProcess, a set of processes such as cognitive,
emotional or perceptual processes;

� PhysicalProcess, a set of processes such as motion,
transaction or controlling processes;

� SocialProcess, a set of processes such as communi-
cation or instruction processes.

While the three last classes can be understood intu-
itively, the first one needs further explanation. It con-
sists of several subclasses, such as AbstractDuplication-
Process, AbstractRepetitionProcess, AbstractImitation-
Process, etc. These are abstract processes that are inde-
pendent from the real processes and can take place at the
same time with the main process.

The MentalProcess subtree includes CognitiveProcess,
EmotionProcess and PerceptualProcess. Under Cogni-
tiveProcess we understand a group of processes that aim
at acquiring information or making plans about the fu-
ture. The further division of EmotionProcess into the fol-
lowing subclasses - EmotionExperiencerObjectProcess
and EmotionExperiencerSubjectProcess - is due to the
fact that an emotion can be either provoked by an ob-
ject (e.g. The cry scared me) or can be experienced by an
agent towards some object (e.g. I want to go home).

The PhysicalProcess has the following subclasses: the
semantics of ControllingProcess presupposes the control-
ling of a number of artifacts, e. g., devices, MotionPro-
cess models different types of agent’s movement regard-
ing some object or point in space, PresentationProcess
describes a process of displaying some information by
an agent, e. g., a TV program by Smartakus, an artificial
character embedding the SMARTKOM system, StaticSpa-
tialProcess consists in the agent’s dwelling in some point
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Figure 2: Process Hierarchy.

in space, TransactionProcess presupposes an exchange
of entities or services among different participants of the
process.

Another subclass of the Process - SocialProcess in-
cludes CommunicativeProcess, which consists in com-
municating by the agent a message to the addressee by
different means, and InstructiveProcess which describes
an interaction between an agent and a trainee.

4.4 Slot Hierarchy

The slot structure also reflects the general intention to
keep abstract and concrete elements apart. A set of most
general properties has been defined with regard to the
role an object can play in a process: agent, theme, ex-
periencer, instrument (or means), location, source, tar-
get, path. These general roles applied to concrete pro-
cesses may also have subslots: thus an agent in a pro-
cess of buying (TransactionProcess) is a buyer, the one
in the process of cognition is a cognizer. This way, slots
can also build hierarchical trees. The property theme in
the process of information search is a required piece-of-
information, in presentation process it is a presentable-
object, i. e., the item that is to be presented, etc.

Consider the class Process. It has the following
slots: begin-time, a time expression indicating the start-

ing point, end-time, a time expression indicating the time
point when the process is complete, state, one of the ab-
stract process states. These slots describe properties that
are common to all processes, and as such they are inher-
ited by all subclasses of the Process class. An Emotion-
ExperiencerSubjectProcess inherits the slots of the Pro-
cess class, among them the slot theme that can be filled
with any process or object (the basic idea is that any phys-
ical entity or the performance of any process can become
an object of someone’s emotion). It also has several ad-
ditional properties such as experiencer to denote the one
who undergoes the process, and preference to define the
attitude an experiencer has to the object of its emotion.

4.5 Ontology instances

Consider the definition of the InformationSearchProcess
in the ontology. It is modeled as a subclass of the Cogni-
tiveProcess, which is a subclass of the MentalProcess and
inherits the following slot constraints: begin-time, a time
expression indicating the starting time point, end-time, a
time expression indicating the time point when the pro-
cess is complete, state, one of the abstract process states,
e. g., start, continue, interrupt, etc., cognizer, filled with a
class Person including its subclasses.

The InformationSearchProcess features one additional



slot constraint, piece-of-information. The possible slot-
fillers are a range of domain objects, e.g. Sight, Perfor-
mance, or whole sets of those, e.g. TvProgram, but also
processes, e.g. ControllingTvDeviceProcess. This way,
an utterance such as:5

(1) I
I

hätte gerne
would like

Informationen
information

zum
about the

Schloss
castle

can be mapped onto the InformationSearchProcess,
which has an agent of the type User, and a piece of in-
formation of the type Sight. Sight has a name of the type
Castle. Analogously, the utterance:

(2) Wie
How

kann
can

ich
I

den
the

Fernseher
TV

steuern
control

can also be mapped onto the InformationSearchProcess,
which has an agent of the type User, and has a piece of
information of the type ControllingTvDeviceProcess.

Another example demonstrating how slot structures
can be shared between some super- and subclasses: the
subclass AvEntertainment inherits from its superclass
Entertainment the following slots: duration, end-time,
and begin-time, filled by the TimeDuration and TimeEx-
pression respectively. The class AvEntertainment fea-
tures two additional slots: language, its filler is an in-
dividual Language and av-medium, its filler is a class
AvMedium. The class AvEntertainment has further sub-
classes - Broadcast representing an individual entry in a
TV program, and Performance modeling an entry in a
cinema program. Both of them inherit the slots of the
superclasses Entertainment and AvEntertainment, while
also featuring their own additional slots, e. g., channel
and showview for the Broadcast, cinema and seat for the
Performance. In Section 5.2, we will show how this fea-
ture can be effectively utilized by a specific dialogue in-
terpretation algorithm called overlay.

5 Example Applications of Ontology

There is no agreed methodology for ontology evaluation.
In our opinion, the usefulness of an ontology can be eval-
uated by examining the ways it is employed within the
system, allowing to draw tentative conclusions as for the
re-usability of the ontology and its portability with re-
spect to new applications and NLP tasks. The ontology
described here is used by the complete core of the system
(Löckelt et al., 2002). In the next sections we give some
examples of the usage within the project.

5All examples are displayed with the Germano riginal on top
and a glossed translation below.

5.1 Semantic Coherence Scoring

We introduced the notion of semantic coherence as a
special measurement which can be applied to estimate
how well a given speech recognition hypothesis (SRH)
fits with respect to the existing knowledge representation
(Gurevych et al., 2003). This provides a mechanism in-
creasing the robustness and reliability of multi-modal di-
alogue systems.

5.1.1 Challenge
One of the major challenges in making an MMDS re-

liable enough to be deployed in more complex real world
applications is an accurate recognition of the users’ input.
In many cases both correct and incorrect representations
of the users’ utterances are contained in the automatic
speech recognizer’s n-best lists. Facing multiple repre-
sentations of a single utterance poses the question, which
of the different hypotheses corresponds most likely to the
user’s utterance. Different methods have been proposed
to solve this problem. Frequently, the scores provided
by the recognition system itself are used. More recently,
also scores provided by the parsing system have been em-
ployed, e.g. Engel (2002). In this application, we propose
a new ontology-based method and show that knowledge-
based scores can be successfully employed to re-score the
speech recognition output.

5.1.2 Solution
The software for scoring the SRHs and classifying

them in terms of their semantic coherence employs the
ontology described herein. This means, that the ontology
crafted as a general knowledge representation for various
processing modules of the system is additionally used as
the basis for evaluating the semantic coherence of sets of
concepts.

The scoring software performs a number of processing
steps:

� converting each SRH into a concept representation.
For this purpose, each entry of the system’s lexicon
was augmented with zero, one or multiple ontology
concepts;

� converting the domain model, i.e. an ontology, into a
directed graph with concepts as nodes and relations
as edges;

� scoring concept representations using the shortest
path between concepts based scoring metric.

For example, in our data (Gurevych et al., 2002) a user
expressed the wish to get more information about a spe-
cific church, as:

(3) Kann
May

ich
I

bitte
please

Informationen
Information

zur
about the

Heiliggeistkirche
Church of Holy Spirit

bekommen
get



Looking at two SRHs from the ensuing n-best list we
found that Example (5) constituted a suitable representa-
tion of the utterance, whereas Example (4) constituted a
less adequate representation thereof, labeled accordingly
by the human annotators:

(4) Kann
May

ich
I

Information
Information

zur
about the

Heiliggeistkirche
Church of Holy Spirit

kommen
come

(5) Kann
May

ich
I

Information
Information

zur
about the

Heiliggeistkirche
Church of Holy Spirit

bekommen
get

According to the lexicon entries, the SRHs are trans-
formed into two alternative concept representations:

�����
: � Person; Information Search Process; Church;

Motion Directed Transliterated Process � ;�����
: � Person; Information Search Process; Church;

Transaction Process � .
The scores are normalized as numbers on a scale from

0 to 1 with higher scores indicating better semantic co-
herence. Then, the resulting score assigned to Example
4 is 0.6, and the score of Example 5 is 0.75. The evalua-
tion of the method against the hand-annotated corpus has
shown that it successfully classifies 73.2% in a German
corpus of 2.284 speech recognition hypotheses as either
coherent or incoherent, given a baseline 54.55% derived
from the annotation experiments (the majority class).

Additional application of the semantic coherence scor-
ing method is the calculation of a semantic coherence
score for SRHs taking into account their conceptual con-
text (Porzel and Gurevych, 2003). Currently we are
also experimenting with the ontology-based automatic
domain recognition and domain change detection.

5.2 Computing Dialogue Coherence

The ontology provides a good basis for the enrichment
and scoring of hypotheses - the two main tasks for the
discourse module (Pfleger, 2002). What we call discourse
processing is an essential processing step for any dia-
logue system since it provides an interpretation of the
hypotheses based on the discourse history.

5.2.1 Challenge
As indicated in Section 5.1, a system processing spo-

ken language and gestures is faced with analysis modules
producing several hypotheses. A discourse module has

not just the task of scoring these hypotheses in respect to
the discourse state, but also interpretating and resolving
ambiguities, e. g., (Löckelt et al., 2002).

5.2.2 Solution
There are several advantages for using an ontology.

First, it enables a convenient way for interpreting com-
mon phenomena like partial utterances and ellipses. Sec-
ond, and most notably, using overlay (Alexandersson and
Becker, 2003) we can straightforwardly inherit informa-
tion from one discourse state to another, even if the fo-
cussed instance of the ontology is from a different but
related type than the one of the current hypothesis. The
advantage of this technique becomes evident in the dia-
logue excerpt below.

The data structure of the discourse memory is
based on the ideas presented in LuperFoy (1992),
Salmon-Alt (2000). A three-tiered partition of a modal-
ity, discourse and domain layer is connected with a dou-
ble threaded focus structure.

A non-monotonic unification-like operation called
overlay serves as the main algorithm for manipulating
instances of the ontology. It combines new informa-
tion (cover) with old context information (background)
by unifying where possible, and overwriting where uni-
fication would fail. Additionally, the operation does not
fail if the types differ, but assimilates the background to
the type of the cover - thereby possibly deleting informa-
tion of the background - before the cover is layed over
the background. During overlay we record a number of
parameters, e. g., the number of type clashes (tc) , the
amount of information stemming from background (bg)
and cover (co) and the number of conflicting values (cv),
which is combined using the formula below to form the
score (see (Pfleger et al., 2002)).

�
	���
�����	�������������	���	����! 	��#"$���&%'�(��	)"*	����
	��#"$����"+�(��	)"*	����

The total score includes a fifth parameter recency that ex-
presses how accessible the considered discourse state is.

To highlight the advantage of the ontology, consider
the following dialogue excerpt between the user (U) and
the system (S):

(6) U: What’s on TV tonight

(7) S: [Displays a list of films] Here you see a list of
films.

(8) U: show me the cinema program.

In our ontology, the structure for showing cinema pro-
gram and the structure for showing tv program are related
in that there exists a common superclass AvEntertainment



(see also Section 4.5) defining common slots, e. g., begin-
time. Overlay makes it possible to inherit the time infor-
mation deployed in (6) while enriching the hypotheses for
(8) with contextual information.

5.3 Generating Interface Specifications

In this additional application, we proposed to use the
knowledge modeled in the ontology as the basis for defin-
ing the semantics and the content of information ex-
changed between various modules of the system.

5.3.1 Challenge
In NLP systems, modules typically exchange mes-

sages, e.g., a parser might get word lattices as input and
produce corresponding semantic representations for later
processing modules, such as a discourse manager. The in-
creasing employment of XML-based interfaces for agent-
based or other multi-blackboard communication systems
sets a de facto standard for syntax and expressive capabil-
ities of the information that is exchanged amongst mod-
ules. The content and structure of the information to be
represented are typically defined in corresponding XML
schemata (XMLS) or Document Type Definitions (DTD).

As discussed above, ontologies are a suitable means
for knowledge representation, e.g. for the definition of
an explicit and detailed model of a system’s domains.
That way, they provide a shared domain theory, which
can be used for communication. Additionally, they can
be employed for deductive reasoning and manipulations
of models. The meaning of ontology constructs relies
on a translation to some logic. This way, the inference
implications of statements, e.g. whether a class can be
related to another class via a subclass or some other re-
lation, can be determined from the formal specification
of the semantics of the ontology language. However, this
does not make any claims about the syntactic appearance
of the representations exchanged, e.g. an ordering of the
properties of a class.

An interface specification framework, such as XMLS
or DTD, constitutes a suitable means for defining con-
straints on the syntax and structure of XML documents.
Ideally, the definition of the content communicated be-
tween the components of a complex dialogue system
should relate both the syntax and the semantics of the
XML documents exchanged. Those can then be seen
as instances of the ontology represented as XMLS-based
XML documents. However, this requires that the knowl-
edge, originally encoded in the ontology, is represented
in the XMLS syntax.

5.3.2 Solution
The solution proposed states that the knowledge repre-

sentations to be expressed in XMLS are first modeled in
OIL-RDFS or DAML+OIL as ontology proper, using the
advantages of ontology engineering systems available,

and then transformed into a communication interface au-
tomatically with the help of the software developed for
that purpose.6

Employing this approach, XMLS and DTDs are cre-
ated such that they:

� stay logically consistent,
� are easy to manage,
� enable a straightforward mapping back to the re-

spective knowledge representation for inference,
� allow the handling of a range of NLP tasks immedi-

ately on the basis of XMLS.7

The resulting schemata capture the hierarchical struc-
ture and a significant part of the semantics of the ontol-
ogy. We, therefore, provide a standard mechanism for
defining XMLS-based interface specifications, which are
knowledge rich, and thus can be used as a suitable rep-
resentation of domain and discourse knowledge by NLP
components. Since the software that has been developed
completely automates the transformation process, the re-
sulting XMLS are congruent with the XML schema spec-
ifications. Furthermore, the ontology can be re-used in
multiple systems as a single ontology can be used to gen-
erate application-specific communication interfaces.

However, the main advantage of our approach is that
it combines the power of ontological knowledge repre-
sentation with the strengths of XMLS as an interface
specification framework in a single and consistent rep-
resentation. Our experience shows, this would not have
been possible for a complex dialogue system, if XML
schemata were defined from scratch or hand-crafted, and
constitutes a step towards building robust and reusable
NLP components.

6 Concluding Remarks

In this paper, we presented an ontology which can be used
as a single knowledge representation in a multi-modal
and multi-domain dialogue system. We described the
major modeling principles and the design choices made.
Furthermore, we sketched some examples of the ontology
application within the system.

Together these examples suffice to demonstrate the
benefits of using a single knowledge representation
throughout a dialogue system as opposed to using mul-
tiple knowledge representations and formats. An addi-
tional advantage of such a homogeneous world model

6This is a free software project. The package
and respective documentation can be obtained from
http://savannah.nongnu.org/projects/oil2xsd.

7E.g., the discourse module described in the previous sub-
section operates on the XML schema obtained via ontology
transformation.



that defines the processing interfaces as well as the sys-
tem’s world knowledge is that no costly mappings be-
tween them are any more necessary. This means that
modules receive only messages whose content is congru-
ent to the terminological and structural distinctions de-
fined in the ontology.

Our additional concern while designing the ontology
was the re-usability of this component within our MMDS
as well as other NLP systems. So far, the top-level on-
tology proved stable. We found the extensions on the
lower levels of the ontology to be comparatively cheap.
This single knowledge base was successfully tested and
applied to multiple NLP problems, e.g., resolving bridg-
ing expressions in texts as well as for the resolution of
metonymical and polysemous utterances next to defin-
ing communication interfaces for NLP components of
the system, scoring of speech recognition hypotheses and
overlay mechanism described above.
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