

InfoXtract: A Customizable Intermediate Level Information
Extraction Engine∗∗∗∗

Rohini K. Srihari
Cymfony, Inc.

State University of New York at Buffalo
rohini@Cymfony.com

Wei Li, Cheng Niu and Thomas Cornell
Cymfony Inc.

600 Essjay Road, Williamsville, NY 14221, USA
{wei, cniu, cornell}@Cymfony.com

Keywords: Information Extraction, Named Entity Tagging, Machine Learning, Domain Porting

∗ This work was supported in part by SBIR grants F30602-01-C-0035, F30602-03-C-0156, and
F30602-02-C-0057 from the Air Force Research Laboratory (AFRL)/IFEA.

Abstract
Information extraction (IE) systems assist
analysts to assimilate information from
electronic documents. This paper focuses on
IE tasks designed to support information
discovery applications. Since information
discovery implies examining large volumes
of documents drawn from various sources for
situations that cannot be anticipated a priori,
they require IE systems to have breadth as
well as depth. This implies the need for a
domain-independent IE system that can
easily be customized for specific domains:
end users must be given tools to customize
the system on their own. It also implies the
need for defining new intermediate level IE
tasks that are richer than the
subject-verb-object (SVO) triples produced
by shallow systems, yet not as complex as the
domain-specific scenarios defined by the
Message Understanding Conference (MUC).
This paper describes a robust, scalable IE
engine designed for such purposes. It
describes new IE tasks such as entity profiles,
and concept-based general events which
represent realistic goals in terms of what can
be accomplished in the near-term as well as
providing useful, actionable information.
These new tasks also facilitate the correlation
of output from an IE engine with existing
structured data. Benchmarking results for the
core engine and applications utilizing the
engine are presented.

1 Introduction

This paper focuses on new intermediate level
information extraction tasks that are defined and
implemented in an IE engine, named InfoXtract.
InfoXtract is a domain independent, but portable
information extraction engine that has been designed
for information discovery applications.

The last decade has seen great advances in the area
of IE. In the US, MUC [Chinchor & Marsh 1998] has
been the driving force for developing this technology.

The most successful IE task thus far has been
Named Entity (NE) tagging. The state-of-the-art
exemplified by systems such as NetOwl [Krupka &
Hausman 1998], IdentiFinder [Miller et al 1998] and
InfoXtract [Srihari et al 2000] has reached near human
performance, with 90% or above F-measure. On the
other hand, the deep level MUC IE task Scenario
Template (ST) is designed to extract detailed
information for predefined event scenarios of interest.
It involves filling the slots of complicated templates. It
is generally felt that this task is too ambitious for
commercial application at present.

Information Discovery (ID) is a term which has
traditionally been used to describe efforts in data
mining [Han 1999]. The goal is to extract novel
patterns of transactions which may reveal interesting
trends. The key assumption is that the data is already
in a structured form. ID in this paper is defined within
the context of unstructured text documents; it is the
ability to extract, normalize/disambiguate, merge and
link entities, relationships, and events which provides
significant support for ID applications. Furthermore,
there is a need to accumulate information across
documents about entities and events. Due to rapidly
changing events in the real world, what is of no
interest one day, may be especially interesting the
following day. Thus, information discovery
applications demand breadth and depth in IE
technology.

A variety of IE engines, reflecting various goals in
terms of extraction as well as architectures are now
available. Among these, the most widely used are the
GATE system from the University of Sheffield
[Cunningham et al 2003], the IE components from
Clearforest (www.clearforest.com), SIFT from BBN
[Miller et al 1998], REES from SRA [Aone &
Ramon-Santacruz 1998] and various tools provided
by Inxight (www.inxight.com). Of these, the GATE
system most closely resembles InfoXtract in terms of
its goals as well as the architecture and customization
tools. Cymfony differentiates itself by using a hybrid

model that efficiently combines statistical and
grammar-based approaches, as well as by using an
internal data structure known as a token-list that can
represent hierarchical linguistic structures and IE
results for multiple modules to work on.

The research presented here focuses on a new
intermediate level of information extraction which
supports information discovery. Specifically, it
defines new IE tasks such as Entity Profile (EP)
extraction, which is designed to accumulate
interesting information about an entity across
documents as well as within a discourse. Furthermore,
Concept-based General Event (CGE) is defined as a
domain-independent, representation of event
information but more feasible than MUC ST.

InfoXtract represents a hybrid model for extracting
both shallow and intermediate level IE: it exploits
both statistical and grammar-based paradigms. A key
feature is the ability to rapidly customize the IE engine
for a specific domain and application. Information
discovery applications are required to process an
enormous volume of documents, and hence any IE
engine must be able to scale up in terms of processing
speed and robustness; the design and architecture of
InfoXtract reflect this need.

In the remaining text, Section 2 defines the new
intermediate level IE tasks. Section 3 presents
extensions to InfoXtract to support cross-document
IE. Section 4 presents the hybrid technology. Section
5 delves into the engineering architecture and
implementation of InfoXtract. Section 6 discusses
domain porting. Section 7 presents two applications
which have exploited InfoXtract, and finally, Section
8 summarizes the research contributions.

2 InfoXtract: Defining New IE Tasks

InfoXtract [Li & Srihari 2003, Srihari et al 2000] is a
domain-independent and domain-portable, inter-
mediate level IE engine. Figure 1 illustrates the
overall architecture of the engine.

A description of the increasingly sophisticated IE
outputs from the InfoXtract engine is given below:

• NE: Named Entity objects represent key items

such as proper names of person, organization,
product, location, target, contact information
such as address, email, phone number, URL, time
and numerical expressions such as date, year and
various measurements weight, money,
percentage, etc.

• CE: Correlated Entity objects capture relation-
ship mentions between entities such as the
affiliation relationship between a person and his
employer. The results will be consolidated into
the information object Entity Profile (EP) based
on co-reference and alias support.

• EP: Entity Profiles are complex rich information
objects that collect entity-centric information, in
particular, all the CE relationships that a given
entity is involved in and all the events this entity
is involved in. This is achieved through
document-internal fusion and cross-document
fusion of related information based on support
from co-reference, including alias association.
Work is in progress to enhance the fusion by
correlating the extracted information with
information in a user-provided existing database.

• GE: General Events are verb-centric information
objects representing ‘who did what to whom
when and where’ at the logical level.
Concept-based GE (CGE) further requires that
participants of events be filled by EPs instead of
NEs and that other values of the GE slots (the
action, time and location) be disambiguated and
normalized.

• PE: Predefined Events are domain specific or
user-defined events of a specific event type, such
as Product Launch and Company Acquisition in
the business domain. They represent a simplified
version of MUC ST. InfoXtract provides a toolkit
that allows users to define and write their own
PEs based on automatically generated PE rule
templates.

The InfoXtract engine has been deployed both

internally to support Cymfony’s Brand Dashboard™
product and externally to a third-party integrator for
building IE applications in the intelligence domain.

Document Processor

Knowledge Resources

Lexicon
Resources

Grammars

Process
Manager

Tokenlist

Legend

Output
Manager

Source
Document

NLP/IE Processor(s)Tokenizer

Tokenlist

Lexicon Lookup

 POS Tagging

Named Entity
Detection

Shallow
Parsing

Deep Parsing

Relationship
Detection

Document
pool

NE

CE

EP

SVO

Time
Normalization

Alias and
Coreference

Profile/Event
Linking/Merging

Abbreviations

POS = Part of Speech
NE = Named Entity
CE = Correlated Entity
EP = Entity Profile
SVO = Subject-Verb-Object
GE = General Event
PE = Predefined Event

Grammar Module

Procedure or
Statistical Model

Hybrid
Module

GE
Statistical
Models

Location
NormalizationNormalization

PE

InfoXtract
Repository

Event
Extraction

Case Restoration

Figure 1: InfoXtract Engine Architecture

3 Hybrid Technology

InfoXtract represents a hybrid model for IE since it
combines both grammar formalisms as well as
machine learning. Achieving the right balance of these
two paradigms is a major design objective of
InfoXtract. The core of the parsing and information
extraction process in InfoXtract is organized very
simply as a pipeline of processing modules. All
modules operate on a single in-memory data structure,
called a token list. A token list is essentially a
sequence of tree structures, overlaid with a graph
whose edges define relations that may be either
grammatical or informational in nature. The nodes of
these trees are called tokens. InfoXtract’s typical
mode of processing is to skim along the roots of the
trees in the token list, building up structure
“strip-wise”. So even non-terminal nodes behave, in
the typical case, as complex tokens. Representing a
marked up text using trees explicitly, rather than
implicitly as an interpretation of paired bracket
symbols, has several advantages. For example, it
allows a somewhat richer organization of the
information contained “between the brackets,”
allowing us to construct direct links from a root node
to its semantic head, for example.

The processing modules that act on token lists can
range from lexical lookup to the application of hand
written grammars to statistical analysis based on
machine learning all the way to arbitrary procedures
written in C++. The configuration of the InfoXtract
processing pipeline is controlled by a configuration
file, which handles pre-loading required resources as
well as ordering the application of modules. Despite
the variety of implementation strategies available,
InfoXtract Natural Language Processing (NLP)
modules are restricted in what they can do to the token
list to actions of the following three types :

1. Assertion and erasure of token properties

(features, normal forms, etc.)
2. Grouping token sequences into higher level

constituent tokens.
3. Linking token pairs with a relational link.

Grammatical analysis of the input text makes use of a
combination of phrase structure and relational
approaches to grammar. Basically, early modules
build up structure to a certain level (including
relatively simple noun phrases, verb groups and
prepositional phrases), after which further
grammatical structure is represented by asserting
relational links between tokens. This mix of phrase
structural and relational approaches is very similar to
the approach of Lexical Functional Grammar (LFG)
[Kaplan & Bresnan 1982], much scaled down.

Our grammars are written in a formalism
developed for our own use, and also in a modified

formalism developed for outside users, based on our
in-house experiences. In both cases, the formalism
mixes regular expressions with boolean expressions.
Actions affecting the token list are implemented as
side effects of pattern matching. So although our
processing modules are in the technical sense token
list transducers, they do not resemble Finite State
Transducers (FSTs) so much as the regular expression
based pattern-action rules used in Awk or Lex.
Grammars can contain (non-recursive) macros, with
parameters.

This means that some long-distance dependencies,
which are very awkward to represent directly in finite
state automata can be represented very compactly in
macro form. While this has the advantage of
decreasing grammar sizes, it does increase the size of
the resulting automata. Grammars are compiled to a
special type of finite state automata. These token list
automata can be thought of as an extension of tree
walking automata [Mönnich et al 2001, Aho &
Ullman 1971, Engelfriet et al 1999]. These are linear
automata (as opposed to standard finite state tree
automata [Gécseg & Steinby 1997], which are more
naturally thought of as parallel) which run over trees.
The problem with linear automata on trees is that there
can be a number of “next” nodes to move the read
head to: right sister, left sister, parent, first child, etc.
So the vocabulary of the automaton is increased to
include not only symbols that might appear in the text
(test instructions) but also symbols that indicate where
to move the read head (directive instructions). We
have extended the basic tree walking formalism in
several directions. First we extend the power of test
instructions to allow them to check features of the
current node and to perform string matching against
the semantic head of the current node (so that a
syntactically complex constituent can be matched
against a single word). Second, we include symbols
for action instructions, to implement side effects.
Finally, we allow movement not only along the root
sequence (string-automaton style) and branches of a
tree (tree-walking style) but also along the the
terminal frontier of the tree and along relational links.

These extensions to standard tree walking
automata extend the power of that formalism
tremendously, and could pose problems. However, the
grammar formalisms that compile into these token list
walking automata are restrictive, in the sense that
there exist many token list transductions that are
implementable as automata that are not
implementable as grammars. Also the nature of the
shallow parsing task itself is such that we only need to
dip into the reserves of power that this representation
affords us on relatively rare occasions. As a result, the
automata that we actually plug into the InfoXtract
NLP pipeline generally run very fast.

Recently, we have developed an extended finite
state formalism named Expert Lexicon, following the
general trend of lexicalist approaches to NLP. An

expert lexicon rule consists of both grammatical
components as well as proximity-based keyword
matching. All Expert Lexicon entries are indexed,
similar to the case for the finite state tool in INTEX
[Silberztein 2000]. The pattern matching time is
therefore reduced dramatically compared to a
sequential finite state device.

Some unique features of this formalism include: (i)
the flexibility of inserting any number of Expert
Lexicons at any level of the process; (ii) the capability
of proximity checking within a window size as rule
constraints in addition to pattern matching using an
FST call, so that the rule writer can exploit the
combined advantages of both; and (iii) support for the
propagation of semantic tagging results, to
accommodate principles like one sense per discourse.
Expert lexicons are used in customization of lexicons,
named entity glossaries, and alias lists, as well as
concept tagging.

Both supervised machine learning and unsuper-
vised learning are used in InfoXtract. Supervised
learning is used in hybrid modules such as NE [Srihari
et al 2000], NE Normalization [Li et al 2002] and
Co-reference. It is also used in the preprocessing
module for orthographic case restoration of case
insensitive input [Niu et al 2003]. Unsupervised
learning involves acquisition of lexical knowledge
and rules from a raw corpus. The former includes
word clustering, automatic name glossary acquisition
and thesaurus construction. The latter involves
bootstrapped learning of NE and CE rules, similar to
the techniques used in [Riloff 1996]. The results of
unsupervised learning can be post-edited and added as
additional resources for InfoXtract processing.

Table 1: SVO/CE Benchmarking
 SVO CE
 CORRECT 196 48
 INCORRECT 13 0
 SPURIOUS 10 2
 MISSING 31 10
 PRECISION 89.50% 96.0%
 RECALL 81.67% 82.8%
 F-MEASURE 85.41% 88.9%

Accuracy
InfoXtract has been benchmarked using the MUC-7
data sets which are recognized as standards by the
research community. Precision and recall figures for
the person and location entity types were above 90%.
For organization entity types, precision and recall
were in the high 80’s reflecting the fact that
organization names tend to be very domain specific.
InfoXtract provides the ability to create customized
named entity glossaries, which will boost the
performance of organization tagging for a given

domain. No such customization was done in the
testing just described. The accuracy of shallow
parsing is well over 90% reflecting very high
performance part-of-speech tagging and named entity
tagging. Table 1 shows the benchmarks for CE
relationships which are the basis for EPs and for the
SVO parsing which supports event extraction.

4 Engineering Architecture

The InfoXtract engine has been developed as a
modular, distributed application and is capable of
processing up to 20 MB per hour on a single
processor. The system has been tested on very large (>
1 million) document collections. The architecture
facilitates the incorporation of the engine into external
applications requiring an IE subsystem. Requests to
process documents can be submitted through a web
interface, or via FTP. The results of processing a
document can be returned in XML. Since various
tools are available to automatically populate databases
based on XML data models, the results are easily
usable in web-enabled database applications.
Configuration files enable the system to be used with
different lexical/statistical/grammar resources, as well
as with subsets of the available IE modules.

InfoXtract supports two modes of operation, active
and passive. It can act as an active retriever of
documents to process or act as a passive receiver of
documents to process. When in active mode,
InfoXtract is capable of retrieving documents via
HTTP, FTP, or local file system. When in passive
mode, InfoXtract is capable of accepting documents
via HTTP. Figure 2 illustrates a multiple processor
configuration of InfoXtract focusing on the typical
deployment of InfoXtract within an application.

Server B

Server C

Server A

Processor 4

Processor 6

Processor 2

Document
Retriever

InfoXtract
Controller

Document
Manager

Processor 1

Processor 3

Processor 5

Extracted info
database

Documents

External Content
Provider

Java InfoXtract
(JIX)

External
Application

Figure 2: High Level Architecture

The architecture facilitates scalability by

supporting multiple, independent Processors. The
Processors can be running on a single server (if
multiple CPUs are available) and on multiple servers.
The Document Manager distributes requests to
process documents to all available Processors. Each
component is an independent application. All direct

inter-module communication is accomplished using
the Common Object Request Broker Architecture
(CORBA). CORBA provides a robust, programming
language independent, and platform neutral
mechanism for developing and deploying distributed
applications. Processors can be added and removed
without stopping the InfoXTract engine. All modules
are self-registering and will announce their presence
to other modules once they have completed
initialization.

The Document Retriever module is only used in
the active retriever mode. It is responsible for
retrieving documents from a content provider and
storing the documents for use by the InfoXtract
Controller. The Document Retriever handles all
interfacing with the content provider’s retrieval
process, including interface protocol (authentication,
retrieve requests, etc.), throughput management, and
document packaging. It is tested to be able to retrieve
documents from content providers such as Northern
Light, Factiva, and LexisNexis. Since the Document
Retriever and the InfoXtract Controller do not
communicate directly, it is possible to run the
Document Retriever standalone and process all
retrieved documents in a batch mode at a later time.

The InfoXtract Controller module is used only in
the active retriever mode. It is responsible for
retrieving documents to be processed, submitting
documents for processing, storing extracted
information, and system logging. The InfoXtract
Controller is a multi-threaded application that is
capable of submitting multiple simultaneous requests
to the Document Manager. As processing results are
returned, they are stored to a repository or database, an
XML file, or both.

The Document Manager module is responsible for
managing document submission to available
Processors. As Processors are initialized, they register
with the Document Manager. The Document Manager
uses a round robin scheduling algorithm for sending
documents to available Processors. A document queue
is maintained with a size of four documents per
Processor. The Processor module forms the core of the
IE engine. InfoXtract utilizes a multi-level approach
to NLP. Each level utilizes the results of the previous
levels in order to achieve more sophisticated parsing.
The JIX module is a web application that is
responsible for accepting requests for documents to be
processed. This module is only used in the passive
mode. The document requests are received via the
HTTP Post request. Processing results are returned in
XML format via the HTTP Post response.

In Table 2 we present an example of the
performance that can be expected based on the
application of all modules within the engine. It should
be noted that considerably faster processing per
processor can be achieved if output is restricted to a
certain IE level, such as named entity tagging only.
The output in this benchmark includes all major tasks

such as NE, EP, parsing and event extraction as well
as XML generation.

This configuration provides throughput of
approximately 12,000 documents (avg. 10KB) per
day. A smaller average document size will increase
the document throughput. Increased throughput can
be achieved by dedicating a CPU for each running
Processor. Each Processor instance requires
approximately 500 MB of RAM to run efficiently.
Processing speed increases linearly with additional
Processors/CPUs, and CPU speed. In the current state,
with no speed optimization, using a bank of eight
processors, it is able to process approximately
100,000 documents per day. Thus, InfoXtract is
suitable for high volume deployments. The use of
CORBA provides seamless inter-process and
over-the-wire communication between modules.
Computing resources can be dynamically assigned to
handle increases in document volume.

Table 2: Benchmark for Efficiency

Server
Configuration

2 CPU @ 1 GHz, 2 GB
RAM

Operating System Redhat Linux 7.2
Document
Collection Size

500 Documents, 5 MB
total size

Engine
Configuration

InfoXtract Controller,
Document Manager,
and 2 Processors
running on a single
server

Processing Time 30 Minutes

A standard document input model is used to

develop effective preprocessing capabilities.
Preprocessing adapts the engine to the source by
presenting metadata, zoning information in a
standardized format and performing restoration tasks
(e.g. case restoration). Efforts are underway to
configure the engine such that zone-specific
processing controls are enabled. For example, zones
identified as titles or subtitles must be tagged using
different criteria than running text. The engine has
been deployed on a variety of input formats including
HUMINT documents (all uppercase), the Foreign
Broadcast Information Services feed (FBIS), live
feeds from content providers such as Factiva (Dow
Jones/Reuters), LexisNexis, as well as web pages. A
user-trainable, high-performance case restoration
module [Niu et al 2003] has been developed that
transforms case insensitive input such as speech
transcripts into mixed-case before being processed by
the engine. The case restoration module eliminates the
need for separate IE engines for case-insensitive and
case-sensitive documents; this is easier and more cost
effective to maintain.

5 Corpus-level IE

Efforts have extended IE from the document level to
the corpus level. Although most IE systems perform
corpus-level information consolidation at an
application level, it is felt that much can be gained by
doing this as an extended step in the IE engine. A
repository has been developed for InfoXtract that is
able to hold the results of processing an entire corpus.
A proprietary indexing scheme for indexing token-list
data has been developed that enables querying over
both the linguistic structures as well as statistical
similarity queries (e.g., the similarity between two
documents or two entity profiles). The repository is
used by a fusion module in order to generate
cross-document entity profiles as well as for text
mining operations. The results of the repository
module can be subsequently fed into a relational
database to support applications. This has the
advantage of filtering much of the noise from the
engine level and doing sophisticated information
consolidation before populating a relational database.
The architecture of these subsequent stages is shown
in Figure 3.

Databases
Fusion
Module

Corpus-
level IEInfoXtract

Text
Mining

FBIS, Newswire
Documents

InfoXtract
Repository 1

InfoXtract
Repository 2

IDP

Figure 3: Extensions to InfoXtract

Information Extraction has two anchor points: (i)
entity-centric information which leads to an EP, and
(ii) action-centric information which leads to an event
scenario. Compared with the consolidation of
extracted events into cross-document event scenario,
cross-document EP merging and consolidation is a
more tangible task, based mainly on resolving aliases.
Even with modest recall, the corpus-level EP
demonstrates tremendous value in collecting
information about an entity. This is as shown in Table
3 for only part of the profile of ‘Mohamed Atta’ from
one experiment based on a collection of news articles.
The extracted EP centralizes a significant amount of
valuable information about this terrorist.

6 Domain Porting

Considerable efforts have been made to keep the core
engine as domain independent as possible; domain
specialization or tuning happens with minimum

change to the core engine, assisted by automatic or
semi-automatic domain porting tools we have
developed.

Cymfony has taken several distinct approaches in
achieving domain portability: (i) the use of a standard
document input model, pre-processors and
configuration scripts in order to tailor input and output
formats for a given application, (ii) the use of tools in
order to customize lexicons and grammars, and (iii)
unsupervised machine learning techniques for
learning new named entities (e.g. weapons) and
relationships based on sample seeds provided by a
user.

Table 3: Sample Entity Profile
Name Mohamed Atta
Aliases Atta; Mohamed
Position apparent mastermind;

ring leader; engineer; leader
Age 33; 29; 33-year-old;

34-year-old
Where-from United Arab Emirates;

Spain; Hamburg; Egyptian;
……

Modifiers on the first plane; evasive;
ready; in Spain; in seat 8D…

Descriptors hijacker; al-Amir; purported
ringleader; a square-jawed
33-year-old pilot; ……

Association bin Laden; Abdulaziz
Alomari; Hani Hanjour;
Madrid; American Media
Inc.; ……

Involved-events move-events (2);
accuse-events (9),
convict-events (10),
confess-events (2),
arrest-events (3),
 rent-events (3),

It has been one of Cymfony’s primary objectives

to facilitate domain portability [Srihari 1998] [Li &
Srihari 2000a,b, 2003]. This has resulted in a
development/customization environment known as
the Lexicon Grammar Development Environment
(LGDE). The LGDE permits users to modify named
entity glossaries, alias lexicons and general-purpose
lexicons. It also supports example-based grammar
writing; users can find events of interest in sample
documents, process these through InfoXtract and
modify the constraints in the automatically generated
rule templates for event detection. With some basic
training, users can easily use the LGDE to customize
InfoXtract for their applications. This facilitates
customization of the system in user applications
where access to the input data to InfoXtract is
restricted.

7 Applications

The InfoXtract engine has been used in two
applications, the Information Discovery Portal (IDP)
and Brand Dashboard (www.branddashboard.
com). The IDP supports both the traditional top-down
methods of browsing through large volumes of
information as well as novel, data-driven browsing. A
sample user interface is shown in Figure 4.

Users may select “watch lists” of entities (people,
organizations, targets, etc.) that they are interested in
monitoring. Users may also customize the sources of
information they are interested in processing.
Top-down methods include topic-centric browsing
whereby documents are classified by topics of
interest. IE-based browsing techniques include
entity-centric and event-centric browsing.
Entity-centric browsing permits users to track key
entities (people, organizations, targets) of interest and
monitor information pertaining to them. Event-centric
browsing focuses on significant actions including
money movement and people movement events.
Visualization of extracted information is a key
component of the IDP. The Information Mesh enables
a user to visualize an entity, its attributes and its
relation to other entities and events. Starting from an
entity (or event), relationship chains can be traversed
to explore related items. Timelines facilitate
visualization of information in the temporal axis.

Information Discovery Portal

Associations
Who/what is being
associated with al-

Qaeda ?

Organizations
 Religious
 Political
 Terrorist
 - al-Jihad (34)
 - HAMAS (16)
 - Hizballah (5)
 - …more
People
Incidents
 - Attacks (125)
 - Bombing (64)
 - Threats (45)
 - …more
Locations
Weapons
Governments

Overall
Coverage

Events Info. Sources Documents

Track... Organizations People Targets

al-Qaeda

Overall Coverage of al-Qaeda Over Time

0 10
20 30
40 50

5/7/2001 5/14/2001 5/21/2001 5/28/2001 6/4/2001 6/11/2001 6/18/2001 6/25/2001 7/2/2001 7/9/2001 7/16/2001 7/23/2001 7/30/2001

Re
por
ts

Alerts for Week of August 6, 2001
(3) new reports of al-Qaeda terrorist activity
(1) new report of bin Laden sighting
(4) new quotes by bin Laden
(1) new target identified

Figure 4: Information Discovery Portal
Recent efforts have included a tight integration of

InfoXtract with visualization tools such as the
Web-based Timeline Analysis System (WebTAS)
(http://www.webtas.com). The IDP reflects the ability
for users to select events of interest and automatically
export them to WebTAS for visualization. Efforts are
underway to integrate higher-level event scenario
analysis tools such as the Terrorist Modus Operandi
Detection System (TMODS) (www.21technologies
.com) into the IDP.

Brand Dashboard is a commercial application for

marketing and public relations organizations to

measure and assess media perception of consumer
brands. The InfoXtract engine is used to analyze
several thousand electronic sources of information
provided by various content aggregators (Factiva,
LexisNexis, etc.). The engine is focused on tagging
and generating brand profiles that also capture salient
information such as the descriptive phrases used in
describing brands (e.g. cost-saving, non-habit
forming) as well as user-configurable specific
messages that companies are trying to promote and
track (safe and reliable, industry leader, etc.). The
output from the engine is fed into a database-driven
web application which then produces report cards for
brands containing quantitative metrics pertaining to
brand perception, as well as qualitative information
describing characteristics. A sample screenshot from
Brand Dashboard is presented in Figure 5. It depicts a
report card for a particular brand, highlighting brand
strength as well as highlighting metrics that have
changed the most in the last time period. The “buzz
box” on the right hand side illustrates
companies/brands, people, analysts, and messages
most frequently associated with the brand in question.

Figure 5: Report Card from Brand Dashboard

8 Summary and Future Work

This paper has described the motivation behind
InfoXtract, a domain independent, portable,
intermediate-level IE engine. It has also discussed the
architecture of the engine, both from an algorithmic
perspective and software engineering perspective.
Current efforts to improve InfoXtract include the
following: support for more diverse input formats,
more use of metadata in the extraction tasks, support

for structured data, and capabilities for processing
foreign languages. Finally, support for more intuitive
domain customization tools, especially the
semi-automatic learning tools is a major focus.

Acknowledgments

The authors wish to thank Carrie Pine of AFRL for
reviewing and supporting this work.

References

[Aho & Ullman 1971] Alfred V. Aho and Jeffrey
D. Ullman. Translations on a context-free grammar.
Information and Control, 19(5):439–475, 1971.

[Aone & Ramos-Santacruz 1998] REES: A
Large-Scale Relation and Event Extraction System.
url: http://acl.ldc.upenn.edu/A/A00/A00-1011.pdf

[Chinchor & Marsh 1998] Chinchor, N. & Marsh,
E. 1998. MUC-7 Information Extraction Task
Definition (version 5.1), Proceedings of MUC-7.

[Cunningham et al 2003] Hamish Cunningham et
al. Developing Language Processing Components
with GATE: A User Guide.
http://gate.ac.uk/sale/tao/index.html#annie

[Engelfriet et al 1999] Joost Engelfriet, Hendrik
Jan Hoogeboom, and Jan-Pascal Van Best. Trips on
trees. Acta Cybernetica, 14(1):51–64, 1999.

[Gécseg & Steinby 1997] Ferenc Gécseg and
Magnus Steinby. Tree languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of
Formal Languages: Beyond Words, volume 3, pages
1–68, Berlin, 1997. Springer

[Han 1999] Han, J. Data Mining. 1999. In J.
Urban and P. Dasgupta (eds.), Encyclopedia of
Distributed Computing, Kluwer Academic Publishers.

[Hobbs 1993] J. R. Hobbs, 1993. FASTUS: A
System for Extracting Information from Text,
Proceedings of the DARPA workshop on Human
Language Technology”, Princeton, NJ, 133-137.

[Kaplan & Bresnan 1982] Ronald M. Kaplan and
Joan Bresnan. Lexical-Functional Grammar: A formal
system for grammatical representation. In Joan
Bresnan, editor, The Mental Representation of
Grammatical Relations, pages 173–281. The MIT
Press, Cambridge, MA, 1982.

[Krupka & Hausman 1998] G. R Krupka and K.
Hausman, “IsoQuest Inc: Description of the NetOwl
Text Extraction System as used for MUC-7”, MUC-7

[Li et al 2002] Li, H., R. Srihari, C. Niu, and W. Li
(2002). Localization Normalization for Information
Extraction. COLING 2002, 549–555, Taipei, Taiwan.

[Li, W & R. Srihari 2000a]. A Domain
Independent Event Extraction Toolkit, Final

Technical Report, Air Force Research Laboratory,
Information Directorate, Rome Research Site, New
York

[Li, W & R. Srihari 2000b]. Flexible Information
Extraction Learning Algorithm, Final Technical
Report, Air Force Research Laboratory, Information
Directorate, Rome Research Site, New York

[Li & Srihari 2003] Li, W. and R. K. Srihari (2003)
Intermediate-Level Event Extraction for Temporal
and Spatial Analysis and Visualization, Final
Technical Report AFRL-IF-RS-TR-2002-245, Air
Force Research Laboratory, Information Directorate,
Rome Research Site, New York.

[Miller et al 1998] Miller, Scott; Crystal, Michael;
Fox, Heidi; Ramshaw, Lance; Schwartz, Richard;
Stone, Rebecca; Weischedel, Ralph; and Annotation
Group, the 1998. Algorithms that Learn to Extract
Information; BBN: Description of the SIFT System as
Used for MUC-7.

[Mönnich et al 2001] Uwe Mönnich, Frank
Morawietz, and Stephan Kepser. A regular query for
context-sensitive relations. In Steven Bird, Peter
Buneman, and Mark Liberman, editors, IRCS
Workshop Linguistic Databases 2001, pages
187–195, 2001

[Niu et al 2003] Niu, C., W. Li, J. Ding, and R.K.
Srihari (to appear 2003). Orthographic Case
Restoration Using Supervised Learning Without
Manual Annotation. Proceedings of The 16th
FLAIRS, St. Augustine, FL

[Riloff 1996] [Automatically Generating
Extraction Patterns from Untagged Text. AAAI-96.

[Roche & Schabes 1997] Emmanuel Roche &
Yves Schabes, 1997. Finite-State Language
Processing, The MIT Press, Cambridge, MA.

[Silberztein 1999] Max Silberztein, (1999).
INTEX: a Finite State Transducer toolbox, in
Theoretical Computer Science #231:1, Elsevier
Science

[Srihari 1998]. A Domain Independent Event
Extraction Toolkit, AFRL-IF-RS-TR-1998-152 Final
Technical Report, Air Force Research Laboratory,
Information Directorate, Rome Research Site, New
York

[Srihari et al 2000] Srihari, R, C. Niu and W. Li.
(2000). A Hybrid Approach for Named Entity and
Sub-Type Tagging. In Proceedings of ANLP 2000,
247–254, Seattle, WA.

