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Abstract

Natural Language Processing (NLP) system de-
velopers face a number of new challenges. In-
terest is increasing for real-world systems that
use NLP tools and techniques. The quantity of
text now available for training and processing
is increasing dramatically. Also, the range of
languages and tasks being researched contin-
ues to grow rapidly. Thus it is an ideal time
to consider the development of new experimen-
tal frameworks. We describe the requirements,
initial design and exploratory implementation
of a high performance NLP infrastructure.

1 Introduction

Practical interest in NLP has grown dramatically in re-
cent years. Accuracy on fundamental tasks, such as part
of speech (POS) tagging, named entity recognition, and
broad-coverage parsing continues to increase. We can
now construct systems that address complex real-world
problems such as information extraction and question an-
swering. At the same time, progress in speech recogni-
tion and text-to-speech technology has made complete
spoken dialogue systems feasible. Developing these
complex NLP systems involves composing many different
NLP tools. Unfortunately, this is difficult because many
implementations have not been designed as components
and only recently has input/output standardisation been
considered. Finally, these tools can be difficult to cus-
tomise and tune for a particular task.

NLP is experiencing an explosion in the quantity of
electronic text available. Some of this new data will be
manually annotated. For example, 10 million words of
the American National Corpus (Ide et al., 2002) will have
manually corrected POS tags, a tenfold increase over the
Penn Treebank (Marcus et al., 1993), currently used for
training POS taggers. This will require more efficient
learning algorithms and implementations.

However, the greatest increase is in the amount of raw
text available to be processed, e.g. the English Giga-
word Corpus (Linguistic Data Consortium, 2003). Re-
cent work (Banko and Brill, 2001; Curran and Moens,
2002) has suggested that some tasks will benefit from
using significantly more data. Also, many potential ap-
plications of NLP will involve processing very large text
databases. For instance, biomedical text-mining involves
extracting information from the vast body of biological
and medical literature; and search engines may eventu-
ally apply NLP techniques to the whole web. Other po-
tential applications must process text online or in real-
time. For example, Google currently answers 250 million
queries per day, thus processing time must be minimised.
Clearly, efficient NLP components will need to be devel-
oped. At the same time, state-of-the-art performance will
be needed for these systems to be of practical use.

Finally, NLP is growing in terms of the number of
tasks, methods and languages being researched. Al-
though many problems share algorithms and data struc-
tures there is a tendency to reinvent the wheel.

Software engineering research on Generative Program-
ming (Czarnecki and Eisenecker, 2000) attempts to solve
these problems by focusing on the development of con-
figurable elementary components and knowledge to com-
bine these components into complete systems. Our in-
frastructure for NLP will provide high performance® com-
ponents inspired by Generative Programming principles.

This paper reviews existing NLP systems and discusses
the requirements for an NLP infrastructure. We then de-
scribe our overall design and exploratory implementa-
tion. We conclude with a discussion of programming in-
terfaces for the infrastructure including a script language
and GuI interfaces, and web services for distributed NLP
system development. We seek feedback on the overall
design and implementation of our proposed infrastruc-
ture and to promote discussion about software engineer-
ing best practice in NLP.

1We use high performance to refer to both state of the art
performance and high runtime efficiency.



2 Existing Systems

There are a number of generalised NLP systems in the lit-
erature. Many provide graphical user interfaces (Gut) for
manual annotation (e.g. General Architecture for Text
Engineering (GATE) (Cunningham et al., 1997) and the
Alembic Workbench (Day et al., 1997)) as well as NLP
tools and resources that can be manipulated from the
GUI. For instance, GATE currently provides a POS tag-
ger, named entity recogniser and gazetteer and ontology
editors (Cunningham et al., 2002). GATE goes beyond
earlier systems by using a component-based infrastruc-
ture (Cunningham, 2000) which the Gul is built on top
of. This allows components to be highly configurable and
simplifies the addition of new components to the system.

A number of stand-alone tools have also been devel-
oped. For example, the suite of LT tools (Mikheev et al.,
1999; Grover et al., 2000) perform tokenization, tagging
and chunking on xmL marked-up text directly. These
tools also store their configuration state, e.g. the trans-
duction rules used in LT CHUNK, in XML configuration
files. This gives a greater flexibility but the tradeoff is
that these tools can run very slowly. Other tools have
been designed around particular techniques, such as fi-
nite state machines (Karttunen et al., 1997; Mohri et al.,
1998). However, the source code for these tools is not
freely available, so they cannot be extended.

Efficiency has not been a focus for NLP research in
general. However, it will be increasingly important as
techniques become more complex and corpus sizes grow.
An example of this is the estimation of maximum en-
tropy models, from simple iterative estimation algorithms
used by Ratnaparkhi (1998) that converge very slowly,
to complex techniques from the optimisation literature
that converge much more rapidly (Malouf, 2002). Other
attempts to address efficiency include the fast Transfor-
mation Based Learning (TBL) Toolkit (Ngai and Florian,
2001) which dramatically speeds up training TBL Sys-
tems, and the translation of TBL rules into finite state ma-
chines for very fast tagging (Roche and Schabes, 1997).
The TNT Pos tagger (Brants, 2000) has also been de-
signed to train and run very quickly, tagging between
30,000 and 60,000 words per second.

The Weka package (Witten and Frank, 1999) provides
a common framework for several existing machine learn-
ing methods including decision trees and support vector
machines. This library has been very popular because it
allows researchers to experiment with different methods
without having to modify code or reformat data.

Finally, the Natural Language Toolkit (NLTK) is a
package of NLP components implemented in Python
(Loper and Bird, 2002). Python scripting is extremely
simple to learn, read and write, and so using the existing
components and designing new components is simple.

3 Performance Requirements

As discussed earlier, there are two main requirements
of the system that are covered by “high performance”:
speed and state of the art accuracy. Efficiency is required
both in training and processing. Efficient training is re-
quired because the amount of data available for train-
ing will increase significantly. Also, advanced methods
often require many training iterations, for example ac-
tive learning (Dagan and Engelson, 1995) and co-training
(Blum and Mitchell, 1998). Processing text needs to be
extremely efficient since many new applications will re-
quire very large quantities of text to be processed or many
smaller quantities of text to be processed very quickly.

State of the art accuracy is also important, particularly
on complex systems since the error is accumulated from
each component in the system. There is a speed/accuracy
tradeoff that is rarely addressed in the literature. For in-
stance, reducing the beam search width used for tagging
can increase the speed without significantly reducing ac-
curacy. Finally, the most accurate systems are often very
computationally intensive so a tradeoff may need to be
made here. For example, the state of the art POS tag-
ger is an ensemble of individual taggers (van Halteren
et al., 2001), each of which must process the text sepa-
rately. Sophisticated modelling may also give improved
accuracy at the cost of training and processing time.

The space efficiency of the components is important
since complex NLP systems will require many different
NLP components to be executing at the same time. Also,
language processors many eventually be implemented for
relatively low-specification devices such as PDAs. This
means that special attention will need to be paid to the
data-structures used in the component implementation.
The infrastructure should allow most data to be stored
on disk (as a configuration option since we must tradeoff
speed for space). Accuracy, speed and compactness are
the main execution goals. These goals are achieved by
implementing the infrastructure in C/C++, and profiling
and optimising the algorithms and data-structures used.

4 Design Requirements

The remaining requirements relate to the overall and
component level design of the system. Following the
Generative Programming paradigm, the individual com-
ponents of the system must be elementary and highly
configurable. This ensures minimal redundancy between
components and makes them easier to understand, im-
plement, test and debug. It also ensures components are
maximally composable and extensible. This is particu-
larly important in NLP because of the high redundancy
across tasks and approaches.

Machine learning methods should be interchangeable:
Transformation-based learning (T8L) (Brill, 1993) and



Memory-based learning (MBL) (Daelemans et al., 2002)
have been applied to many different problems, so a sin-
gle interchangeable component should be used to repre-
sent each method. We will base these components on the
design of Weka (Witten and Frank, 1999).

Representations should be reusable: for example,
named entity classification can be considered as a se-
quence tagging task or a bag-of-words text classification
task. The same beam-search sequence tagging compo-
nent should be able to be used for POs tagging, chunk-
ing and named entity classification. Feature extraction
components should be reusable since many NLP compo-
nents share features, for instance, most sequence taggers
use the previously assigned tags. We will use an object-
oriented hierarchy of methods, representations and fea-
tures to allow components to be easily interchanged. This
hierarchy will be developed by analysing the range of
methods, representations and features in the literature.

High levels of configurability are also very impor-
tant. Firstly, without high levels of configurability, new
systems are not easy to construct by composing exist-
ing components, so reinventing the wheel becomes in-
evitable. Secondly, different languages and tasks show a
very wide variation in the methods, representations, and
features that are most successful. For instance, a truly
multilingual tagger should be able to tag a sequence from
left to right or right to left. Finally, this flexibility will
allow for research into new tasks and languages to be un-
dertaken with minimal coding.

Ease of use is a very important criteria for an infras-
tructure and high quality documentation and examples
are necessary to make sense of the vast array of compo-
nents in the system. Preconfigured standard components
(e.g. an English pos tagger) will be supplied with the
infrastructure. More importantly, a Python scripting lan-
guage interface and a graphical user interface will be built
on top of the infrastructure. This will allow components
to be configured and composed without expertise in C++.
The user interface will generate code to produce stand-
alone components in C++ or Python. Since the Python
components will not need to be compiled, they can be
distributed immediately.

One common difficulty with working on text is the
range of file formats and encodings that text can be
stored in. The infrastructure will provide components to
read/write files in many of these formats including HTML
files, text files of varying standard formats, email folders,
Postscript, Portable Document Format, Rich Text Format
and Microsoft Word files. The infrastructure will also
read XML and sGMmL marked-up files, with and without
DTDs and XML Schemas, and provide an XPath/XSLT
query interface to select particular subtrees for process-
ing. All of these reading/writing components will use ex-
isting open source software. It will also eventually pro-

vide components to manipulate groups of files: such as it-
erate through directories, crawl web pages, get files from
ftp, extract files from zip and tar archives. The system
will provide full support to standard character sets (e.g.
Unicode) and encodings (e.g. UTF-8 and UTF-16).
Finally, the infrastructure will provide standard imple-
mentations, feature sets and configuration options which
means that if the configuration of the components is pub-
lished, it will be possible for anyone to reproduce pub-
lished results. This is important because there are many
small design decisions that can contribute to the accuracy
of a system that are not typically reported in the literature.

5 Components Groups

When completed the infrastructure will provide highly
configurable components grouped into these broad areas:

file processing reading from directories, archives, com-
pressed files, sockets, HTTP and newsgroups;

text processing reading/writing marked-up corpora,
HTML, emails, standard document formats and text
file formats used to represent annotated corpora.

lexical processing tokenization, word segmentation and
morphological analysis;

feature extraction extracting lexical and annotation fea-
tures from the current context in sequences, bag of
words from segments of text

data-structures and algorithms efficient lexical repre-
sentations, lexicons, tagsets and statistics; Viterbi,
beam-search and n-best sequence taggers, parsing
algorithms;

machine learning methods statistical models: Naive
Bayes, Maximum Entropy, Conditional Random
Fields; and other methods: Decision Trees and Lists,
TBL and MBL;

resources APIs to WordNet (Fellbaum, 1998), Google
and other lexical resources such as gazetteers, on-
tologies and machine readable dictionaries;

existing tools integrating existing open source compo-
nents and providing interfaces to existing tools that
are only distributed as executables.

6 Implementation

The infrastructure will be implemented in C/C++. Tem-
plates will be used heavily to provide generality without
significantly impacting on efficiency. However, because
templates are a static facility we will also provide dy-
namic versions (using inheritance), which will be slower
but accessible from scripting languages and user inter-
faces. To provide the required configurability in the static
version of the code we will use policy templates (Alexan-
drescu, 2001), and for the dynamic version we will use
configuration classes.



A key aspect of increasing the efficiency of the system
will be using a common text and annotation representa-
tion throughout the infrastructure. This means that we do
not need to save data to disk, and load it back into mem-
ory between each step in the process, which will provide
a significant performance increase. Further, we can use
techniques for making string matching and other text pro-
cessing very fast such as making only one copy of each
lexical item or annotation in memory. We can also load
a lexicon into memory that is shared between all of the
components, reducing the memory use.

The implementation has been inspired by experience
in extracting information from very large corpora (Cur-
ran and Moens, 2002) and performing experiments on
maximum entropy sequence tagging (Curran and Clark,
2003; Clark et al., 2003). We have already implemented
a Pos tagger, chunker, cCG supertagger and named entity
recogniser using the infrastructure. These tools currently
train in less than 10 minutes on the standard training ma-
terials and tag faster than TNT, the fastest existing POS
tagger. These tools use a highly optimised GIs imple-
mentation and provide sophisticated Gaussian smoothing
(Chen and Rosenfeld, 1999). We expect even faster train-
ing times when we move to conjugate gradient methods.

The next step of the process will be to add different sta-
tistical models and machine learning methods. We first
plan to add a simple Naive Bayes model to the system.
This will allow us to factor out the maximum entropy
specific parts of the system and produce a general com-
ponent for statistical modelling. We will then implement
other machine learning methods and tasks.

7 Interfaces

Although C++ is extremely efficient, it is not suitable for
rapidly gluing components together to form new tools.
To overcome this problem we have implemented an in-
terface to the infrastructure in the Python scripting lan-
guage. Python has a number of advantages over other
options, such as Java and Perl. Python is very easy to
learn, read and write, and allows commands to be entered
interactively into the interpreter, making it ideal for ex-
perimentation. It has already been used to implement a
framework for teaching NLP (Loper and Bird, 2002).
Using the Boost.Python C++ library (Abrahams,
2003), it is possible to reflect most of the components
directly into Python with a minimal amount of coding.
The Boost.Python library also allows the C++ code to ac-
cess new classes written in Python that are derived from
the C++ classes. This means that new and extended com-
ponents can be written in Python (although they will be
considerably slower). The Python interface allows the
components to be dynamically composed, configured and
extended in any operating system environment without
the need for a compiler. Finally, since Python can pro-

duce stand-alone executables directly, it will be possible
to create distributable code that does not require the entire
infrastructure or Python interpreter to be installed.

The basic Python reflection has already been imple-
mented and used for large scale experiments with POS
tagging, using pymMPI (a message passing interface library
for Python) to coordinate experiments across a cluster of
over 100 machines (Curran and Clark, 2003; Clark et al.,
2003). An example of using the Python tagger interface
is shown in Figure 1.

On top of the Python interface we plan to implement
a GUI interface for composing and configuring compo-
nents. This will be implemented in wxPython which is
a platform independent Gul library that uses the native
windowing environment under Windows, MacOS and
most versions of Unix. The wxPython interface will gen-
erate C++ and Python code that composes and config-
ures the components. Using the infrastructure, Python
and wxPython it will be possible to generate new Gul ap-
plications that use NLP technology.

Because C++ compilers are now fairly standards com-
pliant, and Python and wxPython are available for most
architectures, the infrastructure will be highly portable.
Further, we eventually plan to implement interfaces to
other languages (in particular Java using the Java Native
Interface (NI) and Perl using the x s interface).

8 Waeb services

The final interface we intend to implement is a collec-
tion of web services for NLP. A web service provides
a remote procedure that can be called using XML based
encodings (XMLRPC or SoAP) of function names, argu-
ments and results transmitted via internet protocols such
as HTTP. Systems can automatically discover and com-
municate with web services that provide the functionality
they require by querying databases of standardised de-
scriptions of services with wsbL and uDDI. This stan-
dardisation of remote procedures is very exciting from a
software engineering viewpoint since it allows systems
to be totally distributed. There have already been several
attempts to develop distributed NL P systems for dialogue
systems (Bayer et al., 2001) and speech recognition (Ha-
cioglu and Pellom, 2003). Web services will allow com-
ponents developed by different researchers in different lo-
cations to be composed to build larger systems.

Because web services are of great commercial interest
they are already being supported strongly by many pro-
gramming languages. For instance, web services can be
accessed with very little code in Java, Python, Perl, C,
C++ and Prolog. This allows us to provide NLP services
to many systems that we could not otherwise support us-
ing a single interface definition. Since the service argu-
ments and results are primarily text and xmL, the web
service interface will be reasonably efficient for small



% pyt hon
Python 2.2.1 (#1, Sep 30 2002, 20:13:03)
[GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-110)] on |inux2

Type "hel p", "copyright",
>>> inport nlp.tagger

"credits" or "license" for

nore i nformation.

>>> op = nlp.tagger. Options(’ nodel s/ pos/options’)

>>> print op
nkl asses = 46
alpha = 1.65
>>> tagger = nlp.tagger. Tagger (op)

>>> tags = tagger.tag([’ The', 'cat’,
>>> print tags

['DT", "NN, "VBD, "IN, 'DI", "NN,
>>> tagger.tag('infile', "outfile’)
>>>

sat’, 'on’, 'the’, '"mat’, '.’])

]

Figure 1: Calling the POs tagger interactively from the Python interpreter

quantities of text (e.g. a single document). The second
advantage they have is that there is no startup costs when
tagger loads up, which means local copies of the web
service could be run to reduce tagging latency. Finally,
web services will allow developers of resources such as
gazetteers to provide the most up to date resources each
time their functionality is required.

We are currently in the process of implementing a POS
tagging web service using the gsoaP library, which will
translate our C infrastructure binding into web service
wrapper code and produce the necessary XML service de-
scription files.

9 Conclusion

The Generative Programming approach to NLP infras-
tructure development will allow tools such as sentence
boundary detectors, POS taggers, chunkers and named
entity recognisers to be rapidly composed from many el-
emental components. For instance, implementing an ef-
ficient version of the MXPOST POS tagger (Ratnaparkhi,
1996) will simply involve composing and configuring the
appropriate text file reading component, with the sequen-
tial tagging component, the collection of feature extrac-
tion components and the maximum entropy model com-
ponent.

The individual components will provide state of the art
accuracy and be highly optimised for both time and space
efficiency. A key design feature of this infrastructure is
that components share a common representation for text
and annotations so there is no time spent reading/writing
formatted data (e.g. XML) between stages.

To make the composition and configuration process
easier we have implemented a Python scripting inter-
face, which means that anyone can construct efficient new
tools, without the need for much programming experi-
ence or a compiler. The development of a graphical user
interface on top of the infrastructure will further ease the

development cycle.
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