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Abstract 

The production of accurate and complete 
multiple-document summaries is challenged by 
the complexity of judging the usefulness of 
information to the user.  Our aim is to determine 
whether identifying sub-events in a news topic 
could help us capture essential information to 
produce better summaries. In our first experiment, 
we asked human judges to determine the relative 
utility of sentences as they related to the sub-
events of a larger topic. We used this data to 
create summaries by three different methods, and 
we then compared these summaries with three 
automatically created summaries.  In our second 
experiment, we show how the results of our first 
experiment can be applied to a cluster-based 
automatic summarization system. Through both 
experiments, we examine the use of inter-judge 
agreement and a relative utility metric that 
accounts for the complexity of determining 
sentence quality in relation to a topic. 

 

1. Introduction 
Multiple articles on a particular topic tend to contain 
redundant information as well as information that is unique 
to each article.  For instance, different news sources 
covering the same topic may take different angles, or new 
information may become available in a later report.  So, 
while all the articles are related to the larger topic, each 
article may be associated with any of several sub-events.   
We wanted to find a way to capture the unique sub-event 
information that is characteristic in multiple-document 
coverage of a single topic.  We predicted that breaking 
documents down to their sub-events and capturing those 
sentences in each sub-event with the highest utility would 
produce an accurate, thorough, and diverse multi-
document summary. 

In our first experiment, we compared six 
methods of summarization to see which produces the best 
summaries.  The methods included three automatic and 
three manual methods of producing summaries.  We used 
relative utility to capture and measure subtleties in 
determining sentence relevance.  We created multiple 
document summaries using both a sub-event based 
approach and a topic-based approach.  Generally, we 
expected to find that the manual summaries performed 
better than the automatic summaries. In our second 
experiment, we designed a multi-document summarizer 
which relied on a clustering method, and we tested the 
three policies we devised for creating summaries from the 
manual summarization technique developed in our first 
experiment.  

2. Related Work 
Much work has preceded and informed this paper.  Allan 
et al.’s (1998) work on summarizing novelty recognizes 
that news topics consist of a series of events – what we call 
“sub-events,” to distinguish the difference between a news 
topic and its sub-events.  However, their method differs in 
its approach, which uses an algorithm to identify “novel” 
sentences, rather than the use of human judges.  In other 
related work, sentences are either judged “on-topic” or 
“off-topic” (Allan et al., 2001a) (Allan et al., 2001b).  
Carbonell and Goldstein use Maximal Marginal Relevance 
(MMR) to identify “novel” information to improve query 
answering results, and they also apply this method to 
multiple-document summarization (Carbonell and 
Goldstein, 1997 and Goldstein, 1999).  Success in the use 
of inter-judge agreement has led us to pursue the use of the 
current evaluation methods.  However, this experiment 
differs from prior work in that we use judges to determine 
the relevance of sentences to sub-events rather than to 
evaluate summaries (Radev et al., 2000).  Finally, 
McKeown et al. (1999), Hatzivassiloglou et al. (2001) and 
Boros et al. (2001) have shown the challenges and 
potential payoffs of using sentence clustering in extractive 
summarization.   



3. Article Corpus 
Our study involves two experiments carried out on one 
corpus of news articles.  The article corpus was selected 
from a cluster of eleven articles describing the 2000 crash 
of Gulf Air flight 072.  From these articles we chose a 
corpus of five articles, containing a total of 159 sentences.  
All the articles cover a single news event, the plane crash 
and its aftermath.  The articles were gathered on the web 
from sources reporting on the event as it unfolded, and 
come from various news agencies, such as ABC News, 
Fox News, and the BBC.  All of the articles give some 
discussion of the events leading up to and following the 
crash, with particular articles focusing on areas of special 
interest, such as the toll on Egypt, from where many of the 
passengers had come.  The article titles in Table 1, below, 
illustrate the range of sub-events that are covered under the 
crash topic. 

 

Article ID Source Date Headline 

30 BBC Aug. 25 Bodies recovered from 
Gulf Air crash 

41 Fox News Aug. 25 Egyptians Suffer Second 
Air Tragedy in a Year 

81 USA Today Aug. 25 One American among 143 
dead in crash 

87 ABC News Aug. 26 Prayers for victims of 
Bahrain crash 

97 Fox News Aug. 26 Did Pilot Error Cause Air 
Crash 

Table 1. Corpus article characteristics. 

4. Experiment 1: Sub-Event Analysis 
Our first experiment involved having human judges 
analyze the sentences in our corpus for degree of saliency 
to a series of sub-events comprising the topic.  
 

4.1 Description of Sub-Event User Study 
The goal of this experiment was to study the effectiveness 
of breaking a news topic down into sub-events, in order to 
capture not simply salience, but also diversity (Goldstein, 
1998). 

The sub-events were chosen to cover all of the 
material in the reports and to represent the most significant 
aspects of the news topic.  For the Gulf Air crash, we 
determined that the sub-events were: 

1. The plane takes off  
2. Something goes wrong  
3. The plane crashes  
4. Rescue and recovery effort  
5. Gulf Air releases information 
6. Government agencies react 

7. Friends, relatives and nations mourn 
8. Black box(es) are searched for 
9. Black box(es) are recovered 
10. Black box(es) are sent for analysis 

 
We instructed judges to rank the degree of 

sentence relevance to each sub-event.  Judges were 
instructed to use a scale, such that a score of ten indicated 
that the sentence was critical to the sub-event, and a score 
of 0 indicated that the sentence was irrelevant.  Thus, the 
judges processed the 159 sentences from 5 documents ten 
times, once pertaining to each sub-event.  This experiment 
produced for each judge 1590 data points which were 
analyzed according to the methods described in the next 
section.   

We used the data on the relevance of the 
sentences to the sub-events to calculate inter-judge 
agreement.  In this manner, we determined which 
sentences had the overall highest relevance to each sub-
event.  We used this ranking to produce summaries at 
different levels of compression. 

5. Methods for Producing Summaries 
To gather data about the effectiveness of dividing 

news topics into their sub-events for creating summaries, 
we utilized data from human judges, upon which we 
manually performed three algorithms. These algorithms 
and their application are described in detail below. We 
were interested to determine if the Round Robin method 
(described below,) which has been used by McKeown et 
al. (1999), Boros et al. (2001) and by Hatzivassiloglou et 
al. (2001), was the most effective.  

5.1 Sub-Event-Based Algorithms 
After collecting judges’ scores of relevance for each 
sentence for each subtopic, we then ranked the sentences 
according to three different algorithms to create multiple-
document summaries.  From this data, we created 
summary extracts using three algorithms, as follows:  

• Algorithm 1) Highest Score Anywhere - pick the 
sentence which is most relevant to any subevent, no matter 
the subevent; pick the next sentence which is most relevant 
to any subevent, etc. 

• Algorithm 2) Sum of All Scores - for each 
sentence, sum its relevance score for each cluster, pick 
the sentence with the highest sum; then pick the 
sentence with the second highest sum, etc. 

 • Algorithm 3) Round Robin - pick the sentence 
which has the most relevance for subevent 1, pick the 
sentence with the most relevance for subevent 2, etc.  After 
picking 1 sentence from each subevent, pick the sentence 
with the 2nd best relevance to subevent 1, etc.



Judge 1 Judge 2 Judge 3 Judge 1 Judge 2 Judge 3 Judge 1 Judge 2 Judge 3
Article 30, 
Sentence 1 1 0 0 5 0 5 8 8 10

2 1 0 0 7 4 7 10 10 10
3 4 0 0 10 10 10 10 5 7
4 1 0 3 5 0 2 8 0 2
5 0 0 0 3 0 0 5 0 2
6 0 0 0 3 0 0 6 0 2
7 0 0 0 3 0 0 6 0 2
8 0 0 0 3 4 2 10 10 10
9 0 0 2 0 0 0 8 0 0

10 0 0 0 3 0 0 6 0 2

Sub-Event 1 Sub-Event 2 Sub-Event 3

 
Table 2. First ten sentences of article 30, shown with scores given by three judges for three sub-events. Judges often disagree 
on the degree of sentence relevancy.  Some sentences are used in more than one sub-event.

 

Algorithm 1 - Highest Score 
Anywhere (HSA): This algorithm was produced 
by summing the data across all judges to produce a total 
inter-judge score and keeping sub-events distinct, to see 
the inter-judge utility scores given to sub-events.  We 
ordered the sentences by ranking these scores in 
descending order and omitting duplicates, to produce the 
ten and twenty percent extracts.  For example, with data 
from seven judges on ten sub-events, the highest possible 
score for each sentence was seventy.  Thus seventy was 
the highest score.   

In the case that there was a tie between 
sentences, we ordered them by sub-event number (first 
sub-event first and tenth sub-event last). 

Algorithm 2 - Sum of All Scores 
(SAS): This algorithm was produced by summing the 
data across all judges to produce a total inter-judge score, 
and combining events so that we could see the utility 
scores given across sub-events.  We ordered the 
sentences by ranking these cross-event inter-judge utility 
scores in descending order and omitting duplicates, to 
produce the ten and twenty percent extracts. 

Algorithm 3 - Round Robin (RR): This 
algorithm was produced by summing the data across all 
judges to produce a total inter-judge score and keeping 
sub-events distinct, to see the inter-judge utility scores 
given to sub-events.  We ordered the sentences by 
ranking the inter-judge utility scores in descending order 
within each sub-event.  We then chose the top sentence 
from each sub-event (one through ten), the second 
highest sentence from each sub-event, and so on, 
omitting duplicates, until we had produced the ten and 
twenty percent extracts. 

In this manner, we created thirty-six sub-event-
based summary extracts – six clusters, three algorithms, 
two compression rates – which we then analyzed. 

The Sum of All Scores algorithm most closely 
replicates a centroid-based summary by combining the 
ten sub-event scores into one pan-topic score for each 
sentence.  Further, the Sum of All Scores algorithm is the 
sub-event algorithm most likely to pick sentences with a 
high “general relevance,” which is what the baseline 
relative utility scores are meant to capture.  In contrast, 
the Highest Score Anywhere algorithm maintains the 
structure of the sub-event breakdown, preferring the 
highest score in any sub-event. Likewise, the Round 
Robin algorithm maintains the sub-event breakdown, but 
rather than preferring the highest score in any event, it 
selects the highest score from each sub-event, serially; 
this algorithm most closely resembles the Lead-based 
automatic summarizer, and is at the heart of 
Hatzivassiloglou et al.’s (2001) SimFinder. 

5.2 Automatic Multi-Document 
Summaries 
The three automatic summarization methods that we 
used in our comparison have already been established. 
We compared our manual summaries to these established 
automatic multiple-document summarization methods: 
Centroid-based (MEAD), Lead-based and Random. 



MEAD:  First, we produced summaries 
using the MEAD system.  MEAD produces a centroid 
(vector) for all of the sentences and then selects those 
sentences which are closest to the centroid. MEAD 
measures similarity with the cosine measurement and 
TF*IDF weighting.  Mead also adjusts a sentence’s score 
based on its length, its position in the original document 
and its similarity to sentences already selected for the 
extract. (Radev et al, 2000). 

Lead-Based: We also produced summaries 
by the Lead-based method.  This method involves 
assigning the highest score to the first sentence in each 
article, then the second sentence in each article, and so 
on. 

Random: We created summaries with every 
possible combination of sentences for each summary 
length.  This allowed us to compute the average random 
relative utility score. 

6. Relative Utility 
Following (Radev et al., 2000), we used relative utility as 
our metric.  Relative utility was chosen for advantages in 
a couple of areas.   

Relative utility is a metric which measures 
sentence relevance.  It allows us to distinguish the degree 
of importance between sentences, providing a more 
flexible model for evaluating sentence utility (Radev et 
al., 2000).  Studies involving sentence extraction have 
often been predicated upon determining the usefulness of 
sentences as either useful or non-useful (Allan et al. 
2001b).  However, determining the usefulness of 
sentences is more complex than a simple a binary choice 
can account for.  We employ a relative utility metric to 
account for subtleties in determining the saliency of 
sentences. 

Another advantage of the relative utility metric 
is that, although human judges have often agree very 
little on which sentences belong in a summary, they tend 
to agree on how important sentences are to a topic or 
event; thus, relative utility makes it possible to leverage 
this agreement. 

To calculate relative utility, we had human 
subjects assign a score to each sentence in a corpus of 
articles.  The score reflects the subject’s perception of a 
sentence’s relevance to the overall topic of the corpus.  
The scale our judges were instructed to use ranged from 
zero to ten.  A score of zero indicated that the sentence 
was irrelevant; whereas a score of ten indicated that the 
sentence was crucial to the understanding of the topic.  
So that judges’ scores can be fairly compared, each 
judge’s scores are normalized by the highest score and 
lowest score which that judge gives any sentence. 

Relative utility is determined by first adding 
together the utility scores given to each sentence by each 
judge.  Each sentence in a summary is then awarded the 
total of the judges’ scores for that sentence.  Finally, the 
summary’s total score is divided by the best possible 
score, given the size of the summary.   

For example, let us assume that a cluster has 
three sentences (A, B and C) which have been judged by 
two judges in the following way: A 10, 9, B 8, 6 and C 6, 
5.  That is, judge 1 gives sentence A a 10, while judge 2 
gives sentence A a 9, and so on.  In the first step, we sum 
the judges’ scores for each sentence, yielding (A 19, B 
14, C 11).  If a summarizer has to pick a 2 sentence 
summary, and it picks A and C, its utility score is 30.  
We then divide this score by the best possible 2 sentence 
summary, in this case A and B, whose utility is 33, 
yielding a final relative utility of .91.  

7. Extract Creation 
Summaries can be created by abstracting or extracting 
[Mani, 2001].  For purposes of comparison with MEAD, 
an extractive summarizer, we used an extractive method 
to create all six summary types: sum of all scores, highest 
score anywhere, round robin, MEAD, lead-based, and 
random.  

7.1 Clusters 
Each of the summarization methods was 

employed at both ten and twenty percent compression 
rates.  We used the summaries thus produced to consider 
how compression rates could influence the effectiveness 
of the six summarization methods.  In our first 
experiment, we additionally looked at varying 
combinations of the five articles, such that we examined 
the corpus in six clusters, as shown in the figure below.  
We selected these article combinations to maximize the 
diversity of sources in each cluster, and to achieve a 
variable number of articles in a cluster. 

Combination 1) articles 30 + 41 + 81 + 87 + 97 

Combination 2) articles 30 + 41 + 81 

Combination 3) articles 41 + 81 + 87 

Combination 4) articles 81 + 87 + 97 

Combination 5) articles 87 + 97 + 30 

Combination 6) articles 97+ 30 + 41 

Figure 1.  Article clusters. 

 

  

 



 

   10%      20%    

 HSA SAS RR MEAD Lead Rand HAS SAS RR MEAD Lead Rand 

Cluster 1 0.641 0.686 0.717 0.617 0.795 0.480 0.542 0.745 0.683 0.621 0.722 0.521 

Cluster 2 0.629 0.739 0.716 0.629 0.800 0.459 0.637 0.786 0.659 0.623 0.741 0.490 

Cluster 3 0.568 0.698 0.544 0.672 0.701 0.435 0.572 0.735 0.631 0.647 0.629 0.470 

Cluster 4 0.406 0.669 0.651 0.662 0.714 0.489 0.539 0.722 0.596 0.653 0.738 0.521 

Cluster 5 0.646 0.675 0.698 0.604 0.797 0.549 0.598 0.739 0.733 0.631 0.749 0.575 

Cluster 6 0.622 0.698 0.693 0.595 0.880 0.508 0.623 0.762 0.717 0.552 0.817 0.536 

Average = 0.585 0.694 0.670 0.630 0.781 0.487 0.585 0.748 0.670 0.621 0.733 0.519 

Table 3. Results: Best performing algorithm at each cluster/compression rate shown in bold. 

 

8. Results from the first experiment 
Some of our results met our expectations, while others 
surprised us (see Table 3).  The Sum of All Scores manual 
algorithm produces the best summaries at the twenty 
percent compression rate.  At the ten percent compression 
rate, data shows Lead-based summaries performing best, 
with the Sum of All Scores algorithm coming in right 
behind.  Mead scores in the mid-range as expected, for 
both compression rates, just behind the Round Robin 
Algorithm.  In contrast, the random method leads in low 
scores, with the Highest Score Anywhere algorithm 
coming in only slightly higher.  Random sets the lower 
bound.  Here, we discuss the details of our findings and 
their significance in more detail. 

8.1 Manual Algorithms   
Both the Sum of All Scores, and Round Robin algorithms 
performed better than MEAD, with the highest score 
anywhere algorithm performing less well.  This result is 
reasonable, based upon the characteristics of the 
algorithms.  Algorithm 2 (SAS), the best performer among 
the manual summaries, used the sum of all scores across 
events and judges; thus, it tapped into which sentences 
were most popular overall.  Algorithm 3 (RR), also better 
than MEAD, used a round robin technique, which, 
similarly to the Lead-based results, tapped into the 
pyramid quality of news journalism.  Algorithm 1 (HSA), 
poorest performer second to Random, used the highest 
score in any event by inter-judge score; its weakness was 
in negating both the benefits of the pyramid structure of 
the judges’ sentence rankings, as well as the popularity of 
sentences across events.  

8.2 Compression Rate  

For extracts at the ten percent compression rate, Lead-
based sets the upper, and random the lower, bound.  
However, the Sum of All Scores algorithm performed 
better at the twenty percent compression rate, beating 

Lead-based for best summaries.  Each method produced 
better summaries overall at ten percent compression rate, 
except for Algorithm 2, which performed better at the 
twenty percent compression rate.   

We believe that SAS performed better at the 
twenty percent compression rate as a result of two 
characteristics: as the sum of scores across sub-events, this 
algorithm preferred both sentences that received higher 
scores, as well as sentences which were highly ranked 
most frequently.  Therefore, it is weighted toward those 
sentences that carry information essential to several sub-
events.  Because of these sentences’ relevancy to more 
than one sub-event, they are most likely to be important to 
the majority of readers, regardless of the user’s particular 
information task.  This can also be seen as popularity 
weighting, with those sentences getting the most and best 
scores from judges producing the most useful summaries.  
The patterns uncovered by this result should be leveraged 
for future improvements to automatic summarizers. 

8.3 Lead-Based Summaries 
We were not extremely surprised to find that Lead-based 
summaries produced better summaries at the 10% 
summary rate.  This result may be explained by the 
pyramid structure of news journalism, which, in a sense, 
pre-ranks document sentences in order of importance, in 
order to convey the most critical information first.  As our 
corpus was comprised entirely of news articles, this effect 
could be exaggerated in our results.  As expected, though, 
the Random summarizer set the lower bound. 

8.4 Manual Summaries and MEAD 
Most significantly, among the mid-range performers, the 
data demonstrates what we expected to find:  Two of the 
three new sub-event-based algorithms perform better than 
MEAD.  Identifying sub-events in news topic coverage is 
one method that we have shown can be utilized to help 
create better summaries.   



 

9. Automatic Clustering and Extraction 
In our second experiment, we were interested to see how 
the different strategies would work with a simple 
clustering-based multi-document summarizer.   We did not 
expect our clustering algorithm to neatly partition the data 
according to the subevents we identified in our first 
experiment, but we did want to see if our findings about 
SAS would hold true for automatically partitioned data.  
And so we turned to sentence clustering.  While Boros et 
al. (2001) report poor performance but some promise to 
this method, Hatzivassiloglou et al. (2001) have exploited 
clustering with very good results in SimFinder.  Both rely 
on the RR method, although SimFinder considers several 
other important factors in sentence selection. 

9.1 Automatic Clustering 
Because of the vast number of variables associated with 
designing a cluster-based summarization algorithm, we 
chose to limit our system so that we could focus on RR, 
HSA and SAS.  To give a sense of our performance, we 
also ran a purely centroid-based summarization algorithm. 

We used K-means clustering, and obtained 
results for K = 2-20, at both the 10% and 20% summary 
levels.  By this process, we created K clusters, seeded them 
as discussed below, and then for each sentence, we found 
that cluster to which the sentence was closest.  After filling 
the clusters, we checked again to see if each sentence was 
in its best cluster.  We kept doing this until equilibrium 
was reached (usually no more than 6 cycles).   

For our similarity metric we used the cosine 
measure with inverse document frequency (IDF), inverse 
sentence frequency (ISF) (following Neto et al. (2000) and 
no term-weighting.  We ran all of these permutations 
twice, once ignoring sentences with 9 words or fewer (as is 
MEAD’s default) and once ignoring sentences with 2 
words or just 1.  We did not use stop words, stemming, or 
syntactic parsing.  Further, we did not factor in the location 
of the sentences in their original documents, although both 
MEAD and SimFinder do this.   

Initially, we used a method of randomly seeding 
the clusters, but we found this method extremely unstable.  
We then devised the following method: 1) for the first 
cluster, find the sentence which is closest to the centroid of 
the document cluster, 2) for each sentence after that, find 
the sentence which is maximally different from those 
sentences already picked as seeds.  

9.2 Automatic Extraction 
After creating the clusters by this method, we extracted 
sentences with the same three methods of interest, HSA, 
SAS, and RR.  For this experiment, we also added a 
simple Centroid policy.  Under this policy, a centroid 
vector was created for all of the sentences, and then for 
each sentence the cosine measure was computed against 
the centroid.  The sentences were then sorted by their 
cosine scores with the centroid.  The top 10% or 20% were 
selected for the summary. 

 For all policies, the extraction algorithm would 
not select a sentence which had a cosine of 0.99 or higher 
with any sentence already in the summary.   For 
comparison, MEAD’s default is 0.7.  In the future, we 
would like to study the effect of this parameter on 
information diversity. 

10. Results for Automatic Clustering 
In Table 4, we report our findings from the second 
experiment.  This table presents the average of the 
performances across all of the clustering options (2 
clusters to 20 clusters) for the specified parameters.  In 
general for a 10% summary, the SAS method outperforms 
the other methods, leading Centroid by only a small 
amount.  At the 20% level, the Centroid policy beats all 
other algorithms, although SAS with ISF and a 2-word 
sentence minimum comes close. 

 Some other interesting findings emerge from this 
table as well, namely term-weighting seems beneficial for 
all methods except for HSA, and ISF seems generally 
more beneficial for SAS and Centroid than for RR or 
HSA. 

 

 

 



SAS RR HSA Centroid SAS RR HSA Centroid
min. 2 word IDF 0.602 0.560 0.481 0.546 0.639 0.570 0.533 0.617
min. 2 word ISF 0.672 0.485 0.453 0.669 0.650 0.520 0.522 0.656
min. 2 word none 0.531 0.550 0.528 0.515 0.581 0.557 0.576 0.588

min. 9 word IDF 0.608 0.488 0.472 0.546 0.634 0.535 0.523 0.616
min. 9 word ISF 0.609 0.501 0.460 0.670 0.630 0.529 0.525 0.656
min. 9 word none 0.528 0.511 0.498 0.517 0.588 0.558 0.562 0.582

10% 20%

 
Table 4: Results from our automatic, cluster-based summarizer 

 

 Table 4 is unable to capture, however, the 
marked variation in results depending on how many 
clusters were initially selected.  In Table 5, we present our 
findings for the overall best parameters.  As can be seen, 

SAS is the most common policy.  In fact, SAS appears in 
the top 22 out 25 combinations at the 10% level and 20 out 
of 25 at the 20% compression level.   

 

 

Top 10 performers, 10% summary Top 10 performers, 20% summary 

# clusters ISF/IDF min. sent. length policy rel. util. # clusters ISF/IDF min. sent. length policy rel. util. 

15 ISF 2 SAS 0.718 4 ISF 2 SAS 0.686 

16 ISF 2 SAS 0.711 3 ISF 2 SAS 0.682 

14 ISF 2 SAS 0.710 2 ISF 2 SAS 0.681 

20 ISF 2 SAS 0.705 2 ISF 9 RR 0.669 

13 ISF 2 SAS 0.704 3 ISF 9 HSA 0.665 

17 ISF 2 SAS 0.704 5 ISF 2 SAS 0.665 

11 IDF 9 SAS 0.684 2 ISF 9 HSA 0.664 

8 IDF 9 SAS 0.681 7 ISF 2 SAS 0.661 

7 ISF 2 SAS 0.679 9 IDF 9 SAS 0.660 

19 ISF 2 SAS 0.678 Na ISF 9 CENTROID 0.656 
Table 5: Top 10 parameters for the both rates of summarization 

 

Tables 4 and Tables 5, taken together, suggest 
that SAS should be leveraged to improve performance 
over the pure centroid method.  More work needs to be 
done to determine the appropriate number of clusters to 
begin with, but it is interesting that there appears to be an 
inverse relationship, namely, the smaller summary seems 
to benefit from small, tightly packed clusters, while the 
larger summary benefits from a few noisy clusters. 

11. Conclusions 
While the Lead-based policy from our first experiment still 
outperforms all of our automatic cluster-based summaries 
at the 10% and 20% levels, our findings about SAS are 
important for future efforts to summarize by partitioning.  
As discussed, the pyramid structure of news articles may 
have boosted the scores of the lead-based policy.  In 
applications of summarizers, where the information is not 
presorted, we believe that clustering and then extraction 
with SAS could offer the best results. 

We conclude that multi-document summarization 
is improved by two specific elements.  Firstly, taking into 
account varying degrees of relevancy, as opposed to a 
polarized relevant/non-relevant metric.  Secondly, 
recognizing the sub-events that comprise a single news 
event is essential. 

12. Future Work 
In future work, we see four areas for improvement.  We 
would like to improve our simple cluster-based algorithm.  
Hatzivassiloglou et al. (2001) have shown several ways of 
doing this.  Second, we would like to have human judges 
evaluate the final summaries and give scores based on how 
well the summary captures the most relevant parts of the 
document cluster and how well the summary avoids 
repetition.  This would allow us to see how effective the 
RU method is as well as how well our summarizer is 
functioning.  Third, we would like to run a machine 
learning algorithm on a number of different and varied 



clusters to find which parameter settings work best for 
each type of cluster.  We suspect that the optimal number 
of original clusters, and the choice of ISF or IDF, could be 
determined by the amount of redundancy in the cluster and 
the desired size of the extract, but more work remains to be 
done on this.  Finally, we need to test the best clustering 
method against other methods -- centroid-based, MMR, 
lexical-chain, key-word to name a few. 
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