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Abstract label bias problemwhich means that the transitions leav-
) ) ing a given state compete only against each other, rather
This paper introduces a novel Support Vec-  than against all other transitions in the model (Lafferty et

tor Machines (SVMs) based voting algorithm 51 " 2001). Inuitively, it is the local normalization that
for reranking, which provides a way to solve results in the label bias problem.

the sequential models indirectly. We have
presented a risk formulation under the PAC
framework for this voting algorithm. We have
applied this algorithm to the parse reranking
problem, and achieved labeled recall and pre-
cision 0f89.4%/89.8% on WSJ section 23 of
Penn Treebank.

One way of using discriminative machine learning al-
gorithms in sequential models is to rerank thbest out-
puts of a generative system. Reranking uses global fea-
tures as well as local features, and does not make lo-
cal normalization. If the output set is large enough, the
reranking approach may help to alleviate the impact of
the label bias problem, because the victim parses (i.e.
) those parses which get penalized due to the label bias
1 Introduction problem) will have a chance to take part in the rerank-

Support Vector Machines (SVMs) have been successfull{)g'
used in many machine learning tasks. Unlike the error- In recent years, reranking techniques have been suc-
driven algorithms, SVMs search for the hyperplane thagessfully applied to the so-called history-based models
separates a set of training samples that contain two dig3lack et al., 1993), especially to parsing (Collins, 2000;
tinct classes and maximizes the margin between the§®llins and Duffy, 2002). In a history-based model, the
two classes. The ability to maximize the margin is becurrent decision depends on the decisions made previ-
lieved to be the reason for SVMs’ superiority over othePusly. Therefore, we may regard parsing as a special form
classifiers. In addition, SVMs can achieve high perforof sequential modekithout losing generality.
mance even with input data of high dimensional feature Collins (2000) has proposed two reranking algorithms
space, especially because of the use of the "kernel trickio rerank the output of an existing parser (Collins, 1999,
However, the incorporation of SVMs into sequentialModel 2). One is based on Markov Random Fields, and
models remains a problem. An obvious reason is thahe other is based on a boosting approach. In (Collins and
the output of an SVM is the distance to the separatinpuffy, 2002), the use of Voted Perceptron (VP) (Freund
hyperplane, but not a probability. A possible solutiorand Schapire, 1999) for the parse reranking problem has
to this problem is to map SVMs' results into probabili-been described. In that paper, the tree kernel (Collins
ties through a Sigmoid function, and use Viterbi searclnd Duffy, 2001) has been used to efficiently count the
to combine those probabilities (Platt, 1999). Howevemumber of common subtrees as described in (Bod, 1998).
this approach conflicts with SVMs’ purpose of achieving | this paper we will follow the reranking approach.
the so-calledglobal optimizatiort. First, this approach \we describe a novel SVM-based voting algorithm for
may constrain SVMs to local features because of the 1effaranking. It provides an alternative way of using a large
to-right scanning strategy. Furthermore, like other nong54in classifier for sequential models. Instead of using
generative Markov models, it suffers from the so-calleghe parse tree itself as a training sample, we use a pair of

1By global we mean the use of quadratic optimization inParse trees as a sample, which is analogous to the pref-
margin maximization. erence relation used in the context of ordinal regression



(Herbrich et al., 2000). Furthermore, we justify the al- Letx be a test vector, the decision function is

gorithm through a modification of the proof of the large

margin rank boundaries for ordinal regression. We then N

apply this algorithm to the parse reranking problem. flx) = 59”(2 a;y; K (s5,x) +b) )
j=1

1.1 A Short Introduction of SVMs . o _
In this section, we give a short introduction of Suppor%’vheresj 's a training vector whose corresponding La-

Vector Machines. We follow (Vapnik, 1998)'s definition 272"9€ multipliera; > 0. s; is called a support vector.
of SVMs. For each training sampl@;, x;), y: repre- Nj is the total number of the support vectors. According

sents its class, ang; represents its input vector definedf/%((:f'c))’r;he decision function only depends on the support

on ad-dimensional space. Suppose the training samples . . .
{1, x1) (g X )}?(X_ c RBD e {—1,1}) c%n bep It is worth noting that not any functiok” can be used
Y1, X1); -+ (Yn> Xn ! Y ’ as a kernel. We call functiodl : R?% x R¢ — R

rsnefsrzzted by & hyperplaiié: (x e w) + b = 0, which a well-defined kernel if and only if there is a mapping
function® : R4 — R" such that, for ank;,x; € R,
yi((x; o w) +b) > 1, (1) K(xi,x;) = ®(x;) ® ®(x;). One way of testing whether
a function is a well-defined kernel is to use the Mer-
wherew is normal to the hyperplane. To train an SVM iscer’s theorem (Vapnik, 1998) by utilizing the positive
equivalent to searching for tfeptimal separating hyper- semidefinteness property. However, as far as a discrete
planethat separates the training data without error angernel is concerned, there is a more convenient way to
maximizes thenarginbetween two classes of samples. lishow that a function is a well-defined kernel. This is
can be shown that maximizing the margin is equivalent tgchieved by showing that a functidfis a kernel by find-
minimizing ||w||>. ing the corresponding mapping functi@n This method
In order to handle linearly non-separable cases, Wgas used in the proof of the string subsequence kernel
introduce a positive slack variablg for each sample (Cristianini and Shawe-Tayor, 2000) and the tree kernel
(yi,xi). Then training can be reduced to the following(Collins and Duffy, 2001).
Quadratic Programming (QP) problem.
Maximize: 1.2 Large Margin Classifiers

l 1 SVMs are called large margin classifiers because they
Lp(a) = Z o — 3 Z Yiyj005 (X @ X;) (2) search for the hyperplane that maximizes the margin. The
i=1 ij=1 validity of the large margin method is guaranteed by the
theorems of Structural Risk Minimization (SRM) under
; . Probably Approximately Correct (PAC) framewdrkest
Whelreai (Zb: 1'];'” are the Lag:angeggltlpllers_;s;]the error is related to training data error, number of training
total number o _tra|n|ng_ Samples, andis a welg ting samples and the capacity of the learning machine (Smola
parameter for mis-classification. et al., 2000)

Sincg ”“eaf'y no_n-sepqrable samples may become SeF)'Vapnik-Chervonenkis (VC) dimension (Vapnik, 1999)
?rable n a ”h|gh_-d|m.e.nS|onaI space, .S\./MS employ .thgs well as some other measures, is used to estimate the
kef”e' t.”Ck t(.) implicitly separate training 5amp|e§ n complexity of the hypothesis space, or the capacity of the

Eeh'ghf'd:;.eonns'?hn:tl :E:turedsdpri(;en. 'IS:ZI 7§ 't—> ;zcto learning machine. The drawback of VC dimension is that
o aLri h-(lj'mens'onal prat- r:e ecstlocb ! pIL:] c\)/rderr itignores the structure of the mapping from training sam-
x ! ! ure v (x). éles to hypotheses, and concentrates solely on the range

subjectto:0 < o; < Cand)”; a;y; =0,

to search for the optimal separating hyperplane in th f the possible outputs of the learning machine (Smola
higher-dimensional feature space, we only need to sub-

stitute ®(x;) o ®(x;) with x; e x; in formula (2).

If there is a functiorf, such thati{ (x;, x;) = ®(x;) e
®(x;), we don't need to comput(x;) explicitly. K is
called akernelfunction. Thus during the training phase
we need to solve the following QP problem.

Maximize:

t al., 2000). In this paper we will use another measure,
the so-called Fat Shattering Dimension (Shawe-Taylor et
al., 1998), which is shown to be more accurate than VC
dimension (Smola et al., 2000), to justify our voting al-
gorithm,

Let ' be a family of hypothesis functions. The fat
shattering dimension af is a function from margim to
! 1< the maximum number of samples such that any subset of
Lp(a) = Zai ~3 Z yiyjoso K (x,%5). @)
i=1 i,j=1 2SVM's theoretical accuracy is much lower than their actual

performance. The ability to maximize the margin is believed to
subject to:0 < o; < C, and)_, oyy; = 0. be the reason for SVMs' superiority over other classifiers.



these samples can be classified with maggby a func- Thepreference kernel of this form was previously used
tion in F'. An upper bound of the expected error is giverin the context of ordinal regression in (Herbrich et al.,
in Theorem 1 below (Shawe-Taylor et al., 1998). We will2000). Then the decision function is

use this theorem to justify the new voting algorithm. N

Theorem 1 Consider a real-valued function clas® _

having fat-shattering function bounded above by thg((x]’xk)) =2 ouwiPrc((sun,5e2), (25, 74)) +
functionafat : R — N which is continuous from the N.
right. Fix 8 € R. If a learner correctly classifiesn — . ey o
independently generated examplewith h = Tp(f) € - (; oy (Klsn, a3) = Kiser, 7))
Ty(F) such thater,(h) = 0 and p = min|f(z;) — 6, N.

then with confidenca — o0 the expected error of is f(z iy (K(sin, 2) — K(sia, 21))),
bounded from above by -1

i=1

E(klog(@) log(32m) + 1Og(8ﬂ)) (5) Wwherez; andz; are two distinct parses of a sentence,
m k o (si1,s:2) is theith support vector, andV, is the total
wherek = afat(p/8). number of support vectors.
As we have defined them, the training samples are
2 A New SVM-based Voting Algorithm symmetric with respect to the origin in the space. There-

fore, for any hyperplane that does not pass through the
training data. Let;; is the parse with the highegtscore origin, we can ‘.""Ways find a parallel hyperplane that
crosses the origin and makes the margin larger. Hence,

among all the parses for thth sentence. the outcome separating hyperplane has to pass through
We may taker;; as positive samples, and;(;- ) as tgﬁrorigin which means that— 0

negative samples. However, experiments have shown th

this is not the best way to utilize SVMs in reranking (Di- h_erefore, for each test parsewe only need to com-

jkstra, 2001). A trick to be used here is to take a pair OPUte its score as follows.

parses as a sample: for ahandj > 1, (z;1,z;;) is a N,

positive sample, anl;;, z;1) is a negative sample. score(z) = Z oy (K(si1, @) — K(si2, 7)), (7)
Similar idea was employed in the early works of parse =1

reranking. In the boosting algorithm of (Collins, 2000),

for each sample (parse);;, its margin is defined as because

F(z1,a) — F(z;, @), whereF is a score function and

a is the parameter vector. In (Collins and Duffy, 2002), f((zj, x1)) = score(z;) — score(zy). (8)

for each offending parse, the parameter vector updati

function is in the form ofw = w + h(z;1) — h(zy;), 1 Kemels

wherew is the parameter vector atdreturns the feature In (6), the preference kern#l is defined on kernek.

vector of a parse. But neither of these two papers usedta can be any possible kernel. We will show tik is

pair of parses as a sample and defined functions on pall-defined in the next section. In this paper, we con-

of parses. Furthermore, the advantage of using differenééder two kernels fol, the linear kernel and the tree

between parses was not theoretically clarified, which wiernel.

will describe in the next section. In (Collins, 2000), each parse is associated with a set
As far as SVMs are Concerned' the use of parses Qf features. Linear combination of the features is used

pairs of parses both maximize the margin betwegn in the decision function. As far as SVM is concerned,

and z,;, but the one using a single parse as a sample may encode the features of each parse with a vec-

needs to satisfy some extra constraints on the selecti&®- Dot product is used as the kerri€l Letw andv

of decision function. However these constraints are n@e two parses. The computational complexity of linear

necessary (see section 3.3). Therefore the use of pairsksfnelO(|f.| * |f.|), where[f,| and|f,| are the length

parses has both theoretic and practical advantages. ~ Of the vectors associated with parsandv respectively.
Now we need to define the kernel on pairs of parsed.he goodness of the linear kernel is that it runs very fast

Let (t1,15), (v1,v2) are two pairs of parses. L& is in the test phase, because coefficients of the support vec-

any kernel function on the space of single parses. THers can be combined in advance. For a test pajsee

Let z;; be thejth candidate parse for thigh sentence in

preference kernelPy is defined orK as follows. computational complexity of test is onty(|f.|), which
is independent with the number of the support vectors.
Px((t1,t2), (v1,v2)) = K(t1,v1) — K(t1,v2) In (Collins and Duffy, 2002), the tree kerr# is used

—K(to,v1) + K(ta, v2) (6) to count the total number of common sub-trees of two



parse trees. Lat andv be two trees. Because can be Therefore the expected risk,...(f) for the voting

computed by dynamic programming, the computationgroblem is equivalent to the expected riBk;,ss(g) for

complexity of Tr (u, v) is O(Ju| * |v]), where|u| and|v|  the classification problem.

are the tree sizes af andv respectively. For a test parse

x, the computational complexity of the tesiig.S * |z|), Ryote(f)

whereS is the number of support vectors. = Eiex(lote(m, f))

3 Justlfylng the Algorlthm = E(m,:f:)eé' (lvote(xv f)) + E(:f:,ac)eé' (lvote(xy f))
L = E(ml,xz)ec‘:(lclass(mlyx%gf))

3.1 Justifying the Kernel = Retass(gs) (11)

Firstly, we show that the preference kerd®k defined

above is well-defined. Suppose keri€lis defined on However, the definition of spacg violates theinde-

T x T. So there existsd : T — H, such that pendently and identically distribute@id) assumption.

K(z1,22) = ®(x1) @ ®(x2) foranyzy,zs € T. Parses for the same sentence are not independent. If we
It suffices to show that there exist spad¥ and suppose that no two pairs of parses come from the same
mapping function® : T xT — H’ such that sentence, then the idd assumption holds. In practice, the
Px((t1,t2), (v1,v2)) = ®'(t1,t2) ® ®'(t1,t2), where number of sentences is very large, i.e. more than 30000.
t1,ta,v1,v9 € T. So we may use more than one pair of parses of the same
According to the definition oPk, we have sentence and still assume tidel property roughly, be-
cause for any two arbitrary pairs of parses, 29999 out of
Pk ((t1,t2), (v1,v2)) 30000, these two samples are independent.
= K(t,v1) = K(t1,v2) — K(ta,v1) + K(t2, v2) Let p = mini—1 nj=2.m, |f(®a) — f(zi5)| =

= B(t1) e D(v) — D(t) o P min;—1.n,j=2..m, |9(z:1,zi;)—0|. According to (11) and
Ebzz .) E;(ﬁ )+ EI)Z .) E;:(Q) ) Theorem 1 in section 1.2 we get the following theorem.
- 2) @21 2) @ (V2
— (D) — B(tr))  (D(v1) — B(v2)) ©) Theorem 2 If g; makes no error on the training data,

with confidencd — §

LetH = Hand®'(x1,z2) = ®(x1) — ®(x2). Hence

kernelPk is well-defined. Ruote(f) = Retass(97)
8em

3.2 Margin Bound for SVM-based Voting (K log(—

We will show that the expected error of voting is bounded + log(Sﬂ)) (12)
from above in the PAC framework. The approach used 67
here is analogous to the proof of ordinal regression (He(/(/h
. . . . erek = t(p/8),m=>._ i — 1).
brich et al., 2000). The key idea is to show the equiva- afat(p/8),m =2 ims.(m )
lence of the voting risk and the classification risk. 3.3 Justifying Pairwise Samples
Let X be the set of all parse wees. For eack X, An obvious way to use SVM is to use each single parse,

letz be the _best parse for_the sentence_relateld fbhu; instead of a pair of parse trees, as a training sample. Only
the appropriate loss function for the voting problem is e best parse of each sentence is regarded as a positive

IN

% ) log(32m)

follows. sample, and all the rest are regarded as negative samples.
(1 if (@) < f(z) Similar to the pairwise system, it also maximizes the mar-
loote (2, f) = { 0 otherwise (10) gin between the best parse of a sentence and all incorrect
parses of this sentence. Suppgss the function result-
wheref is a parse scoring function. ing from the SVM. It requiresy;; f(x;;) > 0 for each

Let & = {(z,2)|lzr € X} U{(z,2)lr € X}. £ sample(x;;,y:;). However this constraint is not neces-
is the space of event of the classification problem, ansary. We only need to guarantee thfdtr;1) > f(xi;).
Pre((z,7)) = Pre((z,2)) = $Prx(z). Forany parse This is the reason for using pairs of parses as training
scoring functionf, letgs(z1, z2) = sgn(f(x1)—f(z2)). samples instead of single parses.

For classifiely; on space, its loss function is We may rewrite thecore function (7) as follows.
L if 1 = T3 and score(r) = Zci7jK(si7j,x), (13)
. gf(l’hxz):—l i,j
lclass(xhx%gf) = 1 if Ty =T and

gf(z1,29) = +1  Wherei is the index for sentencg,is the index for parse,
0 otherwise andvi ). c; ; = 0.



The format ofscore in (13) is the same as the deci- can still be trained to maximize the margin through the
sion function generated by an SVM trained on the singlenethod of soft margin.
parses as samples. However, there is a constraint that ) )
the sum of the coefficients related to parses of the san®e EXperiments and Analysis

sentence is 0. So in this way we decrease the size of hWe useSV Mgkt (Joachims, 1998) as the SVM clas-

pothesis space based on the prior knowledge that only tgier The soft margin parametét is set to its default
different segments of two distinct parses determine Whic@alue NSV Mlight

parse is better. We use the same data set as described in (Collins,

2000; Collins and Duffy, 2002). Section 2-21 of the Penn
4 Related Work WSJ Treebank (Marcus et al., 1994) are used as train-
ing data, and section 23 is used for final test. The train-

The use of pairs of parse trees in our model is analogO‘ﬂ’?g data contains around 40,000 sentences, each of which

to the preference relation used in the ordinal regressiqlL.< »7 distinct parses on average. Of the 40,000 training
algorithm (Herbrich et al, 2000,)'_ In that paper, pairs oq&lntences, the first 36,000 are used to train SVMs. The
objects have been used a; trammg samples. Fo,r,exaFg'maining 4,000 sentences are used as development data.
ple, let(ry,rs,...r,) be a list of objects in the training The training complexity forSV Mgt is roughly
data, where:; ranksith. Then pairs of object@; 1, ;) O(n*1) (Joachims, 1998), whereis the number of the

are training samples. Preference kerﬁq_ed In our paper raining samples. One solution to the scaling difficulties

is the same as the preference kernel in (Herbrich et a[s to use the Kernel Fisher Discriminant as described in

2000) in format. o (Salomon et al., 2002). In this paper, we divide train-
However, the purpose of our model is different fromng gata into slices to speed up training. Each slice con-
that of the ordinal regression algorithm. Ordinal regresg,ins two pairs of parses from each sentence. Specifically,
sion searches for a regression function for ordinal valuegjice ; contains positive samplégpy,., pr:), +1) and neg-
while our algorithm is designed to solve a voting prob+;jye samples(pyi, ), —1), wherepy, is the best parse
lem. As a result, the two algorithms differ on the def-, sentencet, py; is the parse with théth highest log-
inition of the margin I ordinal regression, theargin  |ielihood in all the parses for sentenkand it is not the
is min [£(r;) — £(ri—1)|, wheref is the regression func- pegt parse. There are about 60000 parses in each slice in
tion for ordinal values. In our algorithm, thearginis  average. For each slice, we train an SVM. Then results
min [score(w;1) — score(w;;)|. of SVMs are put together with a simple combination. It
In (Kudo and Matsumoto, 2001), SVMs have been eMgkes about 2 days to train a slice on a P3 1.13GHz pro-
ployed in the NP chunking task, a typical labeling prob+essor.
lem. However, they have used a deterministic algorithm s a result of this subdivision of the training data into
for decoding. slices, we cannot take advantage of SVM's global opti-
In (Collins, 2000), two reranking algorithms were pro-mization ability. This seems to nullify our effort to cre-
posed. In both of these two models, thes functionsre  ate this new algorithm. However, our new algorithm is
computed directly on the feature space. All the featuresill useful for the following reasons. Firstly, with the im-
are manually defined. provement in the computing resources, we will be able to
In (Collins and Duffy, 2002), the Voted Perceptron al-use larger slices so as to utilize more global optimization.
gorithm was used to in parse reranking. It was show8VMs are superior to other linear classifiers in theory. On
in (Freund and Schapire, 1999; Graepel et al., 2001) thgie other hand, the current size of the slice is large enough
error bound of (voted) Perceptron is related to marginfor other NLP applications like text chunking, although it
existing in the training data, but these algorithm are nds not large enough for parse reranking. The last reason
supposed to maximize margins. Variants of the Percejis that we have achieved state-of-the-art results even with
tron algorithm, which are known as Approximate Maxi-the sliced data.
mal Margin classifier, such as PAM (Krauth and Mezard, We have used both a linear kernel and a tree kernel.
1987), ALMA (Gentile, 2001) and PAUM (Li et al., For the linear kernel test, we have used the same dataset
2002), produce decision hyperplanes within ratio of thas thatin (Collins, 2000). In this experiment, we first train
maximal margin. However, almost all these algorithm£2 SVMs on 22 distinct slices. In order to combine those
are reported to be inferior to SVMs in accuracy, whileSVMs results, we have tried mapping SVMs’ results to
more efficient in training. probabilities via a Sigmoid as described in (Platt, 1999).
Furthermore, these variants of the Perceptron algo- We use the development data to estimate pararaeter
rithm take advantage of the large margin existing in thand B in the Sigmoid
training data. However, in NLP applications, samples are 1
usually inseparable even if the kernel trick is used. SVMs Pily=1fi) = 47m (14)



Table 1: Results on section 23 of the WSJ Treebanligure 1: Learning curves on the development dataset of
LR/LP = labeled recall/precision. CBs = average numbeg(Collins, 2000). X-axis stands for the number of slices to
of crossing brackets per sentence. 0 CBs, 2 CBs are the combined. Y-axis stands for tit&score.

percentage of sentences with 0012 crossing brackets

respectively. CO99 = Model 2 of (Collins, 1999). CHOQ g [ i N ‘ - ‘ DDﬁQQ,
= (Charniak, 2000). CO00 = (Collins, 2000). 0.906 +++ DDDEEX Xé%ggi’?*—l——l—
<40 Words (2245 sentences) 0.904 1= - O W XX ]
Model| LR | LP |CBs|OCBs|2cBs| U902 oo xS i
CO99 | 88.5% | 88.7% | 0.92 | 66.7% | 87.1% 09770 OOGOOOOLVHGOO0
0.898 - X OOOO baselthe ——
CHO0 | 90.1% | 90.1% | 0.74 | 70.1% | 89.6% 0.896 %QXOO G=0 & |
CO00 | 90.1% | 90.4% | 0.73 | 70.7% | 89.6% 0804 L © =200 + |
SVM_| 89.9% | 90.3% | 0.75 | TLT% | 894% | 'aon | 65—:1(5)88 0
<100 Words (2416 sentences) 0.89 © ! ! 7 x
Model LR LP CBs| 0CBs | 2CBs 0 5 10 15 0
CO99 | 88.1% | 88.3% | 1.06 | 64.0% | 85.1% number of slices
CHOO0 | 89.6% | 89.5% | 0.88 | 67.6% | 87.7%
COO00 | 89.6% | 89.9% | 0.87 | 68.3% | 87.7%
SVM | 89.4% | 89.8% | 0.89 | 69.2% | 87.6% Table 2: Results on section 23 of the WSJ Treebank.

LR/LP = labeled recall/precision. CBs = average num-
ber of crossing brackets per sentence. CO99 = Model 2

where f; is the result of theth SVM. The parse with of (Collins, 1999). CDO2 = (Collins and Duffy, 2002)

maximal value off [, P;(y = 1|f;) is chosen as the top- <100 Words (2416 sentences)
most parse. Experiments on the development data shows Model R P CBs
that the result is better ifle=/iZ is much larger than 1. CO99 | 83.1% | 88.3% | 1.06
Therefore CD02 | 83.6% | 88.9% | 0.99
ﬁP*( 1) ﬁ 1 SVM(tree) | 88.7% | 88.8% | 0.99
11+ ! 119 Ae-fiB
1=1 =1
ﬁ 1 trol the weight oflog-likelihood given by the parser. The
; Ae—fiB proper value ofs depends on the size of training data.
(B The best result does not improve much after combining 7
= A" =t (19 glices of training data. We think this is due the limitation

of local optimization.
Our next experiment is on the tree kernel as it is used
in (Collins and Duffy, 2002). We have only trained 5

. . . slices, since each slice takes about 2 weeks to train on
parser (Collins, 1999). Paramefgis used as the weight a P3 1.13GHz processor. In addition, the speed of test

of the log-likelihood. In an_mon, we find that our SVM. fﬁ)r the tree kernel is much slower than that for the lin-
has greater labeled precision than labeled recall, whic

means that the system prefer parses with less brack%r kernel. The experimental result is shown in Table 2

ie results of our SVM system match the results of the
So we take the number of brackets as another feature\}ated Perceptron algorithm in (Collins and Duffy, 2002)
be considered, with weight. o« and are estimated on P 9 ' !

the development data. although only 5 slices, amounting to less than one fourth

The result is shown in Table 1. The performance o?f the whole training dataset, have been used.
our system matches the results of (Charniak, 2000), b%t Conclusions and Future Work
is a little lower than the results of the Boosting system
in (Collins, 2000), except that the percentage of serlAe have introduced a new approach for applying SVMs
tences with no crossing bracketd {8 higher than that of to sequential models indirectly, and described a novel
(Collins, 2000). Since we have to divide data into slicesSVM based voting algorithm inspired by the parse
we cannot take full advantage of the margin maximizareranking problem. We have presented a risk formula-
tion. tion under the PAC framework for this voting algorithm,
Figure 1 shows the learning curves.is used to con- and applied this algorithm to the parse reranking prob-

Therefore, we may usg_, f; directly, and there is no
need to estimatel and B in (14). Then we combine
SVMs’ result with thelog-likelihood generated by the



lem, and achieved LR/LP &9.4%/89.8% on WSJ sec- Michael Collins. 1999.Head-Driven Statistical Models
tion 23. for Natural Language Parsing Ph.D. thesis, Univer-

Experimental results show that the SVM with a linear Sity of Pennsylvania.

kernel is superior to the SVM with 'Free kernel in bothMichaeI Collins. 2000. Discriminative reranking for nat-
accuracy and speed. The SVM with tree kernel only 15| janguage parsing. Proceedings of the 7th Inter-
achieves a rather lovi-score because it takes too many national Conference on Machine Learning

unrelated features into account. The linear kernel is de-

fined on the features which are manually selected from - Cristianini and J. Shawe-Tayor. 2008n introduction
large set of possible features. to Support Vector Machines and other kernel-based

As far as context-free grammars are concerned, it will '€amMing methodsCambridge University Press.

be hard to include more features into the current featutemma Dijkstra. 2001. Support vector machines for parse
set. If we simply use n-grams on context-free grammars, selection. Master’s thesis, Univ. of Edinburgh.

it is very possible that we will introduce many useless fea- )

tures, which may be harmful as they are in tree kernel sys©av Freund and Robert E. Schapire. 1999. Large mar-
tems. One way to include more useful features is to take gin classification using the perceptron algoritiia-

advantage of the derivation tree and the elementary treesChlne Leaming37(3):277-296.

in Lexicalized Tree Adjoining Grammar (LTAG) (Joshi Claudio Gentile. 2001. A new approximate maximal
and Schabes, 1997). The basic idea is that each elemenmargin classification algorithm.Journal of Machine
tary tree and every segment in a derivation tree is linguis- Learning Researci2:213-242.

tically meaningful, . . Thore Graepel, Ralf Herbrich, and Robert C. Williamson.
We also plan to apply this algorithm to other sequen- 2001. From margin to sparsity. Bdvances in Neural

tial models, especially to the Supertagging problem. We | tormation Processing Systems 13
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ing, they have a much smaller training dataset and feature2000. Large margin rank boundaries for ordinal re-
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