Proceedi ngs of the Conference on Enpirical
Language Processing (EVNLP),

Met hods in Natural
Phi | adel phia, July 2002, pp. 265-272.
Associ ation for Conputational Linguistics.

A Machine Learning Approach to Introspection in a Question
Answering System

Krzysztof Czuba
Carnegie-Mellon
University
Pittsburgh, PA 15213
kczuba@cs.cmu. edu

Abstract

The ability to evaluate intermediate re-
sults in a Question Answering (QA)
system, which we call introspection,
is necessary in architectures based on
planning or on processing loops. In
particular, it is needed to determine
if an earlier phase must be retried, or
if the response ”No Answer” must be
offered. We look at an introspection
task of performing a cursory evalua-
tion of the search engine output in a
QA system. We define this task as a
concept-learning problem and evaluate
two classifiers that use features based
on score progression in the ranked list
returned by the search engine and can-
didate answer types. Our experiments
showed promising results, achieving
25% relative improvement over a ma-
jority class baseline on unseen data.

1 Introduction

Recent experience in building Question An-
swering (QA) systems shows that the answer
search strategy should depend on the question
and/or answer type, and intermediate results
produced during search. Practically all state-
of-the-art QA systems identify the sought an-
swer type and some vary their search strat-
egy accordingly (Prager et al. (2000), Hovy et
al. (2001), Harabagiu et al. (2000)). It is less
common for QA systems to examine interme-
diate results during search, although the suc-
cess of Falcon, which uses a number of feedback

John Prager
IBM T.J. Watson
Research Center
Yorktown Heights, NY 10598 Yorktown Heights, NY 10598
jprager@us.ibm.com

Jennifer Chu-Carroll
IBM T.J. Watson
Research Center

jencc@us.ibm.com

loops, suggests that it is a promising approach
(Pasca and Harabagiu (2001)).

In order to implement such feedback loops,
the system needs an introspection mechanism to
be able to examine the quality of the interme-
diate results and make a decision to redo a step
if the quality is not satisfactory. Similarly, in
plan-driven architectures (Hiyakumoto (2001)),
the planner requires information on the quality
of an operator’s results to decide which operator
to apply next.

A related problem has been posed by the
TREC-10 QA-Track (Voorhees (2001)): the test
set contained questions with no answer in the
document collection and the systems were sup-
posed to detect them. A search strategy that
always produces a set of answers can only be
misleading in such a situation. Similarly, de-
ployed QA systems need mechanisms to detect
questions with no answers in the collection, or
with no answers found reliably using the algo-
rithms the system implements.

We examine a machine-learning approach to
an introspection task in a QA system. We con-
centrate on the search engine output in our sys-
tem (Prager et al. (2000)). We train a set of
classifiers that use features based on the progres-
sion of the scores the search engine assigns to
documents in a hit list, in order to try and pre-
dict whether the hit list contains a good answer
candidate. We evaluate the classifiers on dif-
ferent question types and report a 25% relative
gain in accuracy over a majority class baseline
for the important class of definition questions.

The paper is organized as follows. Section
2 presents a short overview of our QA system.

Section 3 describes how we defined the intro-
spection problem as a concept learning task and
the feature sets we used. The experimental de-
sign and data sets are discussed in Section 4,
followed by the experimental results in Section
5 and discussion in Section 6.

2 System Architecture

The flavor of QA considered here is as defined by
the TREC-10 conference (Voorhees (2001)): for
a given factual question in English, the system is
supposed to find in a large, cross-domain docu-
ment collection a 50-byte text segment that an-
swers this question. For example, for the ques-
tion What is the state flower of Hawaii? ac-
ceptable answers expected from the system are
hibiscus, yellow hibiscus, etc. For the major-
ity of the TREC QA-track questions the answer
can be formulated in the form of a named entity
(NE) of a certain type.

Our QA system implements the technique
of Predictive Annotation (Prager et al. (2000))
that creates textual annotation in the collec-
tion documents in the form of QA-Tokens. QA-
Tokens are semantic class labels associated with
recognized text segments (mostly Named Enti-
ties). Examples of QA-Tokens include ones cor-
responding to the well-known MUC NE cate-
gories such as PERSONS$, PLACE$ or DATES.
There are approximately 80 QA-Tokens, and
thus answer types, and they are used to focus
search throughout the system; they are indexed
and can occur in search engine queries.

The system’s architecture is a pipeline start-
ing with question analysis, followed by the Gu-
ruQA search engine, and an answer selection
component (Radev et al. (2000)). The ques-
tion is first transformed into a query containing
question keywords and a set of QA-Tokens cor-
responding to the recognized question/answer
type. The search engine is designed to retrieve
a ranked hit list of passages of a dynamically
determined size (1-3 sentences; most passages
contain only one sentence).

Passage ranking is based on a combination
match (Prager et al. (2000)). A passage score
consists of two components: the term score

and the density score. The term score is com-
puted by summing the weights of each query
term found in the passage. The term weights
are set in query analysis, roughly, 400 for QA-
Tokens, 200 for proper names and 100 for com-
mon words. The density score, which effectively
acts as a tie-breaker, is inversely proportional
to the distance (in words) between the first and
last passage words that matched a query key-
word; all matched words being consecutive gives
a density score of 99.

The order of the words is irrelevant. The
search engine holds off matching QA-Tokens till
last, and ensures that they do not match words
that had already matched. For example, the
question: What is the capital of Sri Lanka? is
converted by the question analysis module to
“PLACES$ capital Sri Lanka” (weight and win-
dow operators not shown); it is important for the
PLACE$ QA-Token not to match “Sri Lanka”
in text.

Because of the high weight assigned to QA-
Tokens, the returned passages are very likely to
contain an answer candidate of the desired type.
The hit list, the analyzed question and the query
are given to the answer selection module.

Not all question types are processed using
the above strategy. Two notable exceptions are
definition-type (such as What is thalassemia?,
or Who was Jane Goodall?) and abbreviation
questions. For definition-type questions, the
system employs the Virtual Annotation tech-
nique (Prager et al. (2001)) to find defining
terms in WordNet. Abbreviation-finding is an
auxiliary role of our named-entity recognizer
Textract (Byrd and Ravin, (1999)). Similarly,
for abbreviations possible expansions are found
based on collection statistics.

Additionally, for definition questions, the
defining expressions are located using syntactic
patterns such as appositives or copular expres-
sions.

3 Hit List Quality as Concept
Learning

We cast the task of determining the quality of a
hit list as a concept-learning problem. Our goal

is to develop classifiers using features which can
be extracted from the hit lists returned by the
search engine to classify a hit list as “good”, i.e.,
at least one passage in the hit list contains the
answer to the question, or “bad”, i.e., the answer
is not present in the hit list passages.

Because of the use of QA-Tokens, hit lists re-
turned by the search engine are highly focused
on Named Entities of the right type — assuming
the QA-Token identification in question analysis
and the passage annotation were correct. We hy-
pothesize that the score assigned to each passage
by the search engine provides important infor-
mation about the passage quality, and the pat-
terns in which the scores change within the hit
list may also indicate the hit list quality. For
example, if the score for the top passage is far
from the maximum achievable score given the
query terms, it is an indication that many im-
portant keywords were not present in the pas-
sage, and as a result, we may safely conclude
that the passage is not a good candidate for find-
ing a correct answer. The correlation of score
change patterns with hit list quality may also
vary according to QA-Token types, in particu-
lar the frequency of QA-Tokens in the corpus.
High passage scores indicating that a Name En-
tity of the right semantic type is present in the
passage may be better evidence that the correct
answer is present if the candidate QA-Token is
relatively rare (e.g., BODYPARTS) than if it
is very frequent (e.g., PERSONS$), since in the
latter case, the QA-Token has an increased pos-
sibility of being present by chance.

We identified several classes of features which
we believe may be correlated with hit list qual-
ity. Let N be the hit list length (typically
10), Tinaz and Dy, be the maximum achiev-
able term and density scores, respectively, and
T; and D; be the term and density scores of the
i-th document in the hit list, respectively. We
define Ty = Typer and Dy = Dype.- The classes
of features we chose that are based on search
engine scores are defined as follows:

e F: N features calculated from the relative
change in the term score:
fi= (T —Ti—1)/Ti—1, 1 <i < N.

e S: N —1 features calculated from the sign of
the second derivative of the score function:
s; = sign(fix1 — fi), 1 <i < Nj

e D: N features calculated from the relative
change in the density score:
di = (D;j —D; 1)/D;—1,1 <i < N.

The features in F and S are based only on
the term score, i.e., they reflect the change in
the number and kind (QA-Token, proper name,
other) of keyword matches. D is based solely on
the density scores. Additionally, we introduced
two alternative feature classes based on the QA-
Tokens identified by the question analysis:

e T: 83 binary features, each of which corre-
sponds to a QA-Token type in the system.

e P: 47 binary features, similar to T'; only the
frequently-occurring QA-Tokens are repre-
sented, the remaining QA-Tokens' are com-
bined to form the type OTHER.

These sets make the question type informa-
tion available to the classifier and are motivated
by the intuition that some question types might
be more amenable to our classification tech-
nique. P is introduced in an attempt to reduce
the data sparseness problem for rare types.

Given the above feature classes, we proceed to
design an experiment to investigate the correla-
tion between these feature classes and hit list
quality, which we describe in the next section.

4 Experimental Design

Our experiments seek to answer three questions.
We are interested in knowing 1) which of the
above feature classes are best predictors of hit
list quality; 2) how well the best performing set
of feature classes predicts hit list quality; 3)
whether particular question types (those seek-
ing answers of particular QA-Token types) are
better candidates for our prediction mechanism.
This section describes the data and learning al-
gorithms used in our experiments, as well as the
experimental settings.

!QA-Tokens instantiated for fewer than 10 questions
in the combined TREC-9 and TREC-10 sets.

TREC-9 | TREC-10
Total number of examples | 688 498
% positive examples 70.6% 53.4%

Table 1: Percentage of positive examples in the FULL sets

TREC-9 TREC-10 Question Types
ABBREV 83 (66.2%) | 136 (56.6%) | Abbreviation questions
DEFINE 84 (65.7%) | 144 (52%) Definition questions
ORG 70 (70.0%) | 24 (66.6%) | ORGS
PERSON | 143 (74.8%) | 69 (60.8%) | PERSONS PRESIDENTS ROYALTYS etc.
PLACE 114 (77.1%) | 63 (57.1%) | PLACES CITY$ CAPITALS etc.
THING 120 (59.1%) | 193 (50.2%) | THINGS
TIME 76 (67.1%) | 53 (77.3%) | YEARS DATE$ AGO$ TIMEOFYEARS etc.
FILTERED | 491 (74.5%) | 252 (58.3%) | Excludes: THINGS, definition questions,
and abbreviation questions

Table 2: Statistics for the data subsets:

columns TREC-9 and TREC-10 show the number of

questions in each set with the percentage of positive examples, i.e., examples with correct answers

in the hit list

4.1 Experimental Data

We ran our system on the TREC-9 and TREC-
10 question sets, containing a total of 1193 ques-
tions. This resulted in a set of QA-Tokens being
associated with each question. Due to analysis
errors, 7 questions were not assigned any QA-
Tokens, and were unsuitable for further analy-
sis. For the remaining questions, henceforth re-
ferred to as the FULL data sets, we matched the
Named Entities in the retrieved passages against
answer patterns? to identify ones corresponding
to correct answers and classified each hit list ac-
cording to whether it contained a correct an-
swer. Table 1 shows the percentage of positive
examples (hit lists containing a good candidate)
in the FULL data sets.

In order to investigate the performance of our
classifiers on subsets of question types, we split
the FULL sets based on the frequency of can-
didate QA-Tokens and on QA-Token semantics.
We selected those question types that occurred
more than 100 times in the combined FULL
data sets. The cardinalities of the resulting 7
data subsets® and the percentages of positive ex-

*For TREC-9 we used the answer patterns provided
by NIST, for TREC-10 we used our own patterns com-
bined with patterns provided by Ken Litkowski of CL
Research.

3We added the ORG set since it corresponds to only
one well-defined QA-Token and it is an important ques-

amples are shown in Table 2.

The last row in Table 2 shows the FIL-
TERED data sets, which exclude from the
FULL sets definition and abbreviation ques-
tions, along with questions assigned the QA-
Token THINGS. The former two classes are ex-
cluded in order to eliminate the effects of differ-
ent processing strategies specific to these ques-
tions; THINGS questions were eliminated be-
cause their extension covers practically all noun
phrases not assigned to other QA-Tokens. The
FULL and FILTERED sets are the largest but
also least specific. The motivation behind using
these sets was to test if given a large number
of examples, classifier features could be found
that are good predictors across different ques-
tion types.

4.2 Machine Learning Algorithms

To run our experiments, we used the Weka
package (WEKA (2002), Witten et al. (1999)).
We experimented with a number of different
Boolean classifiers including OneR, Naive Bayes,
decision trees and neural networks. We obtained
the best results with the latter two and we de-
scribe them below. We used the decision tree
(C4.5) and neural net classifier implementation
from the Weka package. We used the default
configuration for the decision tree algorithm,

tion type.

with the exception of allowing for binary splits.
For the neural network, we trained a plain feed-
forward network with one hidden layer. If the
feature set had N features, the number of hid-
den units was set to [N/2]. We set the number
of epochs for backpropagation to a fixed number
of 500. In the rest of the paper, the decision tree
results are labeled DT, the neural net results are
labeled NIN.

4.3 Experimental Settings

To find out which subsets of the feature classes
identified in Section 3 best predict hit list
quality, we conducted extensive experiments by
varying the feature classes used by the classi-
fiers. Since we consider the term scores the most
important indicator of passage quality, all ex-
periments included the feature class F. We then
generated all possible combinations based on
inclusion/exclusion of all other feature classes,
which can be described by the following reg-
ular expression: FS?D?(T|P)?. For example,
the feature set FSD contains all features from
classes F, S and D. For each combination, we
performed 10-fold stratified cross-validation on
the data subsets shown in Tables 1 and 2. Our
experiments focused on selecting the optimal
feature classes rather than the optimal learn-
ers’ parameters such as the number of epochs,
which we leave for future research. A more fine-
grained feature selection in which single features
from the different sets are picked is also possible
but not investigated here.

5 Results and Analysis

We conducted experiments as described in Sec-
tion 4.3, and identified, for each data set, the
best performing set of feature classes. Table
3 shows these best performing feature classes
and the absolute success rates (the percentages
of correctly classified examples in the test set)
of the resulting classifiers. As our baseline we
adopted the accuracy of a classifier that always
predicts the majority class, which amounts to
predicting that the hit list is always “good”.
This baseline corresponds to no feedback avail-
able to the QA system. The relative percentage
gains on the baseline are also presented in Table

3. The results for the TREC-10 data subsets
ORG and TIME are shown in italics because
these sets are significantly smaller, and we con-
sider their results to be less reliable.

For the vast majority of the data sets we ob-
serve gains in accuracy over the baseline, some
quite substantial, achieving around or over 20%
relative improvement. The gains are generally
higher for TREC-10 subsets. This is contributed
partly by lower baselines: the TREC-9 ques-
tion set was used to fine-tune the system’s query
formulation strategy, including query expansion
and rules for assigning QA-Tokens, and the
TREC-10 data were new to the system. How-
ever, the lower baseline on the TREC-10 data
sets indicates question analysis module deficien-
cies on unseen data, and until its performance
plateaus, we argue that the performance of the
classifiers on the TREC-10 data sets is more in-
dicative of what could be expected on unseen
data.

There is also considerable variation in the per-
formance for different question types. The DE-
FINE class performed consistently well, with a
25.3% relative gain for the neural net trained on
the TREC-10 subset, which is a valuable result
given the high percentage of such questions in
the TREC question sets.

A few of the types show mixed performance.
The FILTERED set shows a much higher ac-
curacy on TREC-10. For the ABBREV, ORG
and THING (DT) subsets, the accuracy is bet-
ter on TREC-9. The ORG type seems to be
least suitable for the method since the perfor-
mance is below the baseline for both sets.

For the FILTERED and FULL sets we ob-
serve that the optimal feature sets contain T or
P, which suggests that the question type infor-
mation is crucial for good performance.

The neural net performed consistently bet-
ter on the important DEFINE class, and pro-
duced non-negative gains on all TREC-10 sub-
sets. This small sample suggests that a neu-
ral network could be very effective for this task
given a more appropriate training set-up (e.g.,
with a validation set and early stopping) than
the fixed strategy we adopted.

It is interesting to note the effect of feature

TREC-9 TREC-10
DT NN DT NN

FULL FDT 72.8 | +3.1 FT 715 | +1.2 FSDP | 63.4 | +18.7 | FDP | 62.2 | +16.4
ABBREV FSD 73.3 | +10.7 | FS 69.8 | +5.4 FS 55.2 | -2.5 FS 57.1 | +0.8
DEFINE FSDT | 71.1 | 4+8.2 FDT | 723 | +10.0 | FP 62.2 | +19.6 | FDP | 65.2 | +25.3
ORG F 67.1 | -4.1 FD 68.5 | -2.1 FSD 58.3 | -12.5 | FSD | 66.6 | 0
PERSON F 75.4 | +0.8 F 74.1 | -0.9 FSDT | 73.8 | +21.4 | FP 70.7 | +16.2
PLACE FD 79.0 | +2.5 FDP | 81.8 | +6.0 F 69.0 | +20.8 | F 67.1 | +17.5
THING FD 68.3 | +15.6 | FS 59.1 | 0 FS 53.4 | +6.4 F 59.5 | +18.5
TIME FSD 71.6 | +6.7 FD 66.0 | -1.6 FDSP | 718.3 | +1.8 | FSD | 82.6 | +6.8
FILTERED | FSDT | 72.2 | -3.1 FS 73.5 | -1.3 FST 68.7 | +17.8 | FST | 67.4 | +15.6

Table 3: Best performing feature sets, accuracy and relative percentage gains

selection on the classifier accuracy. For the DE-
FINE set, the accuracy of the neural network
ranges from 52.0% on the FT subset to 65.2%
on the FDP subset as reported in Table 3. Also,
the richest feature set (FSDT) does not guar-
antee the best performance; in fact, the simplest
set (F) is optimal in 6 different experiments.

6 Discussion

To better illustrate the performance of the clas-
sifiers, we present the precision figures for the
“sood” and “bad” classes in Table 4. The fig-
ures correspond to the percentage of correctly
identified members of each class and suggest the
performance that can be expected from the clas-
sifiers when used in a QA system. We also give
the best performing feature set and the overall
classifier accuracy in the All column. In order
to make the estimates more reliable we chose the
combined data sets for this discussion.

According to Table 4, the “good” examples
can be identified quite reliably for most of the
subsets. The least reliable is the THING sub-
set, which is not surprising since the THING$
QA-Token is very general and its presence is
not a good predictor of the presence of an an-
swer. For the FULL, ABBREV, DEFINE
and PLACE subsets, close to half of all “bad”
hit lists are discovered. Another interesting re-
sult is the dominance of the feature set F in the
table, which suggests that this might be the set
of choice for larger training sets.

Given that there were 228 questions in the
DEFINE subset, the DT results from Table 4
translate to the confusion matrix in Table 5. Ac-

cording to Table 5, in the worst-case scenario, in
which all false negatives are lost after the cor-
rection step, the loss in the number of questions
with “good” hit lists can be as high as 11.8%.
In the ideal case, no false negative will result in
discarding an answer and all “bad” hit lists will
be corrected, which translates to a 20.6% gain
in the number of “good” hit lists. The actual
gain in the number of good hit lists and conse-
quently the number of answers found needs to
be evaluated empirically.

False negatives are examples in which there is
a potential answer candidate in the hit list, but
the classifier predicted that there was none. De-
pending on the correction procedure, false nega-
tives are potentially harmful to the accuracy of
the QA system. For example, if the correction
procedure discards a hit list falsely classified as
a negative, it will throw away a good answer
candidate which may or may not return in the
regenerated hit list. Given that this answer can-
didate might be the only one in the collection
or the only one easily found, discarding the re-
trieval results might not be the optimal choice.
When the original retrieval results are not dis-
carded but are augmented with the second hit
list, the subsequent modules in the QA system
are faced with an additional set of documents to
process. In the simplest case this can incur ad-
ditional processing time. In systems that rely on
a form of redundancy (Clarke et al. (2001)) —
the frequency count among answer candidates
would be the simplest example — compound-
ing of errors can occur, but, by the same to-
ken, so can positive reinforcement. If and how

DT NN
Set All | Good | Bad | Set All | Good | Bad
ABBREV F 63.9 | 78.5 419 | FS 60.2 | 90.7 14.0
DEFINE FT 65.7 | 79.2 47.6 | FSP 64.4 | 84.6 37.6
ORG F 65.7 | 85.4 21.6 | FD 66.7 | 82.1 30.0
PERSON F 72.1 | 89.2 309 | FDSP | 679 | 81.2 37.1
PLACE F 76.2 | 944 333 | F 74.5 | 89.6 40.6
THING FS 57.1 | 60.9 39.0 | F 59.4 | 45.1 75.6
TIME F 67.5 | 83.3 16.6 | FT 70.5 | 90.1 21.6
FULL FSDT | 65.0 | 76.0 46.0 | FSP 66.4 | 82.8 37.9
FILTERED | FSDP | 70.3 | 82.6 430 | F 69.9 | 84.4 37.8
Table 4: Per-class precision
Classified as good | Classified as bad
good | 103 27
bad 51 47

Table 5: Confusion matrix for the DEFINE subset

often such harmful situations occur is system-
dependent and it could be empirically estimated
on a large question set, which we leave for future
research.

The precision figures in Table 4 were given
for the feature sets that resulted in the high-
est overall accuracy of the classifier. Given that
false positives are potentially harmful, minimiz-
ing their number might be another criterion for
feature selection. As an example we give the
precision for the classifier trained and evaluated
on the FILTERED subset using the FS fea-
ture set. In this case 91.7% “good” examples
are classified as such, but only 14.7% “bad” ex-
amples receive the correct label, with the overall
classifier accuracy of 67.9%. Although the over-
all performance of the classifier is worse than
with the FST feature set, the cost of discard-
ing an answer candidate might be too high and
a feature set that results in a different split of
misclassified examples might be a better choice.

We also examined the structure of the deci-
sion trees that were learned. For all feature sets
that contained question type information, the
features corresponding to question types tend to
appear high in the tree. For type specific data
sets, such as PERSON or PLACE, features
corresponding to the change in the term match
tend to be the most discriminative ones, with
the features corresponding to the drop from the
maximum achievable score to the score of the

first passage (f1) appearing at the top of almost
all the trees (the TIME set was the exception).
The structure of the TREC-10 decision trees was
much less systematic.

7 Future directions

We have examined the misclassified examples
and — not surprisingly — we found many cases
that should have been classified differently on
semantic grounds, which is not possible given
our feature sets. Nevertheless, on many of the
question types we looked at, our method can
detect approximately half of the “bad” hit lists.
The performance of the classifiers is especially
high for the DEFINE question set whose mem-
bers are relatively easily identified automati-
cally. Definition type questions are a very im-
portant subset as they are usually quite numer-
ous both in the TREC evaluations and in real-
life question logs. The actual improvement in
the number of questions the system can answer
correctly needs to be evaluated in an end-to-end
test given a specific correction procedure.
Another experiment would be to train the
classifiers only on questions for which the QA-
Token assignment was correct. This would
require manual verification of the assignment.
Such verification might be slightly difficult since
many QA-Tokens could potentially retrieve a
correct answer. It is possible that a correct an-
swer is found even if the QA-Token is not op-

timally assigned, but there are still likely to be
cases for which the current set of rules used to
pick the QA-Token result in a wrong choice from
which the subsequent modules cannot recover.
Thus, only clearly wrong QA-Tokens, i.e., QA-
Tokens that are unlikely to retrieve the correct
answer would have to be discarded.

Another remaining issue is the difference in
performance on the data sets drawn from the
TREC-10 questions in comparison to the sets
derived from TREC-9. Currently we do not have
a good explanation for the difference. We will
monitor the performance of the method as the
overall system coverage improves to see if the
difference was due to the incomplete coverage
on the new TREC-10 question set.

8 Conclusions

We presented an approach to implementing an
introspection mechanism in a QA system that
evaluates the search engine output based solely
on the scores assigned to the documents in the
returned hit list. Despite a limited amount of in-
formation, we showed promising results on easily
identified question types. The method is partic-
ularly effective for the important definition class
questions and it results in a 25.3% relative im-
provement over a majority class baseline in the
number of correctly identified “bad” hit lists for
the neural network classifier with the optimal
feature set.

9 Acknowledgments

We thank Ken Litkowski of CL Research for
providing the answer patterns for the TREC-10
question set, and Jamie Callan and Jaime Car-
bonell for comments and helpful discussion. We
also thank the anonymous EMNLP reviewers for
their comments and suggestions.

References

R. Byrd and Y. Ravin. 1999. Identifying and
Extracting Relations in Text. In Proceedings of
NLDB 99. Klagenfurt, Austria.

C. Clarke, G. Cormack, and T. Lynam. 2001. Ex-
ploiting Redundancy in Question Answering. In
Proceedings of SIGIR 2001. New Orleans, LA.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea,
M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. 2000. FALCON: Boosting Knowl-
edge for Answer Engines. In Proceedings of the
9th Text Retrieval Conference (TREC-9)

L. Hiyakumoto. 2001. Planning and Execution for
Open-Domain Question Answering PhD Thesis
proposal. Carnegie Mellon University.

H. Hovy, L. Gerber, U. Hermjakob, M. Junk, and
C-Y. Lin. 2001 Question Answering in Webclo-
pedia. In Proceedings of the 9th Text REtrieval
Conference (TRECY).

M.A. Pagca and S.M. Harabagiu. 2001 High Per-
formance Question/Answering. In Proceedings of
SIGIR 2001. New Orleans, LA.

JM. Prager, E.W. Brown, A.R. Coden, and
D.R. Radev. 2000 Question-Answering by Pre-
dictive Annotation. In Proceedings of SIGIR 2000.
pp- 184-191. Athens, Greece.

J.M. Prager, D. Radev, and K. Czuba. 2001 Answer-
ing What-Is Questions by Virtual Annotation. In
Proceedings of HLT 01.

D.R. Radev, J.M. Prager and V. Samn. 2000 Rank-
ing Suspected Answers to Natural Language Ques-
tions using Predictive Annotation. In Proceedings
of ANLP’00. Seattle, WA.

E. Voorhees. 2001. QA-Track Overview. In Pro-
ceedings of the 10th Text REtrieval Conference
(TREC2001).

Weka. On-line information and
implementation available at
http://www.cs.waikato.ac.nz/ml/weka/.

LH. Witten and E. Frank. 1999. Data Mining: Prac-
tical Machine Learning Tools and Techniques with
Java Implementations Morgan Kaufmann. Octo-
ber 1999.

