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Abstract

We reformulate metonymy resolution
as a classification task. This is moti-
vated by the regularity of metonymic
readings and makes general classifica-
tion and word sense disambiguation
methods available for metonymy reso-
lution. We then present a case study
for location names, presenting both a
corpus of location names annotated for
metonymy as well as experiments with
a supervised classification algorithm on
this corpus. We especially explore the
contribution of features used in word
sense disambiguation to metonymy res-
olution.

1 Introduction

Metonymy is a figure of speech, in which one
expression A is used to refer to the standard
referent of a related one B (Lakoff and Johnson,
1980). In Example (1),

(1) “The ham sandwich is waiting for his
check.”

expression A “ham sandwich” refers to the
customer who ordered the sandwich (B) (Nun-
berg, 1978).

The importance of resolving metonymies has
been shown for a variety of natural language pro-
cessing tasks, e.g., machine translation (Kamei
and Wakao, 1992), question answering (Stal-
lard, 1993) and anaphora resolution (Harabagiu,
1998; Markert and Hahn, 2002).

Proceedi ngs of the Conference on Enpirical
Language Processing (EVNLP),

Most approaches to automatic metonymy res-
olution are structured in two phases: metonymy
recognition (distinguishing literal usage from
metonymic usage) and then metonymy intepre-
tation (identifying the intended referent (B)).

Thus, metonymy recognition can be seen as
a classification task, making it comparable to
classic word sense disambiguation (WSD), which
is also concerned with distinguishing between
possible word senses/interpretations. However,
whereas standard WSD deals with a fized set of
possible senses among which to disambiguate,
metonymy resolution must face a potentially
open-ended set of possible metonymic readings
(Nunberg, 1978).

Nevertheless, it has long been recognised that
many metonymic readings are actually quite
regular (Lakoff and Johnson, 1980). In Example
(2), “Vietnam”, the name of a location, refers to
an event (a war) that happened there.

(2) “The broadcast covered Vietnam.”

Similar examples can be regularly found
for many other location names. Therefore,
names belonging to the semantic class ‘lo-
cation’ can undergo the metonymic pattern
place-for-event. Other semantic classes also
have metonymic patterns applicable to them,
which are in general much more frequent than
unconventional metonymies (Verspoor, 1997).

This allows metonymy recognition to be
treated as a disambiguation task between literal
readings and a fixed set of metonymic patterns
for a particular semantic class. Thus, whereas
a classic (supervised) WSD classification algo-
rithm takes a set of labelled training instances
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of one particular word as input and assigns word
senses to new test instances of the same word
as output, (supervised) metonymy recognition
can take a set of labelled training instances of
different words belonging to one semantic class
as input and assign literal readings and possi-
ble metonymic patterns to new test instances
of possibly different words of the same seman-
tic class. Thus, it needs to infer from train-
ing instances like Example (3) (when labelled
as a place-for-people metonymy) that Exam-
ples (4) and (5) are also metonymic, a task which
poses no problems for most humans.

(3) “Bosnia’s view of”

(4) “Hungary’s view of”

(5) “Hungary’s position on”

In this paper, we explore this view of
metonymy recognition as a class-based WSD
task for the semantic class of locations.!

The corpus data we use is described in Sec-
tion 2. As resources reliably annotated for
metonymy do not exist (see also Section 6), we
constructed a corpus of location names anno-
tated for literal and metonymic readings.

The supervised classification algorithm we use
are decision lists as they have been successfully
used in several classification tasks (Yarowsky,
1995; Collins and Singer, 1999) (see Section 3).
In Section 4, we explore whether features tradi-
tionally used in WSD carry over to metonymy
resolution, concentrating on (i) cooccurrences;
(ii) collocations; and (iii) grammatical features.
Results are discussed in Section 5. We show that
cooccurrences are in general not appropriate for
metonymy resolution; collocations are useful but
suffer from data sparseness when used as simple
word forms; the grammatical relations subject
and object perform well but are only applicable
to a small part of the data. We then compare our
algorithm to metonymy recognition approaches
based on selectional restriction violations in Sec-
tion 6.

1At the moment we restrict ourselves to location
names.

2 Experimental Data

We present a short overview of the collection
of a corpus of location names and its annota-
tion for literal and metonymic readings. A more
detailed description can be found in (Markert
and Nissim, 2002) and the annotation scheme
is downloadable from http://www.ltg.ed.ac.
uk/"malvi/mascara/publications.html.

2.1 Corpus Collection

We extracted all country names from Word-
Net (Fellbaum, 1998) and the CIA factbook
(http://www.cia.gov/cia/publications/
factbook/). This collection of names forms our
sampling frame CountryList.

We built a corpus of text samples that con-
tains 1000 occurrences of country names, ran-
domly extracted from the British National Cor-
pus (http://info.ox.ac.uk/bnc), henceforth
abbreviated as BNC. Any country name in
CountryList was a Possibly Metonymic Word
(PMW, henceforth) and was allowed to occur
in the samples extracted. We searched the BNC
using Gsearch (Corley et al., 2001). All samples
include a PMW surrounded by three sentences
of context. All examples introduced from now
on are from the BNC.2

2.2 Annotation Scheme for Location
Names

After excluding some undesired examples (i.e.,
noise) which our extraction method collected
(e.g. homonyms, such as “Greenland” in “Pro-
fessor Greenland”), the annotation can pro-
ceed to identify literal, metonymic, and mized
readings. Our annotation scheme built on lists
of metonymic patterns in the literature (Lakoff
and Johnson, 1980; Fass, 1997; Stern, 1931),
but diverted from these patterns when they did
not provide full coverage or could not be distin-
guished reliably (Markert and Nissim, 2002).

The literal reading for location names com-
prises a locative (see Example (6)) and a politi-
cal entity interpretation (see Example (7)).

(6) “coral coast of Papua New Guinea”

2 An exception is Example (12).



(7) “Britain’s current account deficit”

For metonymic readings, we distinguish be-
tween general patterns (valid for all physical ob-
jects) and location-specific ones. As general pat-
terns were never encountered in our corpus, we
describe here only the latter.

e place-for-people: a place stands for any
persons/organisations associated with it.
In Example (8), “San Marino” stands for
one of its sports teams.

(8) “a 29th-minute own goal from San
Marino defender”

Often, the explicit referent is underspeci-
fied, as in Example (9), where the reference
could be to the government, an organisation
or the whole population.

(9) “The ... group expressed readiness
to provide Albania with food aid”

We therefore adopt a hierarchical approach,
and assign a pattern (place-for-people)
at a higher level (supertype), as well as a
more specific pattern (subtype), if identifi-
able, at a lower level. This deviates from
common practice in the linguistic literature,
but has the great advantage of ‘punishing’
disagreement only at a later stage and al-
lowing fall-back options for automatic sys-
tems. We also experienced a drop in hu-
man annotation agreement from supertype
to subtype classifications (see (Markert and
Nissim, 2002)). In this paper, we evaluate
our system on supertype classification.

e place-for-event: a location name stands
for something that happened there (see Ex-

ample (2)).

e place-for-product: a place stands for a
product manufactured there (e.g., “Bor-
deauz” can refer to the wine produced
there).

The category othermet covers unconventional
metonymies. Since they are open-ended and

context-dependent, no specific category indi-
cating the intended semantic class can be in-
troduced. In Example (10), “New Jersey”
metonymically refers to the local typical tunes.

(10)  “The thing about the record is the in-
fluences of the music. The bottom end
is very New York/New Jersey and the

top is very melodic”

The category othermet is only used if none of
the other categories fits.

In addition to literal and metonymic readings,
we found examples where two predicates are in-
volved, triggering a different reading each, thus
yielding a mized reading. This often occurs with
coordinations and appositions.

(11)  “they arrived in Nigeria, hitherto a
leading critic of ... ”

In Example (11), both a literal (triggered by
“arriving in”) and a place-for-people reading
(triggered by “leading critic”) are invoked. We
therefore introduced the category mixed to deal
with these cases (not treated as a category in
the literature).

2.3 Annotation Reliability, Distribution
and Data Preparation

The 1000 examples of our corpus have been inde-
pendently annotated by two computational lin-
guists, who are the authors of this paper. Repro-
ducibility of results (Krippendorff, 1980) yielded
a percentage agreement of .95 and a kappa (Car-
letta, 1996) of .88. The annotation can therefore
be considered reliable. In the corpus data used
for our classification experiments, we only in-
cluded the samples which both annotators could
agree on and which were not marked as noise.
Therefore our corpus for testing and training the
algorithm includes 925 samples. The resulting
distribution of readings is described in Table 1.

The data was further stripped of all punctua-
tion and capitalisation was removed. No stem-
ming or lemmatisation was performed.



Table 1: Distribution of readings in our corpus

reading N %
literal 737 79.7
place-for-people 161 174
place-for-event 3 3
place-for-product 0 .0
mixed 15 1.6
othermet 9 1.0
total 925 100.0

3 Decision lists for metonymy
resolution

The distribution in the corpus shows that
metonymic readings that do not follow estab-
lished metonymic patterns (othermet) are very
rare. This seems to be the case for other kinds
of metonymies, too (Verspoor, 1997). This
strengthens our case for viewing metonymy
recognition as a classification task between
literal readings and metonymic patterns that
can be identified in advance for particular
semantic classes. We therefore explore the
usage of a classification algorithm and fea-
tures used in WSD for metonymy recognition.
The target readings for the algorithm to
distinguish are literal, place-for-people,
place-for-event, place-for-product,
othermet and mixed.

As an algorithm we use decision lists.> The
advantage of decision lists for a first exploration
of a feature space is that their choices are easy to
follow as they make use of the most informative
feature only instead of a combination of features.
All features encountered in the training data are
ranked in the decision list (best evidence first)
according to a log-likelihood ratio calculated as
follows (Yarowsky, 1995; Martinez and Agirre,
2000):

I Pr(reading;|featurey)
0
I > jzi Pr(reading;| featurey)

When applying the decision list to a test ex-

3All experiments reported here have also been re-
peated using a Naive Bayes classifier. The results have
not improved on decision lists.

ample, the winning reading is selected by the
feature in the test example with the highest rank
in the decision list.

We estimated probabilities via maximum like-
lihood, adopting a simple smoothing method:
0.1 is added to both the denominator and nu-
merator.

4 Exploration of feature space

We investigated the following feature types. Ex-
amples are given in Table 2, together with ex-
amples of their distribution and the reading they
trigger.

Cooccurrences. They have proved useful for
WSD (Gale et al., 1993; Pedersen, 2000). We
used left and right windows of context of 8 dif-
ferent sizes: 0, 1, 2, 3, 4, 5, 10, and 25 words,
thus yielding 64 possible combinations of left
and right sizes (e.g., 13.r1 for 3 words to the left
and 1 to the right). Any content word in the
window considered was included as a feature.

We selected 4 different collo-
cations frequently used in WSD (Ng and Lee,
1996; Martinez and Agirre, 2000). The word to
the right of the PMW, the word to the left, two
words to the left and the word to the right and
the left. The first two features consist of a sin-
gle word form, the latter two of a sequence of
two word forms. Function words were allowed
as collocations, as e.g., the presence of a prepo-
sition directly to the left of the PMW can be
indicative (see also Table 2).

Collocations.

Grammatical features. Following some
WSD approaches (Ng and Lee, 1996; Yarowsky,
1995) we use grammatical features, namely,



Table 2: Examples of features and their decision list score

feature I example | assigned reading; | Log reading; readings;.;
cooccurrences
content-word-in-window-14.r4 || states +/- 4 <country> literal 4.709 11 0
content-word-in-window-14.r4 || win +/- 4 <country> place-for-people | 3.434 3 0
collocations
word-to-left in <country> literal 7.314 150 0
word-to-right <country> seemed place-for-people | 3.434 3 0
two-words-to-left one of <country> literal 4.263 7 0
word-to-left-and-right provide <country> with place-for-people | 3.044 2 0
grammar
role <country> = subj place-for-people | 0.863 57 24
role-of-verb <country> = subj-of-have | literal 3.714 4 0

(i) the grammatical role (role) of the PMW,
distinguishing between subjects, direct objects
and any other grammatical role (including e.g.
prepositional phrases, NP modifiers); (ii) both
the grammatical role and the stemmed form of
the corresponding verb for subjects and direct

objects (role-of-verb).

5 Results and Discussion

We have tested the decision list algorithm on
our annotated corpus, employing 10-fold cross-
validation. Results as reported in Table 3 are
averaged over all 10 folds. The first column de-
scribes the feature used in the experiment. Then
we report accuracy and coverage.*

number of decisions made

coverage =

number of test data

number of correct decisions made

accuracy =

number of decisions made

We also used a backing-off strategy to the
most frequent sense literal for the cases
where no decision could be made (increas-
ing coverage to 1) and report these results as
accuracy/coverage-backoff. As it is of particu-
lar interest to us to see how many non-literal
readings (metonymies and mixed readings) can
be correctly identified we compute precision and
recall (based on the algorithm including backing

4Please note that a test example might not be covered
because of either the absence of a feature value in the
training set or because the highest ranked feature gives
equal evidence for two different readings.

off strategy). Let A be the number of correctly
identified non-literal readings and B the number
of incorrectly identified non-literal readings.

A
A+ B

precision =

A
#non-literal examples in the test data

recall =

When significance claims are made they are
based on a 10-fold cross-validated t-test, using
significance level 0.05.

The baseline used for comparison is the as-
signment of the most frequent reading literal
(see Table 1). It has a coverage of 1 as it is
applicable to all examples. Recall is 0 as no
metonymies can be recognised.

5.1 Cooccurrences

For all 64 window size combinations (for exam-
ple results see Table 3), the accuracy never sig-
nificantly beats the baseline. Both precision and
recall are unsatisfactory and get steadily worse
with increasing window sizes. We identified the
following reasons for such a behaviour.

Topical v. fine-grained sense distinctions.
Cooccurrences and large window sizes tradition-
ally work well for topical distinctions (Gale et
al., 1993). Metonymy, though, does often not
cross topical boundaries — thus, whether a loca-
tion name is used as a literal (political) reading
or as a reading for the government often does not
change coocurrence features. This is especially
true for large window sizes.



Table 3: Results for feature types

accuracy /coverage | accuracy/coverage-backoff | precision/recall
feature acc cov acc-backoff  cov-backoff | prec rec
baseline | .797 1.00 [ 797 100 [ n/a  0.00
cooccurrences
content-word-in-window-12.r1 770 443 780 1.00 .510 204
content-word-in-window-13.r1 .783 .588 .806 1.00 .b54 .249
content-word-in-window-14.r1 .790 .686 .803 1.00 .b38 .226
content-word-in-window-14.r4 794 .959 .790 1.00 458 .180
content-word-in-window-110.r10 || .779 1.00 779 1.00 .250 .043
collocations
word-to-left .843 .780 .809 1.00 677 112
word-to-right .831 .740 .810 1.00 .650 .139
two-words-to-left .858 297 .801 1.00 .625 .053
word-to-right-and-left .870 .426 .795 1.00 471 .087
all-collocations .819 .944 .810 1.00 .607 .185
grammar
role .837 .995 .837 1.00 703 344
role-of-verb-+role .843 .999 .843 1.00 .750 339

Pruning and decision list ordering. Every
content word encountered in the training set is
included in the decision list, even if it occurred
infrequently. The simple smoothing method we
used did not fully take this problem into ac-
count. Therefore, for example, a content word
wy occurring only once and with a metonymic
reading can be ranked higher than a content
word we occurring 10 times, 8 times with a lit-
eral reading and twice with a metonymic read-
ing. A test example containing both content
words will therefore use w; to decide in favour
of a metonymic reading, despite the weak evi-
dence. This might explain the low precision. We
therefore tested the effect of deleting all non-
informative features from the decision list, us-
ing the G? test (Dunning, 1993) to measure in-
dependence between cooccurrence features and
readings. Using pruned decision lists yielded
some improvement in precision, but a signifi-
cant drop in coverage, given the lower number of
features used (for window 14.rl: precision=.609;
recall=.210; coverage=.098). The general ten-
dency to prefer smaller windows over larger ones
still holds.

5.2 Collocations

The one-word collocations had in general a high
coverage as function words were included. Accu-
racy for collocations is quite good (ranking from
81.9% to 87.0%). But increasing coverage to
1.00 (coverage-backoff) causes accuracy-backoff
to drop. Recall is very low. We discuss here two
reasons why collocations do worse in metonymy
recognition than in WSD (Yarowsky, 1995; Ng
and Lee, 1996; Pedersen, 2001).

Target readings. Readings like othermet
and mixed are unsuited for a collocation-based
approach.

Sparse data. When we inspected the deci-
sion lists, we found that strong collocations are
mostly found for literal readings (e.g. spatial
prepositions to the left of the PMW), so that
a high percentage of literal examples can be
identified correctly. Some good collocations for
metonymic readings were found only once or
twice in the training data and then not again
in the test data, thus causing low recall and
accuracy-backoff. One reason for this is that
the training data for literal readings is about 5



times as big as for metonymic readings. This
is aggravated by the use of the BNC that in-
cludes a wide variety of genres using different
style, register and vocabulary.® Often, though,
a “similar” collocation was seen (compare e.g.,
“view” and “position” in Example (4) and (5)).
Using word forms as collocations can only make
the generalisation from Example (3) to Example
(4), not the one to Example (5). Thus, we will
in the future explore semantic generalisation of
collocations by e.g., using synonym information
from Wordnet.

5.3 Grammatical roles

Grammatical roles yield significant improve-
ments in accuracy-backoff over the baseline and
good precision. One reason is that they do not
suffer as much from sparse data and generalise
well over the whole semantic class.

Regarding the classifier based on the feature
role only, e.g., being a subject can be learned
as a good indicator for place-for-people
metonymies regardless of country name or verb.5
Recall (.344) is also promising considering that
the roles of subject and object, which give good
hints for metonymic readings, are relatively rare
(only 120 of 925 examples in our corpus were
subjects or direct objects). The classifier learns
to assign literal readings to all other instances,
whose grammatical roles are not further distin-
guished as feature values. Inclusion of more
grammatical roles might further improve recall.

Precision can be improved without sacrificing
recall by also considering the verb, if present
in the training data (classifier role-of-verb+role).
So, whereas considering the role only will lead to
assigning a place-for-people metonymy to all
subjects, this is avoided in some cases when con-
sidering the verb in addition (e.g., for being the
subject of the full verb “have”; see also Table 2).
If the grammatical role with this particular verb
has not been seen in the training data, the clas-
sifier will default to role, thus keeping coverage

5(Martinez and Agirre, 2000) also achieved better re-
sults with the use of collocations on the Wall Street Jour-
nal than on the balanced Brown Corpus.

50bviously the usefulness of grammatical roles will

also depend on the kind of metonymy prevalent in the
semantic class.

high.

Please note that the grammatical roles have
been annotated by hand as we wanted to mea-
sure the contribution of different features to
metonymy classification without encountering
error chains from e.g., parsing or tagging pro-
cesses. Therefore the results we present are an
upper bound to what can be achieved with sub-
ject/object roles.

6 Related Work

We compared our approach and results to WSD
in Section 1 and 5, stressing word-to-word vs.
class-to-class inference.

Most traditional approaches to metonymy
recognition use violations of selectional restric-
tions (plus sometimes syntactic violations) for
recognition (Pustejovsky, 1995; Hobbs et al.,
1993; Fass, 1997; Copestake and Briscoe, 1995;
Stallard, 1993).” Thus they furnish their algo-
rithms with (mostly hand-modelled) selectional
or grammatical restrictions. Note that selec-
tional restrictions in these approaches are nor-
mally not seen as preferences but as absolute
constraints. If and only if such an absolute con-
straint is violated a non-literal reading is pro-
posed. In those experiments in which we also
use grammatical knowledge, our system does
not have any a priori knowledge of semantic
argument-verb restrictions. Rather it refers to
previously seen training data of country names
as verb arguments and their labelled senses and
computes the likelihood of each sense using this
distribution. This is advantageous for the fol-
lowing reasouns:

e There are many verbs with weak selectional
restrictions (e.g., the verb “seem”). Both
literal (see Example (12)) and metonymic
(see Example (13)) readings of a location
ocurring as subject of “seem” are therefore
possible, although one of the readings might
be more frequent given these features.

(12) “Hungary seemed far away.”

"(Markert and Hahn, 2002) enhance this with
anaphoric information.



“Britain seemed close to interven-
tion.”

(13)

Selectional restrictions as used in most
metonymy recognition approaches there-
fore do not detect any violation. In
contrast, the training data we use sup-
plies the information that the metonymic
place-for-people reading is more fre-
quent given these grammatical features,
leading the classifier to assign the correct
reading in the majority of cases.®

e Our algorithm does not need to make any
assumptions about the sense of the verb.
Selectional restrictions, instead, must as-
sume that the verb is disambiguated be-
forehand as they can vary between different
verb senses (compare, e.g., the “confront”
reading and the “to be opposite” reading of
the verb “face”).

To compare our decision list algorithm role-
for-verb+role to a selectional restriction viola-
tions approach we limited our next empirical
study to the 120 examples in our data that had
the grammatical role of subjects or direct ob-
jects (SETGRAMM).

Two native speakers of English (both lin-
guists) were asked to annotate the 120 subj-
verb/obj-verb tuples in SETGRAMM for selec-
tional restriction violations. Agreement between
the two subjects was satisfactory (kappa=.70).
We then simulated two metonymy recognition
algorithms based on the annotations of subjectl
and subject2, postulating a non-literal reading
when a selectional restriction violation was an-
notated and literal otherwise and computed cor-
responding evaluation measures.

We also computed the evaluation measures for
our role-of-verb+role classifier, limited to SET-
GRAMM.

Results are summarised in Table 4. Our clas-
sifier has higher recall, but lower precision than
subject? and subjectl . To compare the trade-off

8(Briscoe and Copestake, 1999) propose using fre-
quency information in addition to syntactic and semantic

restrictions, but use only a priori sense frequencies with-
out feature integration.

between precision and recall we computed the F-
measure for all algorithms, where our algorithm
performed best.

We also evaluate our approach more rigor-
ously than other metonymy resolution algo-
rithms. Some researchers use constructed ex-
amples only (Fass, 1997; Hobbs et al., 1993;
Copestake and Briscoe, 1995; Pustejovsky, 1995;
Verspoor, 1996), and do not report any numer-
ical results. Others (Markert and Hahn, 2002;
Harabagiu, 1998; Stallard, 1993) use naturally-
occurring data that, however, seem to be anal-
ysed according to subjective intuitions of one
individual only, not assessing the reliability of
their annotation. We, instead, use a reliably
annotated corpus that we can make available
to other researchers. In addition, most pre-
vious evaluations report only recall figures for
metonymy recognition, neglecting the question
of precision and false positives as well as base-
line comparisons and accuracy. Evaluations of
metonymy interpretation (Lapata, 2001) include
more disciplined evaluations, but do not handle
metonymy recognition yet.

7 Conclusions

We argued for viewing metonymy recognition
as a WSD task based on semantic classes in-
stead of individual words. This is motivated
by the regularity of most metonymic readings.
We presented a corpus reliably annotated for
metonymic and literal usage which supports this
claim. We also conducted several experiments
with a decision list algorithm to explore the use-
fulness of common WSD features for metonymy
recognition. We showed that coocurrence fea-
tures are not useful for metonymy resolution,
whereas collocation features need to be gener-
alised from word forms to semantic classes to
have wide application. Grammatical features
perform well. We also compared our grammati-
cal features to a selectional restriction based ap-
proach to recognition with promising results.
In the future, we will explore two avenues for
improvement: Firstly, we will experiment with
more sophisticated machine learning algorithms,
starting with improving on our smoothing pro-



Table 4: Comparison of human subjects and decision list for grammatical roles

classifier accuracy coverage | precision recall F-measure
subjectl .625 1.00 857 525 .651
subject2 .708 1.00 .846  .687 758
role-of-verb+role .706 .992 750 .830 .788

cedure, which we experienced as too simplistic
(see also (Yarowsky, 1997)). Secondly, we will
generalise the collocation features we use, incor-
porate more grammatical relations and explore
other feature types and feature combination.
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