Proceedi ngs of the Conference on Enpirical
Language Processing (EVNLP),

Met hods in Natural
Phi | adel phia, July 2002, pp. 1-8.
Associ ation for Conputational Linguistics.

Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms

Michael Collins
AT&T Labs-Research, Florham Park, New Jersey.
mcollins@research.att.com

Abstract

We describe new algorithms for train-
ing tagging models, as an alternative
to maximum-entropy models or condi-
tional random fields (CRFs). The al-
gorithms rely on Viterbi decoding of
training examples, combined with sim-
ple additive updates. We describe the-
ory justifying the algorithms through
a modification of the proof of conver-
gence of the perceptron algorithm for
classification problems. We give exper-
imental results on part-of-speech tag-
ging and base noun phrase chunking, in
both cases showing improvements over
results for a maximum-entropy tagger.

1 Introduction

Maximum-entropy (ME) models are justifiably
a very popular choice for tagging problems in
Natural Language Processing: for example see
(Ratnaparkhi 96) for their use on part-of-speech
tagging, and (McCallum et al. 2000) for their
use on a FAQ segmentation task. ME models
have the advantage of being quite flexible in the
features that can be incorporated in the model.
However, recent theoretical and experimental re-
sults in (Lafferty et al. 2001) have highlighted
problems with the parameter estimation method
for ME models. In response to these problems,
they describe alternative parameter estimation
methods based on Conditional Markov Random
Fields (CRFs). (Lafferty et al. 2001) give exper-
imental results suggesting that CRFs can per-
form significantly better than ME models.

In this paper we describe parameter estima-
tion algorithms which are natural alternatives to
CRFs. The algorithms are based on the percep-
tron algorithm (Rosenblatt 58), and the voted
or averaged versions of the perceptron described

in (Freund & Schapire 99). These algorithms
have been shown by (Freund & Schapire 99) to
be competitive with modern learning algorithms
such as support vector machines; however, they
have previously been applied mainly to classifi-
cation tasks, and it is not entirely clear how the
algorithms can be carried across to NLP tasks
such as tagging or parsing.

This paper describes variants of the percep-
tron algorithm for tagging problems. The al-
gorithms rely on Viterbi decoding of training
examples, combined with simple additive up-
dates. We describe theory justifying the algo-
rithm through a modification of the proof of con-
vergence of the perceptron algorithm for classi-
fication problems. We give experimental results
on part-of-speech tagging and base noun phrase
chunking, in both cases showing improvements
over results for a maximum-entropy tagger (a
11.9% relative reduction in error for POS tag-
ging, a 5.1% relative reduction in error for NP
chunking). Although we concentrate on tagging
problems in this paper, the theoretical frame-
work and algorithm described in section 3 of
this paper should be applicable to a wide va-
riety of models where Viterbi-style algorithms
can be used for decoding: examples are Proba-
bilistic Context-Free Grammars, or ME models
for parsing. See (Collins and Duffy 2001; Collins
and Duffy 2002; Collins 2002) for other applica-
tions of the voted perceptron to NLP problems.!

2 Parameter Estimation

2.1 HMM Taggers

In this section, as a motivating example, we de-
scribe a special case of the algorithm in this
paper: the algorithm applied to a trigram tag-
ger. In a trigram HMM tagger, each trigram

!The theorems in section 3, and the proofs in sec-
tion 5, apply directly to the work in these other papers.

of tags and each tag/word pair have associated
parameters. We write the parameter associated
with a trigram (z,y, z) as oy ., and the param-
eter associated with a tag/word pair (¢,w) as
o A common approach is to take the param-
eters to be estimates of conditional probabilities:
gy =10g P(z | 2,y), o = log P(w | t).

For convenience we will use wyi.,) as short-
hand for a sequence of words [wy,ws...wy],
and t[1.,) as shorthand for a taq sequence
[t1,t2...tp). In a trigram tagger the score for
a tagged sequence t[;., paired with a word se-
quence wyy.p] is? Y Qi oti1pti 21 Oyw;-
When the parameters are conditional probabil-
ities as above this “score” is an estimate of the
log of the joint probability P(wii.,},t[1:])- The
Viterbi algorithm can be used to find the highest
scoring tagged sequence under this score.

As an alternative to maximum-likelihood pa-
rameter estimates, this paper will propose the
following estimation algorithm. Say the train-
ing set consists of n tagged sentences, the i’th
sentence being of length n;. We will write these
examples as (wfkni},tflmi]) fori =1...n. Then
the training algorithm is as follows:

e Choose a parameter T defining the number
of iterations over the training set.?

e Initially set all parameters oy, and oy,
to be zero.

eFort=1...T,i =1...n: Use the Viterbi
algorithm to find the best tagged sequence for
sentence wflmi} under the current parameter
settings: we call this tagged sequence z[j.,,-
For every tag trigram (x,y, z) seen c; times in
tfl;ni} and cy times in z[;.,,) where ¢; # c2 set
Qpy: = Qgy.+ 1 — co. For every tag/word
pair (t,w) seen c¢; times in (wfl:ni],tfl:ni}) and
co times in (wflmi],z[l:ni]) where ¢; # ¢y set
Oty = Ot +c1 — co.

As an example, say the ¢'th tagged sentence

(wfl:nipﬂ[;l:ni]) in training data is

the/D man/N saw/V the/D dog/N

and under the current parameter settings the
highest scoring tag sequence (wfhni}, Z1:n;)) 18

2We take ¢t_1 and t_» to be special NULL tag symbols.
3T is usually chosen by tuning on a development set.

the/D man/N saw/N the/D dog/N

Then the parameter update will add 1 to the
parameters ap N, v, QN,V,D, QV,D,N, OV,saw and
subtract 1 from the parameters ap n v, anN,D,
QN,D,N, ON,saw- Intuitively this has the ef-
fect of increasing the parameter values for fea-
tures which were “missing” from the proposed
sequence z[i.,;), and downweighting parameter
values for “incorrect” features in the sequence
Z[1:m,]- Note that if z.,,) = tfl:ni} — i.e., the
proposed tag sequence is correct — no changes
are made to the parameter values.

2.2 Local and Global Feature Vectors

We now describe how to generalize the algorithm
to more general representations of tagged se-
quences. In this section we describe the feature-
vector representations which are commonly used
in maximum-entropy models for tagging, and
which are also used in this paper.

In maximum-entropy taggers (Ratnaparkhi
96; McCallum et al. 2000), the tagging prob-
lem is decomposed into sequence of decisions in
tagging the problem in left-to-right fashion. At
each point there is a “history” — the context in
which a tagging decision is made — and the task
is to predict the tag given the history. Formally,
a history is a 4-tuple (t_1,f_2,w[1.], i) where
t—1,t_9 are the previous two tags, wy;.,) is an ar-
ray specifying the n words in the input sentence,
and ¢ is the index of the word being tagged. We
use H to denote the set of all possible histories.

Maximum-entropy models represent the tag-
ging task through a feature-vector representation
of history-tag pairs. A feature vector representa-
tion ¢ : H x T — RY is a function ¢ that maps a.
history—tag pair to a d-dimensional feature vec-
tor. Each component ¢4(h,t) for s = 1...d
could be an arbitrary function of (h,t). It is
common (e.g., see (Ratnaparkhi 96)) for each
feature ¢; to be an indicator function. For ex-
ample, one such feature might be

1 if current word w; is the
and ¢t = DT
0 otherwise

b1000(h, 1) =

Similar features might be defined for every
word/tag pair seen in training data. Another

feature type might track trigrams of tags, for ex-
ample ¢1001(h,t) =1 Zf <t_2,t_1,t> = <D, N, V)
and 0 otherwise. Similar features would be de-
fined for all trigrams of tags seen in training. A
real advantage of these models comes from the
freedom in defining these features: for example,
(Ratnaparkhi 96; McCallum et al. 2000) both
describe feature sets which would be difficult to
incorporate in a generative model.

In addition to feature vector representations
of history/tag pairs, we will find it convenient
to define feature vectors of (wyi.],?[1.y)) pairs
where wy;.,) is a sequence of n words, and #[;,
is an entire tag sequence. We use @ to de-
note a function from (wpy.,), ;1)) pairs to d-
dimensional feature vectors. We will often refer
to ® as a “global” representation, in contrast
to ¢ as a “local” representation. The particular
global representations considered in this paper
are simple functions of local representations:

@S(w[l:n]at[l:n]) = Z¢S(hi’ti) (1)
1=1

where h; = (t;i 1,ti 2,w[1y),7). Bach global
feature ®;(wyi.p],t[1:)) is simply the value for
the local representation ¢, summed over all his-
tory/tag pairs in (wy.,), t[1:n])- If the local fea-
tures are indicator functions, then the global fea-
tures will typically be “counts”. For example,
with ¢1000 defined as above, @1000(’11][1%],15[1:“])
is the number of times the is seen tagged as DT
in the pair of sequences (wyi.n], t[1:0))-

2.3 Maximum-Entropy Taggers

In maximum-entropy taggers the feature vectors
¢ together with a parameter vector @ € R? are
used to define a conditional probability distri-
bution over tags given a history as

623 ashs (hat)

P(t| h,a) :W

where Z(h,a) = Y1 25 @ss(hl) - The log of
this probability has the form logp(t | h,a&) =
S ashs(h,t) —log Z(h, @), and hence the log
probability for a (w[i.], {[1.)) pair will be

d
DD ashs(hiyti) = log Z(hi, @) (2)

i s=1

where h; = (ti—1,%i—2,W[1.p),%). Given parame-
ter values &, and an input sentence wy.,), the
highest probability tagged sequence under the
formula in Eq. 2 can be found efficiently using
the Viterbi algorithm.

The parameter vector « is estimated from a
training set of sentence/tagged-sequence pairs.
Maximum-likelihood parameter values can be
estimated using Generalized Iterative Scaling
(Ratnaparkhi 96), or gradient descent methods.
In some cases it may be preferable to apply a
bayesian approach which includes a prior over
parameter values.

2.4 A New Estimation Method

We now describe an alternative method for es-
timating parameters of the model. Given a se-
quence of words wy.,,] and a sequence of part of
speech tags, #[1.,), we will take the “score” of a
tagged sequence to be

n d d
Z Z O(s¢s(hi,ti) = z_:lasés(w[lzn}at[lzn}) :

i=1 s=1

where h; is again (t;—1,%;—2, W[1.y,9). Note that
this is almost identical to Eq. 2, but without the
local normalization terms log Z(h;,&). Under
this method for assigning scores to tagged se-
quences, the highest scoring sequence of tags for
an input sentence can be found using the Viterbi
algorithm. (We can use an almost identical de-
coding algorithm to that for maximum-entropy
taggers, the difference being that local normal-
ization terms do not need to be calculated.)

We then propose the training algorithm in fig-
ure 1. The algorithm takes 7' passes over the
training sample. All parameters are initially set
to be zero. Each sentence in turn is decoded us-
ing the current parameter settings. If the high-
est scoring sequence under the current model is
not correct, the parameters a; are updated in a
simple additive fashion.

Note that if the local features ¢, are indica-
tor functions, then the global features ®; will be
counts. In this case the update will add c; — ds
to each parameter ag, where ¢; is the number
of times the s’th feature occurred in the cor-
rect tag sequence, and d; is the number of times

Inputs: A training set of tagged sentences,
(Wi, thinyy) for @ = 1...n. A parameter T
specifying number of iterations over the training set. A
“local representation” ¢ which is a function that maps
history/tag pairs to d-dimensional feature vectors. The
global representation ® is defined through ¢ as in Eq. 1.
Initialization: Set parameter vector & = 0.
Algorithm:

Fort=1...T,i=1...n

e Use the Viterbi algorithm to find the output of the
model on the ¢'th training sentence with the current pa-
rameter settings, i.e.,

Z[1:n;] = AIg maxu[l;niﬁT"i Zs as®s (wfl:nip u[l:ni])
where 7" is the set of all tag sequences of length n;.
o If 2(1.n;] # t]1.n,) then update the parameters

Qs = Qs + QS (wfl:niptfl:ni]) - q)s (wfl:nip Z[lnz])

Output: Parameter vector a.
Figure 1: The training algorithm for tagging.

it occurs in highest scoring sequence under the
current model. For example, if the features ¢,
are indicator functions tracking all trigrams and
word/tag pairs, then the training algorithm is
identical to that given in section 2.1.

2.5 Averaging Parameters

There is a simple refinement to the algorithm
in figure 1, called the “averaged parameters”
method. Define o’ to be the value for the s’th
parameter after the 4’th training example has
been processed in pass ¢ over the training data.
Then the “averaged parameters” are defined as
Vs = Vi1 Tie1..n 05 /nT for all s = 1...d.
It is simple to modify the algorithm to store
this additional set of parameters. Experiments
in section 4 show that the averaged parameters
perform significantly better than the final pa-
rameters a**. The theory in the next section

S
gives justification for the averaging method.

3 Theory Justifying the Algorithm

In this section we give a general algorithm for
problems such as tagging and parsing, and give
theorems justifying the algorithm. We also show
how the tagging algorithm in figure 1 is a spe-
cial case of this algorithm. Convergence theo-
rems for the perceptron applied to classification
problems appear in (Freund & Schapire 99) —
the results in this section, and the proofs in sec-
tion 5, show how the classification results can be

Inputs: Training examples (z;, y;)
Initialization: Set @ =0
Algorithm:
Fort=1...T,i=1...n
Calculate z; = arg max,cgEN(z;) ®(i, 2) - @
If(z; # y;) then @ = a + ®(zi,y:) — P(xs, 23)
Output: Parameters &

Figure 2: A variant of the perceptron algorithm.

carried over to problems such as tagging.

The task is to learn a mapping from inputs
z € X to outputs y € Y. For example, X might
be a set of sentences, with) being a set of pos-
sible tag sequences. We assume:

e Training examples (z;,y;) fori=1...n.

e A function GEN which enumerates a set of
candidates GEN(z) for an input x.

e A representation ® mappingeach (z,y) €
X x Y to a feature vector ®(x,y) € R%

e A parameter vector & € R

The components GEN, ® and & define a map-
ping from an input z to an output F'(x) through

F(x) = ® - O
(z) arg max (z,y) - &
where ®(z,y) - @ is the inner product

Yo as®s(z,y). The learning task is to set the
parameter values & using the training examples
as evidence.

The tagging problem in section 2 can be
mapped to this setting as follows:

e The training examples are sentence/tagged-
sequence pairs: r; = wf] and y; = tfl:ni}
fori=1...n.

1:in;

e Given a set of possible tags 7, we define
GEN(w,,)) = T", i.e., the function GEN
maps an input sentence wyy.,| to the set of
all tag sequences of length n.

e The representation O(x,y) =
®(Wiiim)s tpi)) is defined through local
feature vectors ¢(h,t) where (h,t) is a
history/tag pair. (See Eq. 1.)

Figure 2 shows an algorithm for setting the
weights @. It can be verified that the training

algorithm for taggers in figure 1 is a special case
of this algorithm, if we define (z;,y;), GEN and
® as just described.

We will now give a first theorem regarding
the convergence of this algorithm. This theorem
therefore also describes conditions under which
the algorithm in figure 1 converges. First, we
need the following definition:

Definition 1 Let GEN(z;) = GEN(z;) — {yi}. In
other words GEN(x;) is the set of incorrect candidates
for an example x;. We will say that a training sequence

(zi,yi) fori =1...n is separable with margin § > 0
if there exists some vector U with ||U|| =1 such that

Vi,Vz € GEN(x;), U-®(zi,y;) —U-®(xi,2) >0 (3)

(11U|| is the 2-norm of U, i.e., ||U|| = />, U3.)
We can then state the following theorem (see
section 5 for a proof):

Theorem 1 For any training sequence (x;,y;) which is
separable with margin &, then for the perceptron algorithm

in figure 2
2
Number of mistakes < 57
where R is a constant such that

GEN(z;) ||®(xi,y:i) — ®(xs,2)|]| < R.

Vi, Vz €

This theorem implies that if there is a param-
eter vector U which makes zero errors on the
training set, then after a finite number of itera-
tions the training algorithm will have converged
to parameter values with zero training error. A
crucial point is that the number of mistakes is in-
dependent of the number of candidates for each
example (i.e. the size of GEN(z;) for each 1),
depending only on the separation of the training
data, where separation is defined above. This
is important because in many NLP problems
GEN(z) can be exponential in the size of the
inputs. All of the convergence and generaliza-
tion results in this paper depend on notions of
separability rather than the size of GEN.

Two questions come to mind. First, are there
guarantees for the algorithm if the training data
is not separable? Second, performance on a
training sample is all very well, but what does
this guarantee about how well the algorithm
generalizes to newly drawn test examples? (Fre-
und & Schapire 99) discuss how the theory can
be extended to deal with both of these questions.
The next sections describe how these results can
be applied to the algorithms in this paper.

3.1 Theory for inseparable data

In this section we give bounds which apply when
the data is not separable. First, we need the
following definition:

Definition 2 Given a sequence (x;,y;), for a U, § pair
define m; = U-®(zi,y;) —MaX, EEN(a) U-®(zi,z) and

¢; = max{0,6 —m;}. Finally, define Dus = /Y ., €

i=1"1"
The value Dy s is a measure of how close U
is to separating the training data with margin 4.
Dy 5 is 0 if the vector U separates the data with
at least margin 4. If U separates almost all of
the examples with margin §, but a few examples
are incorrectly tagged or have margin less than
0, then Dy s will take a relatively small value.
The following theorem then applies (see sec-
tion 5 for a proof):

Theorem 2 For any training sequence (zi,yi), for the
first pass over the training set of the perceptron algorithm
in figure 2,

2
Number of mistakes < min M
U,s 02
where R is a constant such that Vi,Vz €
GEN(z;) [|®(zi,yi) — ®(zi,2)|] < R, and the
min is taken over 6 > 0, ||U|| = 1.

This theorem implies that if the training data
is “close” to being separable with margin § —
i.e., there exists some U such that Dy s is rela-
tively small — then the algorithm will again make
a small number of mistakes. Thus theorem 2
shows that the perceptron algorithm can be ro-
bust to some training data examples being dif-
ficult or impossible to tag correctly.

3.2 Generalization results

Theorems 1 and 2 give results bounding the
number of errors on training samples, but the
question we are really interested in concerns
guarantees of how well the method generalizes
to new test examples. Fortunately, there are
several theoretical results suggesting that if the
perceptron algorithm makes a relatively small
number of mistakes on a training sample then it
is likely to generalize well to new examples. This
section describes some of these results, which
originally appeared in (Freund & Schapire 99),
and are derived directly from results in (Helm-
bold and Warmuth 95).

First we define a modification of the percep-
tron algorithm, the voted perceptron. We can
consider the first pass of the perceptron algo-
rithm to build a sequence of parameter set-
tings @' for i = 1...n. For a given test ex-
ample z, each of these will define an output
vj = arg max,cGEN() ab' - ®(z,z). The voted
perceptron takes the most frequently occurring
output in the set {v;...v,}. Thus the voted
perceptron is a method where each of the pa-
rameter settings @' for i = 1...n get a sin-
gle vote for the output, and the majority wins.
The averaged algorithm in section 2.5 can be
considered to be an approximation of the voted
method, with the advantage that a single decod-
ing with the averaged parameters can be per-
formed, rather than n decodings with each of

the n parameter settings.

In analyzing the voted perceptron the one as-
sumption we will make is that there is some
unknown distribution P(z,y) over the set X X
Y, and that both training and test examples
are drawn independently, identically distributed
(ii.d.) from this distribution. Corollary 1 of

(Freund & Schapire 99) then states:

Theorem 3 (Freund & Schapire 99) Assume all ez-
amples are generated i.i.d. at random. Let
((x1,91)) ... (Xn,yn)) be a sequence of training ezamples
and let (Xn+1,Yn+1) be a test ezample. Then the prob-
ability (over the choice of all n + 1 examples) that the
voted-perceptron algorithm does not predict Yyn41 on in-
put Xpy1 ¢S at most

2
n+1

. (R+ Dyy)?
o e

where Ent1]] is an ezpected value taken over n + 1 ez-
amples, R and Dy, are as defined above, and the min is
taken over 6 > 0, ||U|| = 1.

4 Experiments

4.1 Data Sets

We ran experiments on two data sets: part-of-
speech tagging on the Penn Wall Street Journal
treebank (Marcus et al. 93), and base noun-
phrase recognition on the data sets originally in-
troduced by (Ramshaw and Marcus 95). In each
case we had a training, development and test set.
For part-of-speech tagging the training set was
sections 0—18 of the treebank, the development
set was sections 19-21 and the final test set was
sections 22-24. In NP chunking the training set

Current word w; & t;
Previous word wi_1 & t;
Word two back w;_o & t;
Next word Wig1 & t;
Word two ahead Wigo & t;
Bigram features Wi_o,W; 1 & t;
wi_1,W; & t;
Wi, Wit & t;
Wit1, Wi42 & t;
Current tag D; & t;
Previous tag Pi_1 & t;
Tag two back Pi_o & t;
Next tag Pit1 & t;
Tag two ahead Pit2 & t;
Bigram tag features Pi—2,Pi—1 & t;
Pi—1,Pi & t;
PisPit1 & t;
Pi+1,Pit2 & t;
Trigram tag features Pi—2,Pi—1,Pi & t;
Pi—1,PisPit+1 & t;
Pi Pit1,Pi42 & t;

Figure 3: Feature templates used in the NP chunking
experiments. w; is the current word, and w; ... w, is the
entire sentence. p; is POS tag for the current word, and
p1...pn is the POS sequence for the sentence. ¢; is the
chunking tag assigned to the #’th word.

was taken from section 15-18, the development
set was section 21, and the test set was section
20. For POS tagging we report the percentage
of correct tags on a test set. For chunking we
report F-measure in recovering bracketings cor-
responding to base NP chunks.

4.2 Features

For POS tagging we used identical features to
those of (Ratnaparkhi 96), the only difference
being that we did not make the rare word dis-
tinction in table 1 of (Ratnaparkhi 96) (i.e.,
spelling features were included for all words in
training data, and the word itself was used as a
feature regardless of whether the word was rare).
The feature set takes into account the previous
tag and previous pairs of tags in the history, as
well as the word being tagged, spelling features
of the words being tagged, and various features
of the words surrounding the word being tagged.

In the chunking experiments the input “sen-
tences” included words as well as parts-of-speech
for those words from the tagger in (Brill 95). Ta-
ble 3 shows the features used in the experiments.
The chunking problem is represented as a three-
tag task, where the tags are B, I, 0 for words
beginning a chunk, continuing a chunk, and be-
ing outside a chunk respectively. All chunks be-
gin with a B symbol, regardless of whether the
previous word is tagged 0 or I.

NP Chunking Results

[Method | F-Measure | Numits |
Perc, avg, cc=0 93.53 13
Perc, noavg, cc=0 | 93.04 35
Perc, avg, cc=5 93.33 9
Perc, noavg, cc=5 | 91.88 39
ME, cc=0 92.34 900
ME, cc=5 92.65 200
POS Tagging Results
[Method | Error rate/% | Numits |
Perc, avg, cc=0 2.93 10
Perc, noavg, cc=0 | 3.68 20
Perc, avg, cc=5 3.03 6
Perc, noavg, cc=5 | 4.04 17
ME, cc=0 3.4 100
ME, cc=5 3.28 200

Figure 4: Results for various methods on the part-of-
speech tagging and chunking tasks on development data.
All scores are error percentages. Numits is the number
of training iterations at which the best score is achieved.
Perc is the perceptron algorithm, ME is the maximum
entropy method. Avg/noavg is the perceptron with or
without averaged parameter vectors. cc=5 means only
features occurring 5 times or more in training are in-
cluded, cc=0 means all features in training are included.

4.3 Results

We applied both maximum-entropy models and
the perceptron algorithm to the two tagging
problems. We tested several variants for each
algorithm on the development set, to gain some
understanding of how the algorithms’ perfor-
mance varied with various parameter settings,
and to allow optimization of free parameters so
that the comparison on the final test set is a fair
one. For both methods, we tried the algorithms
with feature count cut-offs set at 0 and 5 (i.e.,
we ran experiments with all features in training
data included, or with all features occurring 5
times or more included — (Ratnaparkhi 96) uses
a count cut-off of 5). In the perceptron algo-
rithm, the number of iterations T' over the train-
ing set was varied, and the method was tested
with both averaged and unaveraged parameter
vectors (i.e., I'm and 4" as defined in
section 2.5, for a variety of values for T'). In
the maximum entropy model the number of it-
erations of training using Generalized Iterative
Scaling was varied.

with oy

Figure 4 shows results on development data
on the two tasks. The trends are fairly clear:
averaging improves results significantly for the

perceptron method, as does including all fea-
tures rather than imposing a count cut-off of 5.
In contrast, the ME models’ performance suffers
when all features are included. The best percep-
tron configuration gives improvements over the
maximum-entropy models in both cases: an im-
provement in F-measure from 92.65% to 93.53%
in chunking, and a reduction from 3.28% to
2.93% error rate in POS tagging. In looking
at the results for different numbers of iterations
on development data we found that averaging
not only improves the best result, but also gives
much greater stability of the tagger (the non-
averaged variant has much greater variance in
its scores).

As a final test, the perceptron and ME tag-
gers were applied to the test sets, with the op-
timal parameter settings on development data.
On POS tagging the perceptron algorithm gave
2.89% error compared to 3.28% error for the
maximum-entropy model (a 11.9% relative re-
duction in error). In NP chunking the percep-
tron algorithm achieves an F-measure of 93.63%,
in contrast to an F-measure of 93.29% for the
ME model (a 5.1% relative reduction in error).
5 Proofs of the Theorems
This section gives proofs of theorems 1 and 2.
The proofs are adapted from proofs for the clas-
sification case in (Freund & Schapire 99).

Proof of Theorem 1: Let &* be the weights
before the k’th mistake is made. It follows that

a' = 0. Suppose the k’th mistake is made at
the 1’th example. Take z to the output proposed
at this example, z = argmax,cgEN(z,;) ®(7i, ¥y

ak. It follows from the algorithm updates that
@k+1 = aF + ®(zi,y;) — ®(x;,2). We take inner
products of both sides with the vector U:
U-a"!' =U-a"+U- ®(xs,y;) — U - (21, 2)

>U-a"+6

where the inequality follows because of the prop-
erty of U assumed in Eq. 3. Because a' = 0,
and therefore U - @' = 0, it follows by induc-
tion on k that for all k£, U -aFft' > ké. Be-
cause U - @**1 < [|U]| ||@**+Y|], it follows that
16+1]] > k.

We also derive an upper bound for ||@*+1||2:

[l 1651 + (1@ (i, i) — @ (i, 2)||°

+20" - (®(zi, i) — B(4, 2))
lla*|]” + R®

IN

where the inequality follows because
1®(zi, i) — ®(z:,2)|F < R* by assump-
tion, and a* - (®(z;,y;) — ®(x;,2)) < 0 because
z is the highest scoring candidate for x; under
the parameters a¥. It follows by induction that
||C_¥k+1||2 < kR2

Combining the bounds ||@**!|| > k6§ and
|[|@*+1]|? < kR? gives the result for all k that

k202 < ||@"Y)? <kR? = k<R’ m

Proof of Theorem 2: We transform the rep-
resentation ®(z,y) € R? to a new representation
®(z,y) € R as follows. For i = 1...d de-

fine ®;(z,y) = ®;(z,y). For j = 1...n define
Py j(r,y) = Aif (2,y) = (x5,y;), 0 otherwise,
where A is a parameter which is greater than 0.
Similary, say we are given a U, pair, and cor-
responding values for ¢; as defined above. We

define_a modified parameter vector U € R "
with U; = U; forv =1...d and Ud+]’ = ej/A
for j = 1...n. Under these definitions it can be
verified that

Vi,Vz € GEN(z;), U-®(zs,y:) — U - ®(wi,2) > 6
Vi,Vz € GEN(z;), ||®(xi,yi) — O(z;,2)|)* < R?+ A?
IO11* = [|UI]* + 32, /A" = 1+ DY 5/ A

It can be seen that the vector U/||U|| separates
the data with margin §/,/1 4+ D 5/A?. By the-
orem 1, this means that the first pass of the per-
ceptron algorithm with representation ;i) makes
ab MOSt Fymar(A) = & (B2 + A2)(1+ 252) mis-
takes. But the first pass of the original algo-
rithm with representation ® is identical to the
first pass of the algorithm with representation
®, because the parameter weights for the addi-
tional features ®4; for j = 1...n each affect a
single example of training data, and do not affect
the classification of test data examples. Thus
the original perceptron algorithm also makes at
most kqq(A) mistakes on its first pass over the
training data. Finally, we can minimize kyqq (A)
with respect to A, giving A = /RDy s, and
kmaz(v/RDus) = (R? + D% 45)/6%, implying the
bound in the theorem. m

6 Conclusions

We have described new algorithms for tagging,
whose performance guarantees depend on a no-
tion of “separability” of training data exam-
ples. The generic algorithm in figure 2, and

the theorems describing its convergence prop-
erties, could be applied to several other models
in the NLP literature. For example, a weighted
context-free grammar can also be conceptual-
ized as a way of defining GEN, ® and «, so the
weights for generative models such as PCFGs
could be trained using this method.

Acknowledgements
Thanks to Nigel Duffy, Rob Schapire and Yoram

Singer for many useful discussions regarding
the algorithms in this paper, and to Fernando
Pereira for pointers to the NP chunking data
set, and for suggestions regarding the features
used in the experiments.

References
Brill, E. (1995). Transformation-Based Error-Driven

Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging. Computational Lin-
gquistics.

Collins, M., and Duffy, N. (2001). Convolution Kernels
for Natural Language. In Proceedings of Neural Infor-
mation Processing Systems (NIPS 14).

Collins, M., and Duffy, N. (2002). New Ranking Algo-
rithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron. In Proceedings
of ACL 2002.

Collins, M. (2002). Ranking Algorithms for Named-
Entity Extraction: Boosting and the Voted Percep-
tron. In Proceedings of ACL 2002.

Freund, Y. & Schapire, R. (1999). Large Margin Classi-
fication using the Perceptron Algorithm. In Machine
Learning, 37(3):277-296.

Helmbold, D., and Warmuth, M. On weak learning. Jour-
nal of Computer and System Sciences, 50(3):551-573,
June 1995.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of
ICML 2001.

McCallum, A., Freitag, D., and Pereira, F. (2000) Max-
imum entropy markov models for information extrac-
tion and segmentation. In Proceedings of ICML 2000.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993).
Building a large annotated corpus of english: The
Penn treebank. Computational Linguistics, 19.

Ramshaw, L., and Marcus, M. P. (1995). Text Chunking
Using Transformation-Based Learning. In Proceedings
of the Third ACL Workshop on Very Large Corpora,
Association for Computational Linguistics, 1995.

Ratnaparkhi, A. (1996). A maximum entropy part-of-
speech tagger. In Proceedings of the empirical methods
in natural language processing conference.

Rosenblatt, F. 1958. The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain. Psychological Review, 65, 386-408. (Reprinted
in Neurocomputing (MIT Press, 1998).)

