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Abstract

In this paperwe invedigatethe impactof
morphdogica featueson the taskof au-
tomatially extending a dictionary We
apprach the problem as a pattern clas-
sification task and compae the perfor-
mance of several modelsin classifying
nours that are unknown to a broad cov-
eragedictionary. We usedaboastingclas-
sifierto compae the performanceof mod-
elsthat usedifferent setsof featues. We
shov how addirg simple morphdogical
featuesto a model greaty improvesthe
classfication performance

1 Intr oduction

The incompleteress of the available lexical re-
souicesis a major bottlened in natual language
processing(NLP). The developmentof method for
theautanaticextenson of theseresoucesmight af-
fectmary NLP tasks Further from a moregereral
computtional persgective, modelirg lexical mean-
ing is anecessarysteptoward semartic modeling of
larger linguistic units.

We appoachthe problem of lexical acqusition
asa classfication task. The goal of the classfier is
to insett new wordsinto an existing dictionary. A
dictionaryt in this context simply assaiateslexical
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formswith classlabels; e.g.,dog — ANIMAL,
wherethe arrowv canbe interpretedasthe ISA rela-
tion. In this study we usea simplified versian of
Wordné as our baselexicon and we ignore othe
relevant semantiaelatons (like hyporymy) andthe
probdem of word seng ambiguty. We focus on
finding featuresthat are usetl for ass@iating un-
known wordswith classlabelk from the dictionary
In this paperwe repat the following preliminary
findings. First of all we found that the taskis dif-
ficult. We developed severalmodels basedon near-
estneighbor (NN), naive Bayes(NB) and booging
classfiers. Unfortunatdy, the error rate of thes
modelsis much higher than what is found in text
categorization task€? with compagble numbersof
clases. Secondy, it seemsobvious that informa-
tion that is potertially uselul for word classifica-
tion can be of very diversetypes, e.g., semantt
and syntadic, morphdogicd and topical. There-
fore methodghatallow flexible feature combhnation
andselection aredesrable. We experimentedwith a
multiclassboaosting algarithm (Schapie and Singer
2000, which proved succesful in this respet. In
this context booging combires two soucesof in-
formation: words co-occurring nearthe new word,
which we refer to ascollocations, and morphdog-
ical properties of the new word. This classfier
shawvs improved perfomanceover modelsthat use
only collocatians. In partiaular, we found thateven
rudimentary morphological informationgreatly im-

2Text categorizationis the task of associatingdocunents
with topic labels (POLITICS, SPORT...) andit bearssimi-
larities with semanticclassificationtaskssuchas word sense
disambiguéon, informationextractionandacquisition.
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Figurel: A few clasesunde theroot classABSTRATION in MiniWordret.

provesclassfication perfomanceandshauld there
fore be partof any word classification model.

The outline of the paper is asfollows. In sedion
2 we introducethe dictionary we usedfor our tests,
asimplifiedverson of Wordnet In sectbn 3 we de-
scribe more formally the task, a few simple mod-
els, andthe testmethals. In sedion 4 we descibe
theboostng modelandthesetof morphdogical fea-
tures In section 5 we summarie the resuts of our
expeliments.In sectian 6 we descibe relaedwork,
andthenin sectio 7 we presat our condusions.

2 MiniW ordnet

Idealy the lexicon we would like to extend is a
broad coverage machne readdle dictionary like
Wordne (Miller etal., 1990 Fellbaum,1998). The
probdemwith trying to direcly useWordnetis thatit
confainstoo mary clasgs(synsts),arourd 70thou
sand Learningin sucha hugeclass spa@ canbe
extremely problematic,and intuitively it is not the
bestway to starton ataskthat hasnt beenmuchex-
plored®. Instead, we manualy developeda smalle
lexicon dubbedMiniWordnd, whichis derivedfrom
Wordné versin 1.6. The reducedlexicon hasthe
samecoverage (abou 95 thousandnoun typeg but
only afraction of the classes.In this paper we con
sideedonly nounsandthe noundatatase.Thegod
was to redwce the numberof clasesto aboutone
hunded* of roughly compaable taxoromical gen
eralty andconsigengy, while maintainng alittl e bit
of hierarchical structure.

3Preliminary experimeris confirmedthis; classificationis
computatiorlly expersive, performances low, andit is very
hard to obtain even very small improvemerts when the full
databasés used.

4A magnitudecompaableto the classspaceof well stud-
ied text cateyorizationdatasetslike the Reuters-21578Yang,
1999).

The output of the manud coding is a setof 106
clas®s that are the resut of meging hundeds of
synsets. A few random examplesof thes classes
are PERSON,PLANT, FLUID, LOCATION, AC-
TION, and BUSINESSOneway to look at this set
of clas®sis from the perspective of namedentity
recoqnition tasks,wherethere are a few classesof
a similar level of gererality, e.g, PERSONLOCA-
TION, ORCGANIZATION, OTHER The difference
hereis that the classs are intendedto captue all
possble taxoromic distinctions collapsedinto the
OTHERCclass above. In addtion to the 106 leaves
we also kept a set of supeordinate levels. We
maintaned the 9 root clasesin Wordnd plus 18
intermediateones. Examples of theseintermedi-
ate classs are ANIMAL, NATURAL_OBJECT, AR-
TIFACT, PROCESS andORGANIZATION. Therea-
sonfor kegping someof the superadinate strudure
is that hierarchicd information might be important
in word classfication; this is sometling we will in-
vestigatein thefuture. For example theremight not
be enaugh informationto classify the noun ostrich
in the BIRD classbut enoudn to labelit asANIMAL
Thesupeordinatesarethe original Wordnd synsés.
Thedatébasehasa maximumdepth of 5.

We acknowledgéehatthemethoalogy andresuls
of redwcing Wordnetin this way are highly suljec-
tive and noisy. However, we also think that go-
ing throudh an intermediary stepwith the redwed
datalase has beenusdul for our purpcsesand it
might alsobe sofor otherresearcher®. Figurel de-
picts the hierachy belowthe root classABSTRC-
TION. The classesthat are lined up at the bottom
of thefigure areleaves As in Wordnet,somesub

SMore information about MiniWordnet and the
databaseitself are available at www. cog. br own. edu/ ~
massi / resear ch.



hierachiesaremoredersely popdatedthanothes.
For example,the ABSTRATION sub-hierachy is
more popuated (11 leaveg thanthat of EVENT (3
leaves). The mostpopuatedandstruduredclassis
ENTITY, with almosthalf of theleaves(45) andsev-
eralsupeordinateclasses (10).

3 Automatic lexical acquisition

3.1 Word classfication

We frame the task of inserting new wordsinto the
dictionary asa classfication prodem: Y is the set
of clasesdefinedby the dictionary Givenavecta
of featuesz € X C R we wantto find functions
of theform X — Y. In particular we areinterested
in learnng functionsfrom data,i.e., atraining setof
pairs(Z,y), ¥ € X andy € ), suchthattherewill
be a small probability of errar whenwe apply the
classfier to unknown pairs (newv nours).

Eachclassis descrbedby avectorof features. A
classof featuesthat intuitively carry semanticin-
formation arecollocations i.e., wordsthatco-occur
with the nours of interestin a corpus. Collocations
have beenwidely usedfor taskssuchasword seng
disamhbguation (WSD) (Yarowvsky, 199%), informa-
tion extraction (IE) (Riloff, 1996, andnamedentity
recoqnition (Collins and Singer 1999). The choice
of collocations can be condtioned in mary ways:
accadingto syntadic relaionswith thetargetword,
syniactic catgyory, distance from the target, and so
on.

We use a very simple set of collocatiors: eath
word w that appearswithin +£ positions from a
nounn is a feature. Eachoccurence or token, 4
of n, n;, is then charaterized by a vecta of fea-
turecounsn;. Thevecta represenationof thenoun
typen is thesumof all the vecta's representirg the
contextsin whichit occus. Overallthevecta repre
sentdion for eachclass in the dictionary is the sum
of the vectas of all nours that are membersof the

class
g=22 1
ney g

while the vectorrepresentaion of anunknown noun
is the sumof the featue vectois of the contets in
whichit occured

- —
r = E un
%

The corpus that we usedto collect the statigics
abou collocatiorsis thesetof articlesfrom the 1989
Wall StreetJounal (abaut 4 million words)in the
BLLIP'99 comus.

We perfarmed the following tokenization stes.
We usedthe Wordnet "morph” functions to mor-
phologicdly simplify nouns verbsand adjectives.
We excluded only puncuation; we did no filtering
for part of speet (POS).Eachword was actwally
a word-POSpair; i.e., we distinguished betwee
plant:NN andplant:VB. We collapsedsequ@cesof
NNs that appeaed in Wordnd asone nour sowe
have one entry for the noun car.companyNN. We
also collapsedseqience of NNPs, possbly inter-
leaved by the symbol”&”, e.g.,Geoige Bush:NNP
andProcter & GambleNNP. To redwethenumbe
of featuresa little we changed all NNPs beginning
with Mr. or Ms. to MISS X:NNP, all NNPsendirg in
CORPor CO.to COMPANY_X:NNP, andall words
with POSCD, i.e., numbes, starthg with a digit to
NUMBER_X:CD. For training and tesing we con-
sidered only nouns that are not ambigwus acwrd-
ing to thedictionary, andwe usel only featuesthat
occuredatleast10timesin thecorpus.

3.2 Simple models

We developed severd simpleclassfiers. In particu-
lar we focused on nearest neighbor (V N) andnaive
Bayes (/N B) methals. Both are very simple and
powerful classfication techriques For NN we used
cosireasameasuref distancebetweertwo vectas,
andtheclassfier is thus

5 cos(@, )

g(Z) = argmax 1)

Since we usal aggreyate vectas for classe and
noun types, we only usedthe bestclass i.e., we
always usal 1-neaest-reightor classifiers. Thus
k in this paperrefers only to the size of the win-
dow around the target nounandnever to numberof
neighbors consilted in k-nearest-rightor classifi-
cation. We found that using TFIDF weights instead
of simple counts gredly improved performanceof
the NN classfiers, andwe mainly repat resuts rel-
ative to the TFIDF NN classfiers (N Nrrrpr). A

documentin this context is the context, delimited by
thewindow sizek, in which eacheachnoun occus.

TFIDF basially filtersouttheimpad of closedclass
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wordsandre-weidhts featuesby their informative-
ness thusmakinga stoplist or other feature manip
ulationsunne@ssary The naive Bayesclassifiersis
alsovery simple

f(@) = argmax, P(y) [[ P(zily)) ()
i

The paranetersof the prior and classcondtional

distributions are easily estimatel using maximum

likelihood We smoothel all counts by a facta of

5.

3.3 Testingprocedure

We testal eachmodelon an increasingnumbes of
clas®sor level At level 1thedictionarymapsnours
only to the nine Wordné roots; i.e., thereis a very
coaredistinction amongnoun categoriesatthelevel
of ENTITY STATE, ACT,.... At level 2 thedictionaly
mapsnounsto all the classesthathave alevel-1 par-
ent; thus eachclasscanbe eithera leaf or aninter-
mediate(level 2) class. In geneal, at level 7 nours
areonly mappel to clasesthathave alevel (7 — 1),
or smalle, paret. Thereare 34 level-2 clas®s, 69
level-3 classesand 95 level-4 ones.Finally, atlevel
5,nounsaremappedo all 106leaves.We compare
the boostng modelsandthe NN andNB classifiers
over afixedsizefor k of 4.

For eachlevel we extracted all unambiguots in-
stan@s from the BLLIP'99 data. The datarangel
from 200thousandnstancesatlevel 5,to almost400
thousandatlevel 1. As thenumbe of classesgrows

therearelessunamhguous words. We randanly se-
lected a fixed numberof noun typesfor eachlevel:
200 types at levels 4 and 5, 300 at level 3, 350 at
level 2 and400atlevel 1. Testwaslimited to com-
mon nours with frequency betwee 10 and 300 on
thetotal data No instanceof the nountypespresent
in thetestsetever appeaedin thetraining data. The
testdatawasbetweerb and10%of thetraining datg
10thousandinstancestlevel 5, 16thousaandatlevel
1, with intermediatefiguresfor the otherlevels. We
usedexacty thesameparition of the datafor all ex-
perimerts, acros all models.

Figure 2 shaws the error rate of several simple
modelsat level 1 for increasingvaluesof k. The
error keegs dropping until & reathesa valuearourd
4 and then stars rising. Testing for all values of
k < 30 confirmedthis patten. This resut sug
geststhatthe mostuseiul contextual informationis
that closeto the noun which shoud be syntadic-
semarit in nature e.g.,predi@te-argumenprefer-
ences. As the window widens the bag of features
becanesmorenoisy. Thisfactis nottoo surprsing.
If we madethe window aswide asthe whole docu
ment,every noun token in thedoaumentwould have
the samesetof featules. As expeded, asthe num-
berof classesincreasesthetaskbecanesharde and
theerrorof theclassifiersincreases.Nonethéessthe
samegereral patten of perfarmancewith respectto
k holds. As thefigureshovs N Nrprpr greaty im-
provesoverthesimple NN classfier tha only uses
courts. N B outperfomsboth.

4 Boostingfor word classification

4.1 AdaBoost.MH with abstaining

Boostirg is an iterative methal for combning the
output of mary weak classfiers or learrer§ to
produce an accurde enembleof classifiers. The
methodstartswith atrainingsetS andtrainsthefirst
classfier. At eachsuccesie iteration ¢ anew clas
sifier is trained on a new training setS;, which is
obtaned by re-weighing the training datausedat
t — 1 sothat the examplesthat were misclassified
att — 1 aregiven moreweightwhile lessweight is
givento the correctly classfied examples At eadh

®The learneris called weak becauset is requiredto clas-

sify examplesbetterthanatrandam only by anarbitrarily small
quantity



iteration a weak learrer k(-) is trained and addel
to theensembd with weight «. Thefinal ensembz
hastheform

T
F(Z) =) oyhy(Z) 3)
t=1

In the mostpopuar versian of aboastingalgorithm,
AdaBoost(Schapre and Singer 1998, at eachit-
eration a classifier is trained to minimize the expo-
nenfal loss on the weighted training set. The ex-
ponantial loss is an uppe bound on the zeroone
loss. AdaBoostminimizes the exponential losson
the training set so that incorrect classification and
disageemenbetweemmembersf theensembleare
pendized.

Boosting has been sucessfuly apgdied to sev-
eral probems. Among these is text categyoriza-
tion (Schapre and Singer 2000, which beas
similarities with word classfication.  For our
experiments we used AdaBoost.MH with real-
valued predidions and abstining, a verson of
booging for multiclass classification descrbed
in Schapre andSinger(2000). This versian of Ad-
aBoostminimizesa loss function that is an uppe
bourd on the Hammingdistancebetweenthe weak
learrers’ predictions and the real labels i.e., the
numberof labd mismatctes (Schapre and Singer
1998. This uppe bourd is the prodwct]], Z;. The
function y;[1] is 1if [ is thecormrectlabelfor thetrain-
ing examplez; andis -1 otheawise; d = |Y] is the
total numbe of clases;andm = |S| is thenumbe
of training examples We explain whatthe termfor
theweaklearrer b}’ (z;, /) meansn thenext section.
Then

m d
Zy =YY Dy(i, 1) exp(willlhf (zi, 1)) (4)
A

AdaBoostMH looks schematically asfoll ows:

ADABOOST.MH(S)
1 Di(zi,l) « -5 » uniforminitialization Dy
fort < 1tot« T

2
3 doget weak hypothesis h}’ wrt Dy;
4

Dyy1(z4,1) = Dr(=i,l) e"p(;tyi[”hi“(wi,l));

D(z;,1) is the weightassigiedto the instance-bbel
pair (z;, ). In thefirst round D eachpairis assigied

the sameweight At the end of eachroundthe re-
weighted D, is nomalizedsothatit forms a distri-
bution; i.e., Z; is a normdizing facta. The algo-
rithm outputsthefinal hypothesedor aninstarce ;
with respectto classlabel [

T

Flai,l) =Y by (@i, 1)

t

(5)

sincewe areinterestedin classfying noun typesthe
final scae for eachunknown nounis

F(nal) = Z f(xzal)

1:EN

(6)

wherewith i : ¢ € n instancex; is atoken of noun
typen.

4.2 Weaklearners

In this versimn of AdaBoostweak learnas are ex-
tremely simple. Eachfeatue, e.g., one particular
collocation, is a weakclassfier. At eachroundone
featue w is seleded. Eachfeatue males a reat
valued predidion ¢ (w, 1) with respet to eachclas
I. If ¢t(w,1) is postive thenfeature w makesapos
itive predidion aboutclass [; if negative, it makes
a ngyative predction abou class . The magniude
of the predidion |¢(w, )| is interpretedas a mea-
sureof the confiderce in the predction. Thenfor
eachtraining instarce a simple checkfor the pres
enceor absece of this featue is performed. For
example a possble collocation feature is eatVB,
andthe correspondng predidion is “if eatVB ap-
pearsin the context of a noun, predct thatthe noun
belongsto the classFOOD and doesnt belorg to
clas®s PLANT, BUSINESS,. A weakleameris
definedasfollows:

we. n_ ) ocalwl) ifwez;
Thepredction ¢;(w, ) is compuedasfollows:
1. (Whi+e
c(w,l) = Eln (Wl +€> (8)

WL (WL) is the sumof the weights of noun-labe
pairs from thedistribution Dy, wherethefeatue ap-
pearsandthe labd is correct (wrong); e = ﬁ isa
smoothing facbor. In Schapie andSinger(1998 it



W=Augug; PL=0; MU=1; CO=":POS;CO=passengr:NN; CO=trafic:NN; ...
W=punishment;PL=1; MU=0; MS=ment;MS=ishment,CO=in:IN; CO=to:TO; ...
W=vice_presdent PL=0; MU=0; MSHH=president CO=say:VB;CO=chieflJ;...
W=newsleter; PL=0; MU=0; MS=er; MSSHt=letter; CO=yieldNN; CO=se&en-chy:JJ ...

Figure3: Samplenputto theclassifiers,only Boostyr hasaccesgo morphdogical information. CO stand

for the attribute “collocation”.

is shavn that Z; is minimized for a paricular fea-
ture w by choosng its predctions as descibed in
equdion (8). Theweighto; usualy ass@iatedwith
the weakclassfier (seeequdion (2)) here is simply
setto 1.

If thevaluein (8) is pluggedinto (4), Z becanes

Zy=Wo+2) JWiwt

ley

(9)

Therefae to minimize Z; at eachroundwe choo®
the featue w for which this value is the smallest.
Updatirg thesescoreds whattakesmostof thecom-
putaion, Collins (2000) descibes an efficient ver
sionof this algoiithm.

4.3 Mor phological features

We investigatel two booging modebk: Boostg,

which uses only collocations as features, and
Boost s, which usesalsoa very simplesetof mor-

phologicd featues.In Boosts we usedthecolloca-
tions within a window of £k = 4, which seemd
to be a good value for both the neares neighbor
andthe naive Bayesmodel. However, we didn’t fo-
cuson ary methodfor choosng &, since we believe
thatthe collocational featureswe usedonly approx-
imatemorecomplex onesthatneedspecific investi-
gation Our maingoalwasto compae modelswith

and without morpfhological information. To spee
ify the morphdogical propeties of the nouns being
classfied, we usedthe following setof featues:

e plurd (PL): if the token ocaurs in the plurd
form, PL=1; othewise PL=0

e uppe case(MU): if the token's first charater
is upper-caed MU=1; otherwiseMU=0

e suffixes (MS): eachtoken can have 0, 1, or
more of a given set of sufiixes, e.g., -er, -
ishment-ity, -ism,-esse...

o prefixes(MP): eachtoken canhave0, 1 or more
prefixes,e.qg.,pro-, re-, di-, tri-, ...

e Wordsthathave complex morplology sharethe
morphdogicd headword if this is a noun in
Wordnet Thereare two cases depemling on
whetherthewordis hyphenated MSHH) or the
headword is a sufiix (MSSH)

— hypherated (MSHH): drinking.age and
age sharethe sameheadword age

— non-hyphenaged (MSSH): chairman and
man shae the same suffix head word,
man We limited the use of this featue
to the casein which the remairing prefix
(chair) alsois anoun in Wordné.

We manualy encaled two lists of 61 sufixes and
26 prefixes . Figure 3 shavs a few examplesof the
input to themodels Eachline is atraining instance;
theattributeW refersto thelexical form of thenoun
andwasignored by the classfier.

4.4 Stoppingcriterion

Oneisswe whenusing iterative procedures is decid
ing whento stop. We usedthe simplest procedureof
fixing in advance the numberof iterations We no-
ticedthatthetesterrordrops until it readesa point
at which it seemsnot to improve anymore Then
the error oscillatesarourd the samevalue even for
thousandsof iterations, without appaent overtrain-
ing. A similar behavioris obsrnvablein someof the
resuts ontext cateyorizaton presatedin (Schapie
and Singer 2000). We cannd say that overtrain-
ing is not a potertial dange in multiclassbooging
models However, for our experimers, in which the
main god is to invedigate the impactof a particu-
lar classof featues, we could limit the numberof

"Thefeaturelists areavailabletogethemwith the Miniword-
netfiles.
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iterations to a fixed valuefor all models.We chos
this maximumnumberof iterationsto be 3500 this
allowed us to perform the expelimentsin a rea®n-
able time. Figure 4 and Figure 5 plot training and
testerrar for Boosts and Boost;, at level 4 (per
instance). As the figuresshow the error rate, on
both training andtesing, is still dropping after the
fixed numberof iteraions. For the simplestmodel,
Boostg atlevel 1, thesituation is slightly different:
the modelcorvergeson its final testerror rate after
roughly 200 iteraions andthenremairs stabke. In
geneal, asthe numbe of classesgrows, the model
takes moreiteratons to corverge andthenthe test
error remairs stablewhile the training error kees
slowly decreasing

5 Resultsand

The following table summaries the different

modelswe testeal:

discussion

MODEL FEATURES

NNrrrpr | TFIDFweightsfor collocations
NB collocationcourts

Boosts collocationg(binary)

Boostm collocationgbinary)+maphology

Figure 6 plots the resuts acros the five different
sub®ts of the redwced lexicon. The error rate is
the error on types. We also plot the resuts of a
basdine (BASE), which always choosesthe most
frequent class andthe error rate for randan choice
(RAND). The basdine stratayy is quite successfi
onthefirst setsof classes, becasethe hierarchyun-
dertheroot ENTITY is by farthemostpopuated.
At level 1 it performsworseonly than Boostys. As
the size of the modelincreases,the distribution of
clasesbemmesmoreuniformandthetaskbecanes
harcer for the baseine. As thefigure showvs theim-
pactof morplological featuwesis quite impressve.
The average decreasen type error of Boosty over
Boostg is morethan17%,noticealsothedifference
in testandtraining errar, perinstance,in Figures4
andb.

In gereral, we obseved that it is harde for all
classfiers to classfy noursthatdon't belong to the
ENTITY class i.e., maybenot surpisingly, it is
harcer to classify nounsthat refer to abstact con
ceptssuch as groups, acts, or psydological fea-
tures Usualy mostof the correct guesesregard
membersof the ENTITY class or its desendarts,
which arealsotypicaly the classs for which there
is moretraining data Boost), really improveson
Boostg in this respect. Boostys guesgs correctly
severd nours to which morphdogical featues ap-
ply like spending, enfacementparticipation, com-
petitivenes, credbility or consuting_firm. It makes
also mary mistales, for example on corversétion,
contoversy and insurancecompaty. One prob-
lem that we noticed is that there are severd cases
of nours that have intuitively meanindul sufiixes
or prefixes that are not pregent in our handcodel
lists. A possible solution to his problem might be
the use of more geneal morphdogical rules like
thos usedin partof-speechtaggng models(e.g.,
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Ratnagrkhi (1996)), whereall sufiixesup to a cer
tain length areincluded. We observed alsocassof
recurent confusion betveenclasss. For examplke
betweenACT and ABSTRCTION (or their subor-
dinates), e.qg.,for the nounmodernzation, possbly
becaisethe suffix is commonin bothcases

Anothe measue of the importance of morphe
logical featuresis the ratio of their usewith respet
to that of collocatims. In the first 100 rounds of
Boost s, at level 5, 77% of the featues seleted
aremorphdogicd, 69%in thefirst 200 rounds. As
Figures4 and5 show theseearly roundsareusually
the onesin which mostof the errar is reduca. The
first ten featues selected at level 5 by Boosty,
were the following: PL=0, MU=0, PL=1, MU=0,
PL=1,MU=1, MS=ing, PL=0, MS=tion, andfinally
CO=NUMBER X:CD. One final chaacterstic
of morphdogy that is worth mentioring is that
it is independen from frequeny. Morphdogicd
featues are properties of the type and not just of
the token. A model that includes morphdogicd
informationshoul thereforesuffer lessfrom spare
dataprobdems.

Fromamoregereral persgective, Figure6 shovs
that even if the simpler boosting models peifor-
mance degrades more than the compditors after
level 3, Boost;, performs betterthanall the other
classfiers until level 5 when the TFIDF neares
neighbor and the naive Bayesclassfiers catchup.
It shoul be notedthoudh that, asFigures 4 and 5

shawved, booging wasstill improving at the end of
the fixed numbe of iterations at level 4 (but also
5). It might quite well improve significantly after
moreiterations. However, determinng absdute per-
formarce was beyond the scoge of this pape. It
is alsofair to saythatboth NN and NB arevery
compeitive methods and much simple to imple-
mentefficiently thanboostng. The main advantage
with boaosting algarithmsis theflexibility in manag
ing featuesof very differentnatue. Featurecombkr
nation canbe performednatually with probabilistic
modelstoobutit is morecomplicaed. However, this
is somehing worth invedigating.

6 Relatedwork

Automatic lexical acqusition is a classc prodem
in Al. It was originally apprachedin the con
text of story undestandng with the aim of en-
abling sygemsto deal with unknown words while
processingtext or spcken input. Thesesysems
would typically rely heavily on script-basel knowl-
edgeresouces. FOUL-UP (Grange, 1977) is one
of these early modelsthat tries to deteministically
maximizethe expedations built into its knowledge
base JacdsandZernik (1988) introducedthe idea
of using morphdogica informaton, togeher with
othe soures, to guessthe meanirg of unknown
words.Hastings andLytinen (1994 investigatel at-
tacking the lexical acqusition problem with a sys-
tem that relies mainly on taxonomic information.
In the last de@adeor soresarchon lexical seman
tics hasfocused more on sub-poblems like word
seng disambigiation (Yarowsky, 19%; Stevensm
andWilks, 2001), namedentity recagnition (Collins
and Singer 199), and vocahulary congruction for
information extradion (Riloff, 1996). All of thes
canbe seenassubtasks becasethe spae of pos
sibleclas®sfor eachwordis resticted. In WSDthe
possble clas®sfor a word are its possble serses;
in namedentity recoqnition or IE the numbe of
clas®sis limited to the fixed (usudly small) num-
berthe taskfocuseson. Otherkinds of modelsthat
have beenstudied in the context of lexical acqusi-
tion are those based on lexico-syrtactic paternsof
thekind "X, Y andothe Zs”, asin the phra® "blue-
jays, robins and othe birds”. Thesetypes of mod-
els have beenusedfor hyporym discovery (Hearst,



1992 Roark and Charnak, 1998, merorym dis-
covery (Berlard and Charni&, 199), and hierar-
chy building (Carabdlo, 1999. Thesemethodsare
very interestirg but of limited applicability, becaise
nours that do not apper in known lexico-syntactic
pattenscannd belearred.

7 Conclusion

All theapproache citedabove focuson someaspet
of theproblemof lexical acqusition. Whatwe leam
from themis that informationabou the meaningof
wordscomesin very differentforms. Onething that
need to be invedigatedis the desgn of beter sets
of featuesthatencaletheinformationthathasbeen
found usdul in thesestudes. For example, it is
known from work in word sersedisanbiguaton that
condtioning on distanceandsyntactic relaions can
be very helpful. For a modelfor lexical acqusition
to be succesful it mustbeableto combineasmary
sourcesof information as possble. We found that
booding is a viable methodin this respe&t. In par-
ticular, in this paper we shaved that morphobgy is
onevery usefd sourceof information,independen
of frequengy, that canbe easily encoad in simple
featues.

A more generé finding was that inseting newv
words into a dictionary is a hard task For thee
classfiers to becomeuselul in pradice, much bet-
ter accuagy is needel. This raisesthe question of
the scalaility of machineleaming method to mul-
ticlassclassficationfor very largelexicons.Ourim-
presson on this is that directly attemging classifi-
cation ontensof thousandsof classeis notaviable
appioach.However, thereis a greatdealof informa-
tion in the strudure of alexicon like Wordnet. Our
guesis thatthe ability to make useof strucural in-
formation will be key in sucessfulappoactesto
this problem.
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