1

Mor phol ogi cal
ACL Speci al

and Phonol ogi cal

July 2002, pp.

Lear ni ng:
Interest Group in Conputational

1-10.

Proceedi ngs of the 6th Wrkshop of the
Phonol ogy (SI GPHON), Phil adel phi a,
Associ ation for Conputational Linguistics.

Unsupervised Learning of Morphology for Building Lexicon for a

Highly Inflectional Language

Utpal Sharma*

Abstract

Words play a crucial role in aspects
of natural language understanding such as
syntactic and semantic processing. Usu-
ally, a natural language understanding sys-
tem either already knows the words that
appear in the text, or is able to automat-
ically learn relevant information about a
word upon encountering it. Usually, a ca-
pable system—human or machine, knows
a subset of the entire vocabulary of a lan-
guage and morphological rules to deter-
mine attributes of words not seen before.
Developing a knowledge base of legal words
and morphological rules is an important
task in computational linguistics. In this
paper, we describe initial experiments fol-
lowing an approach based on unsupervised
learning of morphology from a text corpus,
especially developed for this purpose. It is
a method for conveniently creating a dic-
tionary and a morphology rule base, and
is, especially suitable for highly inflectional
languages like Assamese. Assamese is a
major Indian language of the Indic branch
of the Indo-European family of languages.
It is used by around 15 million people.

Introduction

Jugal Kalitaf

Rajib Das!

or she neither consults a dictionary nor gets any
clear instructions on grammar or vocabulary. That
he or she can relate the sentences to real world
events and entities, is often very useful for this
learning process. In the case of a computer pro-
gram, the lack of such correlation must be compen-
sated. The method that we describe here attempts
to build a lexicon and learn morphological rules of
a language by studying texts of the language and
without any direct manual specification of the lan-
guage.

A motivation for the particular approach taken in
this paper for morphological analysis is that in As-
samese formation of derivatives from the root or
base forms of words is ubiquitous, it being very
inflectional. We believe that for further computa-
tional processing of Assamese text, it will be very
useful to analyze words to identify the root form
and the exact nature of derivation used in each
case. To handle such a task, unsupervised learn-
ing of morphology is useful. Our algorithm uses
techniques distinct from those described in [14].

It must be noted that there is no known published
computational linguistic work on Assamese at all.
Ours is the first and only attempt to work com-
putationally with Assamese, an important and a
national language of India, but utterly neglected.

A child learns his or her native language by care- Thus, the nature of the work reported here is pio-
fully analyzing sentences that he or she hears. He neering.

*Department of Computer Science, Tezpur University, Tezpur - 784028, Assam, India, utpal@tezu.ernet.in
tDepartment of Computer Science, University of Colorado, Colorado Springs, CO 80933, kalita@pikespeak.uccs.edu
iDepartment of Computer Science, Tezpur University, Tezpur - 784028, Assam, India, rkd@tezu.ernet.in

2 Assamese word derivation

Broadly there are two kinds of derivations. First,
multiple root words can be combined to form com-
pounds, e.g.,

grantha + melA = granthamel A (S7F=T).
This often occurs with some change in spellings of
the root words, e.g.,

par + adhIn = par AdhIn (*RITF).
Compound formation in the languages of the In-
dic branch is of two types namely, using sandhi
and samas ([10], [11]). In this work, we do not
target analysis of compounds. The second kind of
derivation is by the use of affizes (prefixes and suf-
fixes). Affixation is sometimes differentiated into
two types, namely inflectional and derivational
(such as in [3]), e.g.,

Inflectional : mAnuh + e = mAnuhe (N,
STHR)

Derivational : driha + tA = drihatA (70, 7097,
= firm, firmness)
Our system, however, treats them alike. Lan-
guages of the Indic branch inherit many affixes
from Sanskrit, as well as have many affixes specific
to each language. To begin with, we lay emphasis
on processing suffixes since suffixes are more com-
mon in Assamese and embody significant linguistic
information. Most common among the Assamese
suffixes are inflectional suffixes called bibhaktis ([4],
[5], [7]) and are distinct from bibhaktis of other In-
dic languages. In Indic languages, particularly in
Assamese, in a large number of cases of application
of suffixes, spelling changes do not occur. It is also
important to note that a very common morpholog-
ical phenomenon in Assamese is sequences of suf-
fizesin a single word. For example, ['rAkeiTAkeino
= I'rA + keiTA + k + ei + no (W ICIDTRRAT:
boys+some-tobjective+emphasis+emphasis).
The frequent occurence of such sequences and the

large number of suffixes in some of these sequences
is a phenomenon that distinguishes Assamese from
most other languages. In some cases Assamese
also allows certain suffixes to be detached from
the base part. i.e., write the suffix as a separate
word following the root word.

Assamese inherits 20 prefixes (upasargas) from
Sanskrit ([4], [10], [11]). There are additional pre-
fixes specific to Assamese. Prefixes in many cases
change the meaning of words in such a way that
the derived words may be treated as root words
themselves. Few prefixes, viz., e, du, Ca, (these
denote numbers one, two, and six of the object)
and na (also its other forms - ne, n4, nu, ni, etc.,
all of which denote negation) only qualifies the ba-
sic meaning of the root word.

3 Decomposing words

From the set of words in the input text, we identify
cases where one word can be derived from another
word by addition of some suffix (or prefix) in that
set. We refer to such a case as a “decomposition”,
the former word a “derivative”, the latter a “base”
(or root), and the suffix a “rule”. i.e.,

Decomposition: derivative = base + rule
For example,

karA = kar + A

bahal Ai = bahal + Ai

(M = 9 +)
(IZETR= I3 + 1R)

We may be able to find more than one derivative
for a single word from the same base by adding dif-
ferent rules. A base may be found to be a deriva-
tive with respect to another base. For example,
suppose we have the words, a, ab, ac, abd (a,b,c
and d are strings possibly longer than a single char-
acter). We can represent these as the following.

Abstraction Example

ab=a+b kalamar = kalam + ar
ac=a+c kalamat = kalam + at
abd = a + bd,

kalamarhe = kalam + arhe

A~~~
% %
~— —

or, abd=ab+d

kalamarhe = kalamar + he

In the case of abd, we would like to record the
decomposition ab + d, since it reflects more de-
composition information than the other alterna-
tive, when considered along with ab = a + b.

We summarize our algorithm below

Preprocessing

1. Take a input text T

2. Form a sorted list, L, of distinct words in T.
Phase 1

3. For each word w in L, identify another word b
in L such that w can be obtained by append-
ing some (non-null) suffix s to b. If there are
multiple candidates for b, select the longest
among them and record the decomposition

w=b+s
If no b can be identified for a w, w is
composed”.

“unde-

4. From the decompositions identified above,
e for each base b count the number of decom-
positions where it is a base. Call it the base
count of b, bcp.
e for each suffix (rule), s, count the number
of decompositions where it is a suffix. Call it
the rule frequency of s, 7 f;.

5. Discard the decompositions in which the rule
has a very low value a of rf;. « can be ad-
justed experimentally. We have used o = 1
in our experiments. Also, discard the decom-
positions in which the base has a wvery high
value of bcp.

Phase 2

6. For each word that could not be decomposed
in phase 1 (some of which may have come out
as base in some decomposition), try each of
the rules identified in that phase. That is,
see if a rule (suffix) is the ending part of an

undecomposed word. Record such decompo-
sitions, and the base forms.

Phase 3

7. For each word w in L, identify the set of suf-
fixes (rules) that appear with it and call it
the characteristic of that word, C,,.

Words are classified using their characteris-
tics.

Example: [Numbered according to the steps out-
lined above.] Note that in our experiment the in-
put corpus uses Roman orthography. The mapping
between the Assamese letters and the Roman let-
ters is chosen so as to facilitate lossless translation
between the two representations. The following
example uses this orthography (though it reduces
readability to an unaccustomed reader).

2. Suppose the list of distinct words is,

..., asm, asmk, asmklE, asmlE, asmr, ..., br-

dlE, ..., bhArtk, bhArtr, bhArte, ..., kKAlIE,
k, klm, klmr, kr, ..., mAnubhe, ...

(-ony SOOI, OPTNRE, OO, SO, OPFR, ...,
N, ..., SREF, S{Ed, O, ..., FIHEA, T,

A, T, 9 ..., THR, -.)

3. Decompositions
(asmk = asm + k), (asmklE = asmk + E),
(asmlE = asm + lE), (asmr = asm + 1),
(klm = k + Ilm)*, (klmr = kim + r),
(kr = k + r)*
Undecomposed: asm, brdlE, bhrtk, bhArtr,
bhArte, kAUIE, klm, mAnuhe.

4. Base counts
asm : 3,asmk : 1, k: 2, klm : 1
asmklE, asmlE, asmr, brdlE, bhArtk, bhArtr,
bhArte, KAUIE, klmr, kr, mAnuhe : 0

(The suffixes identified are k, [E, r and
Im)

Suffix frequencies:
k:1LIE:2,7r:3,lm:1

5. Discard the decompositions involving the
suffixes k, and [m (since they have frequency
a = 1). The base count of asm becomes 2,
and k becomes 1.

6. Decompositions

(brdlE - brd + LB,
(bhArtr = bhArt +),
(kAlLIE = KkAli + IE)

7. Characteristics
asm : {lE,r}, asmk : {lE}, klm : {r},
bhArt : {r}, brd : {IE}, kKAli : {I{E}
asmklE, asmlE, asmr, brdlE, bhArtk, bhArtr,
kALIE, klmr: { }

(The decompositions marked * are linguisti-
cally incorrect.)

In the first phase, we extract rules by using base
forms that are known, i.e., words that are present
in the list of words. After this analysis, there may
be words which could not be decomposed. It is
possible that some of these words are actually root
words and cannot be decomposed. But there may
be words that could not be decomposed because
no base form exists in the list of words provided.
So in the second phase, we consider the “undecom-
posed” words and see if any “rule” identified so far
can be applied to decompose such a word, i.e., if
ab is word that could not be decomposed so far, is
there a rule b so that we can decompose ab as a +
b? In fact multiple rules might be applicable for a
single word. In such a case, in a language where
suffix sequences are a common phenomenon, we
should give preference to rules that are longer and
can be obtained as a suffix sequence (See Section
8). Otherwise suffixes with higher frequencies may
be given preference. With more base forms known
following the second phase, we can repeat the first
phase analysis, then the second phase analysis, and
theoretically, so on. In the example given above,

if we were to iterate the steps after the first pass,
due to the word bhArt in the list now, we can de-
compose the hitherto undecomposed word bh Artk
as bhArt 4+ k and bhArte as bhArt + e. This
gives us the new suffix e. Assuming e does not get
discarded, we can decompose the word mAnuhe
as mAnuh 4+ e, obtaining the new word mAnuh.
This process may be stopped when in a particular
pass we do not detect any new rule or base. Phase
3 can then be undertaken to determine the nature
of the words based on the suffixes that each takes.
Reaching such a stage, however, does not imply
that all possible decompositions have been de-
tected. Since our method works by comparing
related words, the presence or absence of certain
words makes significant difference. For instance, if
the input list of words in the example given above
did not contain the word bhArtr, the base bhArt
would not be obtained, and consequently the suffix
e would not be obtained from bhArte, and further
mAnuhe would not be decomposed. In general,
providing a large number of words for analysis will
cause more rules to be detected in phase 1, and
with the larger number of rules so obtained, more
base forms can be detected through phase 2. In
practice, it is typical to expect texts in chunks in
successive analysis runs. So, during implementa-
tion of the algorithm, we refine it so that while a
new chunk of text is processed, the words in that
text are analyzed along with the words existing in
the lexicon. The focus is put on the new words
and their effects.

An analysis based simply on detection of presence
of common substrings may fail to detect decompo-
sitions where the spelling of the derived word is not
simply a concatenation of the base word and the
suffix but a modification of that. The proportion
of such words in a corpus may vary across lan-
guages, and so will the effectiveness of the above
algorithm. In a language such as Assamese (as
also in other Indic languages), it is seen that the
modification of spelling is generally related to the
actual pronunciation of the words and the suffixes.
More specifically, the sounds of the ending part of

the base word and the beginning of the suffix com-
bine to form a sound which is represented in the
result by another string of letters than the combi-
nation of the original letters. That is, a word ab
may combine with a rule zy to form acy instead of
abry. We feel that some amount of phonological
knowledge, either acquired by a learning method,
or provided directly, may be used to detect and
handle such cases.

4 Information schema

We accumulate the information extracted by the
analysis process in two primary data structures—
a lexicon, and a rule base. In the lexicon we keep
an entry for each word that has been encountered
so far in various runs. Each entry contains the

e the word, w
e the base, b (‘- if the word is not decomposed)

e the number of times it is encountered in text,
W fry-

e the number of times it participates as base
in decompositions, bcy,

e other attributes

Similarly, the rule base contains entries each of
which comprises

e the rule, s (i.e., suffix, or prefix)

e the number of times it participates in differ-
ent decompositions, 7 f;.

e other attributes

5 Effect of additional text

An effort to build a lexicon and enumerate mor-
phological rules of a natural language, is unlikely
to be complete in a single run of the algorithm.
It is likely after processing a number of chunks of

texts, no new rules are generated. However, base
forms are likely to be discovered for a much longer
time, and quite possibly, for ever, with new texts.
But then, this is the truth about vocabulary! This
expectation is borne out by the actual observa-
tions in our experiment with 111 chunks of texts
depicted in Figure 1 and Figure 2. In Figure 1 we
have considered the proportion of distinct unseen
words (not base forms, however) to the total words
in each text chunk, and in Figure 2 it is the pro-
portion of distinct unseen rules to the total distinct
rules in each text chunk.

6 Experimental results

In Table 1 we present the quantitative summary of
observations in an experiment with a corpus of 111
news articles containing over 49,000 words in all.
These results cover only Phase I of the algorithm
described.

With Phase 1 processing only, about 77.28% of
the words are decomposed of which 65.4% are cor-
rect decompositions. Of the undecomposed words,
about 71% are actually root words that should not
be decomposed. Of the around 29% words that
should have been decomposed but were not, about
3% are compounds and we are not keen on decom-
posing anyway. In other words we missed about
26% (29 - 3) of possible decompositions.

On applying two simple criteria to eliminate in-
correct decompositions (point 5 in the algorithm),
viz., decompositions that have root frequencies 20
or higher (because bases occuring with too many
suffixes are very short words, usually one or two
letters, and match the leading portion of longer
words not related to them), and decompositions
that have suffix frequencies only a@ = 1, about
64% of the decompositions were retained. Of these
about 90.39% were correct decompositions. In the
36% decompositions that were discarded, less than
21% were correct decompositions. It should also
be noted that of the 90% correct decompositions,
12.5% are incomplete in that there were more than

70 T T T T T
L
60 j —
+

50,
$ol
s 40 e 7
E + + +
530 T T . i
o + + +
g Moo + +
R gk + ++ + o+ .

+ 4o+ +o L # +
o+ + 4
+ o+ H++ o4 R *Ht:j
+
10 h Lo+t s TR
+
0 1 1 1 1 1 X
0 20 40 60 80 100 120

text chunk #
Figure 1: New words from successive text chunks

100"t .

80 =+

2

%-age of new rules

0

60
. text chunk # .
Figure 2: New rules from successive text chunks

Total number of distinct words : 11450

Head Decomposition Filter
All Root freq < 20 | Root freq > 20 Suff freq = 1
Suff freq > 1 Suff freq > 1

Decompositions* 8849 5672 = 64.1% 548 = 6.2% | 2628 = 29.7%
Precision 65.40% 90.39%
Recall 79.51% 70.45%
Incorrect decompositions 34.8% 9.61% 79.20% 79.22%
Complete inflectional

suffix decompositions 41.5% 63.54% 13.32% 0.42%
Incomplete inflectional

suffix decompositions 7.35% 10.12% 1.28% 2.63%
Complete derivational

suffix decompositions 4.35% 6.61% 0.73% 0.49%
Incomplete derivational

suffix decompositions 0.57% 0.85% 0% 0.11%
Complete compound decompositions 7.76% 7.62% 5.29% 8.6%
Incomplete compound decompositions 3.55% 1.59% 0.18% 8.52%

* Percentages shown in this row are wrt total no. of decompositions

No of undecomposed entries: 2601 = 22.7% of total entries; Of these — Actual base words : 70.85%; Inflectional words :

Derivational words : 2%; Compounds : 3.15%

Table 1: Quantitative results with corpus size of 49000 words

23.95%;

two morphemes in the words some of which could
not be separated.

Intuitively the value of a should be low due to
the “conservative” way of identifying suffixes in
phase 1. In the experiment we have chosen a =
1 since while higher values only marginally im-
proved the precision, the recall was worse; for
a = 2 : precision = 91.76%, recall = 67.16% and
for @« = 3 : precision = 92.83%, recall = 65.11%.
The recall is likely to improve for larger corpus.
The choice of upper limit for the root fre-
quency is, on the other hand, less rigid. We

kept it 19. For a wvalue 18, precision =
90.53%, recall = 70.38%; for a value 20,
precision = 90.09%, recall = 70.60%; and for

a value 21, precision = 89.97%, recall = 70.60%.

6.1 Results from Linguistica

Upon running Linguistica ([14]) over the same
corpus of 11450 distinct words, the output re-
ported the analysis of only 6040 of the distinct
input words, i.e., 52.75%. In these 6040 analysis
the precision of decompositions is 92.05% (includ-
ing about 24% correct but incomplete decomposi-
tions), and the recall is 40.62%. If we consider the
fraction of the actual base words left rightly unde-
composed together with the fraction of the derived
words correctly decomposed, then this ezxtended
precision is 61.54%. In the results of our program,
when no filtering is done then the extended preci-
sion is 67.5%, and when decompositions with suffix
frequency 1 or base frequency above 19 are dis-
carded, then the extended precision is 77.45%.

7 Quality of decompositions

Among the linguistically correct decompositions,
our process leaves some decompositions incom-
plete, and also produces some “false” decomposi-
tions. An incomplete decomposition means detect-
ing only some of the multiple suffixes occurring in
sequence in a word. To reduce such cases the valid
suffix sequences in the language can be identified

and this knowledge can be used to (See Section 8),
say, break up suffixes identified by the basic algo-
rithm into valid suffix parts. The false decompo-
sitions, in general, may happen due to cases such
as

e both a and ab are valid words but b is not a
true “rule” in the language. We refer to this
case as “false rule”. An even more difficult
case is that b is a true rule in the language,
but not in the case of ab, i.e, ab is actually
not derived from a. We refer to this case as
“false decomposition”.

In the example presented earlier, the
rule /m obtained from the decomposition
kim = k + Im is a false rule. The decompo-
sition kr = k + r is a false decomposition.

e gb is a word and b is a known rule, but a
is not the “base” of ab. We shall refer to
this case as “false base”. Here, the difficult
case occurs when a is a valid word, but it has
nothing to do with the word ab. This too is a
case of “false decomposition”. In the exam-
ple presented earlier, the base brd obtained
from the decomposition brdlE = brd + IE
is a false base.

In short, we have the problem of unconfirmed de-
compositions (i.e., whether the base forms, rules
and decompositions are correct). To tackle this
problem of unconfirmed decompositions we com-
pute the probabilities that various entities, i.e.,
(base form, rule and decomposition) tuples are cor-
rect. For this, we assign a numeric “confirmation”
value to each entity. A higher confirmation value
of an entity indicates that it is more likely to be
correct, and it is updated as the system processes
more and more input. Qualitatively, we may apply
the following heuristics to obtain the confirmation
values of the entities:

e The rules and decompositions discovered in
phase 1 have a high confirmation value, since
the base forms assumed in that phase are ac-
tually present in the text.

e In phase 2 (where we discover base forms
and decompositions) the confirmation value
is low. Among such base forms and decom-
positions, the confirmation value is higher for
rules (suffixes) which are long, say at least
two consonants. Also, base forms identified
in phase 2 have higher confirmation values if
it participates in more such decompositions.

e The confirmation value of a decomposition
depends on the confirmation value of the
base forms and the rules that are involved.

8 Identifying suffix sequences

A language such as Assamese allows certain suf-
fixes to occur together in sequence in words. For
example, suffixes z,y and z may occur with a word
w as wrzy. These suffixes may or may not appear
in other arrangements. Identification of such se-
quences may help extract more linguistic informa-
tion about the words. To classify words using the
suffix characteristics, identification of valid suffix
sequences can help in obtaining a kind of canoni-
calization of the suffix characteristic of a word. For
example, if it is known that the suffix zzy is ac-
tually a sequence z, z,y, due to the words w and
wzzy being in a corpus we associate only the suffix
z with w and not zzy.

The following simple algorithm can be used to
identify valid suffix sequences in the language us-
ing the decompositions performed on the words in
the input corpus

1. Start from beginning of the lexicon sorted
in reverse alphabetical order. Let a string
variable sfz_seq contain a suffix sequence,
and n_sfz contain the number of suffix com-
ponents in sfzx_seq. Initially sfz_seq con-
tains the NULL string, n_s fx contains 0, and
next decomposition means the first decompo-
sition.

2. For the next decomposition encountered, say
wrzy = wrz + vy,

sfx_seq <y,
nsfr+1

3. Take the base of the decomposition, wzz,
and identify the entry for it in the subse-
quent part of the lexicon.

If the base appears as a decomposed
entry, say, wrz = wz + z, then

sfx_seq < “z7 + sfx_seq,
nsfr«nsfxr + 1

repeat this step 3 for the word wz.

Else (i.e., if the base appears as an un-
decomposed entry), then if n_sfz > 1
then record the contents of s fz_seq as a valid
sequence of suffixes.

In our current example suppose we find that
w is an undecomposed word in the lexicon.
So we obtain the suffix sequence z z y.

4. Go to step 2, unless the end of the lexicon is
reached.

In our experiment we have identified 488 sequences
of suffixes.

9 Word classification using affix
knowledge

We have carried out some experiments on classify-
ing words based on the suffixes that have been en-
countered. These classes should resemble the var-
ious known linguistic categories of words. A brief
account of our experiment is given below. Recall
that we have called the set of suffixes for a word
its characteristic. We consider suffixes that occur
with a frequency of 10 or more. There were 81
such suffixes.

1. Direct classification based on characteristics:
Form classes of words by exact matching of
respective characteristics. This leads to too
many classes of words, because in a corpus
many words are likely to occur only with a
subset of the set of linguistically valid suffixes

for it. Our analysis forms the characteristic
for a word on the basis of the suffixes that
have been found with the word in that cor-
pus. So if different words of the same linguis-
tic category have different subsets of suffixes
in the corpus, they are classified into differ-
ent categories.

. Identifying subsets of characteristics: One
attempt to overcome the drawback of the
above method is to assume that at least some
words from each true linguistic category will
occur with all or almost all valid suffixes for
that category. This implies that the charac-
teristics of all words which are actually of the
same linguistic category will be subset of the
characteristic of the word which has occurred
with all possible suffixes. For example, w oc-
curs with all possible suffixes for its linguistic
category, and p and ¢ with two different sub-
sets of the suffixes with w. Then the char-
acteristics of p and ¢ will be subsets of the
characteristic of w. Thus we classify w, p and
q into the same class. Also note that after a
characteristic (e.g., of p) has been found to
be a subset of another (e.g., of w), other char-
acteristics are not tested for being its (i.e.,
characteristic of p) subset. It turns out that
words that occur with very few suffixes falls
in more than one class. This is because in
Assamese there are some suffixes that occur
with words of multiple linguistic categories.

. Classification based on Closures of charac-
teristics: The drawback of the idea of sub-
sets described above is that for a linguis-
tic category hardly any word occurs with all
valid suffixes for that class. To overcome
this we modified the idea to synthesize the
master characteristic of each linguistic cat-
egory by taking union of its tentative sub-
sets that have occurred. We have called this
synthesized master characteristic, a closure.
To compute a closure we decide on a pos-
itive number k& which we call the degree of

closure. We start by selecting the largest of
all characteristics, and assume that it is the
closure. Then sequentially for each remain-
ing characteristic, ¢, we determine if ¢ has at
least k elements common with the closure or
c has less than k elements which are all com-
mon with the closure. If so, we update the
closure by taking its union with ¢. If dur-
ing one pass of such testing of characteristics
the closure actually gets updated, we have to
perform another pass considering the char-
acteristics that failed the test in the previ-
ous pass(es). This continues till the closure
is not updated in a particular pass. Then
we proceed to generate another closure by
starting with the largest characteristic from
among the ones not included in the previous
closures. Higher degree of closure leads to
more categories to be identified. In our ex-
periment, closure degree of 3 has resulted in
5 categories of words.

. Classification based on mutual exclusion of

suffizes: Another observation in this regard
is that while there are certain suffixes that
apply to words of multiple linguistic cate-
gory, there are other suffixes which are spe-
cific to certain such categories. So we have
tried another idea. In this, for each suffix s,
we find out the set of suffixes which have oc-
curred together with s by scanning through
all the characteristics. This implies that for
the remaining suffixes there is no evidence
that they occur in the linguistic category
where s applies. That is, they are excluded by
s. Hence we partition the set of characteris-
tics into two: one with characteristics which
contain any suffix excluded by s, and another
with the remaining characteristics. However,
our experiment using this approach has so
far produced too many categories of words.
Though these categories do not very much
map to the known linguistic categories, still
it leads us to consider, what we might call

hierarchical classification of words.

Classification of words based on characteristics is
likely to work better for linguistic categories that
take more suffixes. Some of the problems faced
in such classification is due to certain words be-
ing actually of multiple linguistic categories (word
sense ambiguity). In Assamese this is compara-
tively rare, though not altogether absent. For ex-
ample, kar in one sense means “tax” (a noun) and
in another it means “do” (verb imperative).

10 Conclusion

We have presented results of on-going unsuper-
vised morphology learning experiments in As-
samese, an Indic language. There are no published
computational linguistic work in Assamese. There
is no available corpus, and we had to build one for
our experiments. There is not even one electronic
dictionary in Assamese. Our work is preliminary,
but with sufficient potential for the future.

References

[1] Shwartz, Steven C., 1986. Applied Natural Lan-
guage Processing. Petrocelli Books, Princeton,
New Jersey

[2] Rich, Alaine and Knight, Kelvin, 1991. Arti-
ficial Intelligence, 2e. Tata McGraw-Hill Pub-
lishing Company Limited, New Delhi

[3] Allen, James, 1995. Natural Language Under-
standing, 2e. The Benjamin/Cummings Pub-
lishing Company Inc., Redwood City

[4] Bora, Satyanath, 1968. bahal byaakaran.
Jnananath Bora, Guwahati

[6] Goswami, Golokchandra, 1990. asamiyaa
byaakaranar moulik bisaar. Bina Library,

Guwahati

[6] Choudhury, Bhupendranath, 18e,
1973. asamiyaa bhaashaar byaakaran, pratham
bhaag. Lawyer’s Book Stall, Guwahati

[7] Sarma, Durgashankar Dev, 1977. sahaj
byaakaran. Assam State Textbook Production
and Publication Corporation Ltd., Guwahati-1

[8] Baruah, Hemchandra, 1985 Hem Kosha, 6e.
Hemkosh Prakashan, Guwahati

[9] Verma, Shyamji Gokul, 1981. Maanak Hindi
Byaakaran Tatha Rachnaa. Arya Book Depot,
New Delhi-5

[10] Whitney, William Dwight, 1977. Sanskrit
Grammar. Motilal Banarasidass, Delhi.

[11] Whitney, William Dwight, 1979. Roots, Verb
Forms and Primary Derivatives of the Sanskrit
Language. Motilal Banarasidass, Delhi.

[12] Gabor Proszeky
and Balazs Kis, “A Unification-based Approach
to Morpho-syntactic Parsing of Agglutinative
and Other (Highly) Inflectional Languages”.
ACU99 37th Annual Meeting of the Association
of Computational Linguistics

[13] Bharati, Akshar, Chaitanya, Vineet and San-
gal, Rajeev, 1995 Natural Language Processing
- A Paninian Perspective. Prentice-Hall of In-
dia Pvt Ltd., New Delhi

[14] Goldsmith, John, “Unsupervised Learning of
the Morphology of a Natural Language” Com-
putational Linguistics, 27:2 (2001), pp 153-193,
Association of Computational Linguistics

[15] Kazakov, Dimitar, “Unsupervised Learning of
Naive Morphology with Genetic Algorithms”
Workshop Notes of the ECML/MLnet Work-
shop on Empirical Learning of Natural Lan-
guage Processing Tasks, pp 105-112, April 26,
1997, Prague, Czech Republic

