WORD-ORDER RELAXATIONS & RESTRICTIONS
WITHIN A DEPENDENCY GRAMMAR

Martin Platek Tomas Holan Karel Oliva
Vladislav Kubon OeFAI
Faculty of Mathematics and Physics Schottengasse 3
Charles University, Prague, Czech Republic A-1010, Wien, Austria,
platek@ksi.mff.cuni.cz, holan@ksvi.mff.cuni.cz karel@ai.univie.ac.at

vkQufal.mff.cuni.cz

Abstract
This paper presents some new results on relaxations and restrictions of word-order within dependency
grammar (DG). The notions of dependency and word-order are separated in order to obtain an infinite
scale of classes of gradually relaxed languages, starting with the context-free class. A linguistically
motivated type of grammars, the proper DGs, is defined. At the end, the paper discusses the relevance
of degree of word-order relaxation for parsing complexity.

1 Introduction and basic notions

This paper is a substantially shortened version of the technical report [3], where all the details (incl.
motivations, formal background, proofs, etc.) are to be found. This technical report is a continuation
of papers [1], [2] (linguistic issues) and [4] (formal considerations).

The notion of word-order relaxation within a dependency grammar (DG) means that besides the
usual (projective) interpretations of a dependency grammar other (non-projective) interpretations are
also considered. A possible approach is put forward in the following definitions.

Definitions. A dependency grammar (DG) is a tuple G = (T, N, S, P), where T is the set of
terminals, IV is the set of nonterminals, V = NUT, S; C N is the set of starting symbols, and P is
the set of rewriting rules in the following forms:

a) A —»x BC, where Ae N, B,C €V, X € {L,R} b) A— B, where A€ N,BeV.

The letter L (R) in the subscripts of the rules of the type a) means that the first (second) symbol
on the right-hand side of the rule is considered dominant, and the other dependent.

If a rule has only one symbol on its right-hand side, we consider this symbol to be dominant.

For a reduction, a rule is applied as follows: the dependent symbol (if any) is deleted and the
dominant one is rewritten by the symbol occurring on the left-hand side. The rules A — BC,
A — g BC can be applied for a reduction of a string z for any of the occurrences of symbols B, C' in
z, where B precedes C in z (not necessarily immediately).

The reduction history is recorded in a DR-tree (delete-rewrite-tree). For a grammar G and a string
w, this tree is obtained by interpreting the rules of the grammar as local trees (trees of depth one)
from which the DR-tree is then combined, cf. Fig. 1. The direction of the edge connecting the node
with its mother reflects the nature of the daughter: if the daughter is dominant, the edge is vertical,
if it is dependent, the edge is oblique.

The notion of DR-tree Tr over a string can be understood also as a derivation of a dependency

tree (D-tree) dT'(T'r). Such a D-tree is achieved by collapsing each strictly vertical path (sequence

of vertical edges) into a single node marked by the terminal symbol from the bottom of this path,
and by keeping the oblique edges intact (this means that all edges in any D-tree are oblique) For a
clarifying example, cf. Fig.1. Note that both kinds of trees can contain crossing edges. Note also
that the number of crossings in a D-tree must be less than or equal to the number of crossings in the
respective DR-tree; in fact, it is even possible to have a DR-tree with crossing branches inducing a
D-tree without any crossing.

Example 1. Let G = (Ty,Ni,{A:}, P1), Ty = {a1,a2,b1,b2}, Ny = {A,Ay,B1,B2}, P, =
{A1 2R a1B1,By =1 b1 Ay, Ay =g asBs, Bo — 1, baAq|ba}.
The left part of Fig.1. displays a DR-tree T'r parsed by G for the input sentence ajaia2a2b1b2b1bs.

Ay
B,
As
B,
Aq by
By b
2 b1
T %
ap ar Gz a2 by by by by ay ap Gz Q2

Figure 1: DR-, D-tree on aja;asasbibabiby

The right part of Fig. 1. displays the D-tree dT'r contracted from Tr.

Definitions. For the purpose of definition of coverage, let us first associate each terminal symbol
within a string with a number marking its position counted from left, and call this number the
horizontal index of the terminal symbol.

For any node u of a tree T'r, we shall define its coverage Cov(u,Tr) as the set of horizontal indices
of all terminal nodes from which a bottom-up path leads to u.

Let there be a node u of a DR-tree (D-tree) T'r such that Cov(u,Tr) = {i1,iz,...,in}, i1 <
Q2...ip—1 < ip, 1 < j < mnandijy —i; > 1. We say that the pair (i;,4;4+1) forms a gap in the
Cov(u,Tr) (or that the Cov(u,T'r) contains the gap (i;,%;41)).

Let Tr be a DR-tree (D-tree), u be a node of Tr, and Cov(u,Tr) its coverage. The symbol DR-
Ng(u,Tr) (D-Ng(u,Tr)) represents the number of gaps in Cov(u,Tr).

DR-Ng(Tr) (D-Ng(T'r)) denotes the maximum from {DR-Ng(u,Tr); u € Tr} ({D-Ng(u,Tr); u € Tr}).
We say that DR-Ng(Tr) (D-Ng(Tr)) is the node-gaps complexity of Tr.

A tree is projective if the number of gaps of any its node is equal to 0 (zero). If this is not so, the
tree is non-projective. In order to measure non-projectivity we use the measures DR-Ng or D-Ng.

Example 2. We stick to the DR-tree T'r from the previous example. The coverages of non-terminal
nodes are (in the top-down order) as follows: {1,2,3,4,5,6,7,8}, {2,3,4,5,6,7,8},{2,3,4,6,7,8}
{2,4,6,7,8}, {2,4,7,8}, {4,7,8}, {4,8}, {8}. Hence DR-Ng(T'r) = 2, because the number of gaps in
the coverages does not exceed 2, and, e.g., {2,4,6, 7,8} contains the gaps (2,4), (4,6).

Observation. It holds that any D-tree which is contracted from a projective DR-tree is a projective
D-tree, but there are certain types of non-projective DR-trees which are contracted into projective
D-trees. Some of them are linguisticaly inadequate. This observation leads to the following definition.

Definition. A DG G is called a proper DG if for any projective D-tree dTr generated by G there
exists a projective DR-tree Tr generated by G such that dT'r = dT(Tr).

Example 3. Let us choose a DG Gy, in the following way: Gpr; = (T,N,{C}, P), where T =
{a,b,e,d}, N={A,B,C}, P={A -, Bb,B =1, Cc,C -, Aa,C — d}.

We have shown in [4] that G, is not a proper grammar. Namely it generates only projective (very
simple) D-trees of depth 1, and on the other hand it generates a language, which is not context-free,

thus it generates an infinite set of words corresponding to nonprojective DR-trees.

The previous definition embodies a substantial empirical claim, namely that all DGs of a natural
language have to fall into the class proper grammars - i.e. the claim that grammars which lie outside
this class are not linguistically adequate.

Second, as said above, we need mechanisms for expressing language-particular constraints on word-
order, in particular constraints on number of gaps within a subtree (or local subtree) headed by word
of a certain category. These constraints can be expressed easily as follows:

Definitions. Let G = (T, N, P,S) be a DG, and Cs be a set of gap restrictors, i.e. pairs of the
shape [A4,], where A € N and i € NatU {0}. Then we say that the pair Gos = (G, C's) is a restricted
DG (RsD-grammar, RsDG), and if G is a proper grammar we say that Gos = (G, Cs) is a restricted
proper DG (prop-RsDG). Any pair [A,i] € Cs expresses the constraint that only such DR-trees are
well-formed according to the RsD-grammar G¢; in which the value of the measure DR-Ng of any of

their covering subtrees with the root-symbol A is less or equal to i.

Let i € (Nat U {0} U {x}) and let us assume that % is greater than any natural number. Then, for
a (fixed) Cs and for a (fixed) string w we define the following:

DR-T(w,G¢s,t) is the set of DR-trees generated by G over w such that the value of the measure
DR-Ng does not, exceed ¢ for them, and at the same time the constraints from Cs are met for them
(in the above sense). For i = x only the constraints Cs are imposed on the set of DR-trees generated
by G over w.

DR-L(G¢s,i) = {w| DR-T(w,Gcs,1) # 0}.

DR-L(7) denotes the class of languages DR-L(G¢s,1), for all RsDG’s Gcs.

DR-prop-L(i) denotes the class of languages DR-L(G¢s,1), for all proper RsDG’%s G¢is.

For D-trees, the classes D-L(i) and D-prop-L(i) can be defined in a similar way.

Mind here the important difference in the nature of the two kinds of constraints. The first kind
is a constraint which has to hold for the a tree globally (i.e. for all nodes of the tree). The gap
restrictors are constraints which hold only for any (covering, induced) subtree of a node which is of
certain category. We need to use both types of constrains in order to achieve the results on hierarchy.

Definition. Let CF* be the set of context free languages without empty string. Let us take
L e CF" and k € {0} U Nat. We shall say that L has the degree of DR-relaz-ability k (DRL(L) = k)
if there exists a RsDG GS such that
a) DR-L(GS,0) = L, and
b) DR-L(GS,i) ¢ DR-L(i — 1), for i € {1,2,...,k}, and DR-L(GS, k) = DR-L(GS,k + j) for any
j € Nat.

We shall also say that the grammar G'S has the degree of DR-relaz-ability k (DRS(GS) = k).

2 Results

Propositions. The following holds:

a) CF+ = DR-£(0) = DR-prop-L£(0)

b) For any j € Nat there exists a prop-RsDG Gp; such that j = DRS(Gp;).

¢) DR-L£(0) C DR-L(1) C ... C DR-L(n)... C DR-L(x)

d) DR-prop-L£(0) C DR-prop-L(1) C ... C DR-prop-L(n)... C DR-prop-L(x).

The proposition b) was shown in [3]. The propositions c) and d) are considered as its consequences
there. The proposition c) was shown independently already in [4] by using a sequence of improper
grammmars similar to the grammar from Example 3.

The previous considerations are connected with parsing complexity through the concept of coverage.
Some results concerning this topic are given in the following:

Proposition. Let us denote Natt = {0} U Nat. To any RsDG GS there exists a (sequential)
algorithm Am computing for any string w an i € Natt, such that i is the smallest element of Nat*
for which w € DR-L(GS, 1), or, if such an 7 does not exist, returning a message about the fact that
w ¢ L(GS,*). Moreover, for a given i € Natt Am recognizes the membership w € L(GS,i) in a
polynomial time, where the degree of the polynomial increases with .

Consequences. There exists a sequential algorithm such that for any 4 € Natt and any L € DR-
L(i), the algorithm recognizes L in a polynomial time, where the degree of the polynomial increases
with i. There exists a sequential algorithm recognizing any L € D-prop-£(0) in a polynomial time.

Remark. We believe that there exists an 4 € Natt for which there does not exist an algorithm
recognizing every language from D-L(7) in a polynomial time. We have even the suspicion, due to the
results from [4], that this ¢ can be equal to 0. Further we conjecture that there exists a sequential
algorithm recognizing any L €D-prop-L(i) for any natural i in a polynomial time. We will try to

prove this in the future.

Acknowledgement

This work has been supported in part by the grant of GACR No. 201/99/0236 and by the grant of
Fonds zur Foerderung der wissenschaftlichen Forschung, No. P13224 to OeFAIL OeFATI is supported
by the Austrian Federal Ministry of Education, Science and Culture.

References

[1] T. Holan, V.Kubon, K.Oliva, M.Platek. Two Useful Measures of word-order Complexity. In: Pro-
ceedings of the Coling "98 Workshop ” Processing of Dependency-Based Grammars”. A. Polguere
and S. Kahane (eds.), University of Montreal, Montreal, 1998, pp. 21-28.

[2] T.Holan, V.Kubon, K.Oliva, M.Platek. On Complezity of word-order. In: Traitement automa-
tique des langues (T.A.L.), Vol. 41, No 1, 2000, pp. 243-267.

[3] M.Platek, T.Holan, K.Oliva, V.Kuboii. Word-Order Relazations and Restrictions within a De-
pendency Grammar. Tech. Report TR-2001-02, MFF UK, Praha, 2001.

[4] M.Platek, T.Holan, V.Kubon. On Relaz-ability of Word-Order by D-grammars. In: Combina-
torics, Computability and Logic. C.S. Calude and M.J. Deneen (eds.), Springer Verlag, Berlin,
2001, pp. 159-174.

