
ON SPECIALISED COMPILATION OF RULES IN

UNIFICATION GRAMMARS

Liviu Ciortuz

Computer S
ien
e Department

University of York

Heslington, York, YO10 5DD, UK

iortuz�
s.york.a
.uk

One
entral
on
ept in our approa
h to
ompiled parsing with feature-based uni�
ation grammars in

the Light system [2℄ is the spe
ialised
ompiled form of rules, whi
h is obtained via transformation of

the abstra
t
ode generated by the OSF AM [1℄ for rules represented as feature stru
tures.

Like Amalia [10℄, the Light system has spe
ialised abstra
t instru
tions to implement the (
om-

piled) parsing. But the parser we implemented for Light is signi�
antly more general than that in

Amalia: 1. it is a head-
orner bottom-up
hart-based parser (Amalia's parser is a simple bottom-up

hart-based one); 2. it uses feature stru
ture (FS) sharing to save spa
e and time needed for parsing;

3. it also integrates the so-
alled qui
k-
he
k te
hnique [7℄ to redu
e the uni�
ation time for rule

arguments, while bene�ting from statisti
s results
omputed on test suites. We brie
y present here

the �rst optimisation mentioned above. The se
ond optimisation is presented in detail in [3℄, while

the third one makes the obje
t of the [4℄ paper.

Spe
ialised
ompilation design for uni�
ation grammar rules in Light must be done in su
h a way

that their appli
ation be suitable and eÆ
ient for the a
tive bottom-up
hart-based head-
orner pars-

ing [6℄.

1

Compared to the general setup of
ompiled uni�
ation of feature stru
tures, spe
ialised

ompilation of rules adds an important \ingredient": the in
remental treatment of rules' arguments,

i.e. interleaving arguments' pro
essing with (parsing-oriented)
ontrol operations.

The te
hnique we
hose in order to obtain the spe
ialised
ompiled form of rules | assuming that

they are represented as feature stru
tures | is program transformation. Starting from the abstra
t

ode delivered by the OSF/Light AM
ompilation of the feature stru
ture representing a rule in

\program"mode, we will upgrade it with spe
ialised
ontrol sequen
es for the rule's appli
ation. Thus,

our spe
ialised rule
ompilation task
onsists mainly in de�ning spe
ialised
ontrol instru
tions , and

simple transformation a
tions on the abstra
t
ode. When exe
uted, these a
tions basi
ally insert into

abstra
t
ode
ertain sequen
es of
ontrol instru
tions. These
ontrol instru
tions will trigger (from

within the parser) the uni�
ation of rule arguments (with feature stru
tures asso
iated to passive

items) and the
onstru
tion of the rule's mother/LHS feature stru
ture.

In Light AM there are two possible appli
ation modes for (
ompiled) grammar rules:

| the key mode: unify the rule's key argument with the feature stru
ture
orresponding to a passive

item.

2

If su

ess is reported, then the needed
oreferen
es (more pre
isely: the values of the abstra
t

1

To di�erentiate the notion of head in HPSG from that used for head-
orner parsing, we adopt the
onvention

proposed by LinGO developers to use the term key instead of head for parsing, therefore in the sequel we will use the

terminology key-
orner parsing. The notion of head will be reserved for HPSG/linguisti
s usage.

2

All lexi
al items are passive items; non-lexi
al passive items are obtained during the parsing pro
ess, as shown in

ma
hine's X registers whose indi
es are
oreferen
es) and the
hanges made on the heap during

uni�
ation are saved in a newly
reated environment. The index of this new environment, stored in

the register E will be transmitted to the parser, and it will re
ord E's value in a newly
reated a
tive

item;

| the
omplete mode (only for non-unary) rules: restore the environments
orresponding to the

already parsed/instantiated arguments of the rule and unify one of the \a
tive" (i.e., not yet instanti-

ated/parsed) rule arguments with the feature stru
ture
orresponding to a passive item. If uni�
ation

su

eeds, then a new environment is
reated as above; moreover, if after su

essful uni�
ation the

argument list is exhausted, then a feature stru
ture
orresponding to the left hand side (LHS) of the

rule is
onstru
ted on the heap, and a passive item is registered on the
hart, otherwise we register an

a
tive item. If uni�
ation fails, then the
hanges done on the heap during argument uni�
ation will

be undone.

The swit
h between the two possible modes for rule appli
ation is done by examining the register

E when
alling for the rule's appli
ation. It will be -1 for the key mode. When applying a binary rule

in the
omplete mode, E will store the index of the environment
orresponding to the key argument.

Remark: In order-sorted (i.e., inheritan
e based) feature grammars, the distin
tion between the two

main operations `s
an' and `
omplete' (by whi
h the input string is
onsumed) is no longer possible,

sin
e the root sort of the arguments in the RHS of a rule
an have | and in HPSG usually have! |

as subsorts both lexi
al (i.e., terminal) symbols and phrase (i.e., non-terminal) symbols. It is often

the
ase that arguments in the rules' RHS in lexi
alized grammars like HPSG are sort-underspe
i�ed

(usually sign- or even Top-sorted), be
ause 1. the aim of building su
h grammars is to
ome up with

a very limited number of rules (or better: rule s
hemata) and 2. their sele
tion during parsing is

determined mainly by
he
king the satis�ability of the asso
iated feature
onstraints. This makes

impossible/impra
ti
al the predi
tion (of the symbol to be tried/parsed next) as usually de�ned in

the parsing theory. Therefore, apart from a

epting here the head-
orner item dedu
tion (as given

by the uni�
ation grammar parsing s
hemata in [9℄), we override here the term
omplete, and make

it generalise both the `s
an' and `
omplete' notions as de�ned for instan
e in [9℄.

Note that in
ertain
onditions, saving the trail in a new environment may be postponed. The

spe
ialised
ompilation of rules in the
urrent implementation of Light AM is limited to binary and

unary rules sin
e LinGO [5℄ | the large-s
ale HPSG grammar for English implemented at CSLI,

University of Stanford | demonstrated that binary rules are perfe
tly
onvenient for expressing

sophisti
ated HPSG knowledge. Generalisation to rules of arbitrary length is not diÆ
ult. (Our

system
ould however deal with arbitrary long rules, in a version that
ompiles rules as ordinary

feature stru
tures.) In the sequel, when not otherwise expli
itly stated, we will refer to binary rules,

be
ause their treatment is of
ourse more elaborated than that of unary rules.

Te
hni
ally, for the spe
ialised
ompilation of a rule via program transformation a new feature

KEY-ARGS is introdu
ed, and its value will be a list obtained from the rule's arguments (ARGS) list

simply by dupli
ating it (i.e., by
oreferring the elements) and then moving the key argument on the

�rst position. The feature stru
ture des
ribing a rule has to satisfy the following two well-formedness

onditions: i: the KEY-ARGS feature is the �rst one among those asso
iated to the rule's root, and

ii: every
oreferen
e has all asso
iated (sort and feature)
onstraints listed at its �rst o

urren
e. Note

that the �rst well-formedness
ondition stated above ensures the partitioning of the abstra
t
ode into

the sequel.

the areas ARG1, ARG2, and LHS (all having both \read" and \write" parts), while the se
ond one

allows the removal of the LHS-read area in (the program transformation pro
ess that will produ
e)

the new
ompiled form of the rule.

In the
ase of a binary rule, it is exa
tly at the slots S1, ..., S6 delimiting the areas ARG1, ARG2,

and LHS in the two-stream OSF abstra
t
ode of the rule's feature stru
ture that
ontrol sequen
es

for doing parsing with this rule will be pla
ed. Newly designed abstra
t instru
tions | saveEnv and

restoreEnv are used at/by the
ontrol sequen
es pla
ed (via abstra
t
ode transformations) at the slot

pla
es S1, ..., S6. An environment is a
ouple of i: a set of indi
es
orresponding to
oreferen
ed X

variables, together with their values (whi
h represent indi
es/addresses of heap
ells) and ii: a trail

opy that registers the
hanges done on the heap during uni�
ation.

3

Also, environments will in
lude

information useful for the (
ompiled form of) qui
k-
he
k �ltering.

Example: Consider the next vp rule inspired by [9℄.

Its non-spe
ialised (OSF) abstra
t
ode
an be easily get following

the guidelines in [1℄, while its spe
ialised
ompiled form in Light is

given in below.

vp

[ARGS < verb

[HEAD #1,

OBJECT #3:np,

SUBJECT #2:sign ℄,

#3 >,

HEAD #1,

SUBJECT #2 ℄

vp: set
orefs, { 3, 4, 5 }

ond E != -1, jump R3

R0: % ARG1 %S1

set X[2℄, Q

interse
t_sort X[2℄, verb

test_feature X[2℄, HEAD, X[3℄, 3, W3, verb

R1: test_feature X[2℄, OBJECT, X[4℄, 3, W4, verb

interse
t_sort X[4℄, np

R2: test_feature X[2℄, SUBJECT, X[5℄, 3, W5, verb

jump W6 %S2

R3: % ARG2

restoreEnv E %S3

ond unify(X[4℄, Q) = FALSE, Failure

R5:jump W0

W3: % ARG1 %S4

push_
ell X[3℄

set_feature X[2℄, HEAD, X[3℄

write_test 3, R1

W4: push_
ell X[4℄

set_feature X[2℄, OBJECT, X[4℄

set_sort X[4℄, np

write_test 3, R2

W5: push_
ell X[5℄

set_feature X[2℄, SUBJECT, X[5℄

W6: saveEnv
orefs %S5

jump W8 %

% ARG2

W0: % LHS

saveEnv NULL %S6

set Q, H %

W1: push_
ell X[0℄

set_sort X[0℄, vp

W7: set_feature X[0℄, HEAD, X[3℄

set_feature X[0℄, SUBJECT, X[5℄

W8:

Apart from the (basi
) fa
t that the parsing
ontrol instru
tions repla
e the KEY-ARGS list-

oriented stu� at the
ontrol slots other transformations are done: 1. The LHS-read part is deleted,

sin
e it is no longer needed: on
e the two arguments unify (with two
ertain feature stru
tures

represented on the abstra
t ma
hine's heap), we have to built/write the LHS feature stru
ture; no

\read" a
tion is any longer needed. For the same reason, the write test instru
tions are eliminated from

3

A
tually, the trail
ontent will be saved in the (
orresponding part of an) environment in a
ompressed form.

the LHS-write area. 3. The ARGS feature is \dis
arded" i.e., not
reated in the LHS
ode.

4

Other,

interesting details on this abstra
t program transformation s
hema for parsing rules in uni�
ation

grammars are provided in [3℄.

This strategy of spe
ialised
ompilation of rules in Light provided us a fa
tor of speeding up of 2.75

on the test suite provided by the CSLI, University of Stanford for the LinGO grammar.

This paper was written while the author was supported by an EPSRC grant in the framework of

the ROPA proje
t at the Computer S
ien
e Department of the University of York. The
on
eption

and implementation side of the work here reported was done while the author worked at the LT Lab

of the German Resear
h Center for Arti�
ial Intelligen
e (DFKI) in Saarbr�u
ken, Germany, and he

would like to express here his gratitude for the possibility he had to develop the Light system there.

Referen
es

[1℄ H. A��t-Ka
i and R. Di Cosmo. Compiling order-sorted feature term uni�
ation. Te
hni
al

report, Digital Paris Resear
h Laboratory, 1993. PRL Te
hni
al Note 7, downloadable from

http://www.isg.sfu.
a/life/.

[2℄ L.-V. Ciortuz. S
aling up the abstra
t ma
hine for uni�
ation of OSF-terms to do head-
orner

parsing with large-s
ale typed uni�
ation grammars. In Pro
eedings of the ESSLLI 2000 Work-

shop on Linguisti
 Theory and Grammar Implementation, pages 57{80, Birmingham, UK, August

14{18, 2000.

[3℄ L.-V. Ciortuz. Compiling HPSG into C. Resear
h report, The German Resear
h Center for

Arti�
ial Intelligen
e (DFKI), Saarbrue
ken, Germany, and the Computer S
ien
e Department,

University of York, UK, 2001. (In preparation).

[4℄ L.-V. Ciortuz. On
ompilation of the Qui
k-Che
k �lter for feature stru
ture uni�
ation. In

Pro
eedings of the IWPT 2001 International Workshop on Parsing Te
hnologies, Beijing, China,

O
tober 17{19, 2001.

[5℄ A. Copestake, D. Fli
kinger, and I. Sag. A Grammar of English in HPSG: Design and Imple-

mentations. Stanford: CSLI Publi
ations, 1999.

[6℄ M. Kay. Head driven parsing. In Pro
eedings of Workshop on Parsing Te
hnologies, Pittsburg,

1989.

[7℄ R. Malouf, J. Carroll, and A. Copestake. EÆ
ient feature stru
ture operations without
ompila-

tion. Journal of Natural Language Engineering, 6 (1) (Spe
ial Issue on EÆ
ient Pro
essing with

HPSG):29{46, 2000.

[8℄ C. Pollard and I. Sag. Head-driven Phrase Stru
ture Grammar. Center for the Study of Language

and Information, Stanford, 1994.

[9℄ N. Sikkel. Parsing S
hemata. Springer Verlag, 1997.

[10℄ S. Wintner and N. Fran
ez. EÆ
ient implementation of uni�
ation-based grammars. Journal of

Language and Computation, 1(1):53{92, 1999.

4

This omission is supported by the Lo
ality Prin
iple in the HPSG theory [8℄, and is adopted in the Light setup, as

it was implemented in the other LinGO-parsing systems.

