ON SPECIALISED COMPILATION OF RULES IN
UNIFICATION GRAMMARS

Liviu Ciortuz
Computer Science Department
University of York
Heslington, York, YO10 5DD, UK

ciortuz@cs.york.ac.uk

One central concept in our approach to compiled parsing with feature-based unification grammars in
the Light system [2] is the specialised compiled form of rules, which is obtained via transformation of
the abstract code generated by the OSF AM [1] for rules represented as feature structures.

Like AMALIA [10], the Light system has specialised abstract instructions to implement the (com-
piled) parsing. But the parser we implemented for Light is significantly more general than that in
AMALIA: 1. it is a head-corner bottom-up chart-based parser (AMALIA’s parser is a simple bottom-up
chart-based one); 2. it uses feature structure (FS) sharing to save space and time needed for parsing;
3. it also integrates the so-called quick-check technique [7] to reduce the unification time for rule
arguments, while benefiting from statistics results computed on test suites. We briefly present here
the first optimisation mentioned above. The second optimisation is presented in detail in [3], while
the third one makes the object of the [4] paper.

Specialised compilation design for unification grammar rules in Light must be done in such a way
that their application be suitable and efficient for the active bottom-up chart-based head-corner pars-
ing [6].1 Compared to the general setup of compiled unification of feature structures, specialised
compilation of rules adds an important “ingredient”: the incremental treatment of rules’ arguments,
i.e. interleaving arguments’ processing with (parsing-oriented) control operations.

The technique we chose in order to obtain the specialised compiled form of rules — assuming that
they are represented as feature structures — is program transformation. Starting from the abstract
code delivered by the OSF/Light AM compilation of the feature structure representing a rule in
“program” mode, we will upgrade it with specialised control sequences for the rule’s application. Thus,
our specialised rule compilation task consists mainly in defining specialised control instructions, and
simple transformation actions on the abstract code. When executed, these actions basically insert into
abstract code certain sequences of control instructions. These control instructions will trigger (from
within the parser) the unification of rule arguments (with feature structures associated to passive
items) and the construction of the rule’s mother/LHS feature structure.

In Light AM there are two possible application modes for (compiled) grammar rules:

— the key mode: unify the rule’s key argument with the feature structure corresponding to a passive

item.? If success is reported, then the needed coreferences (more precisely: the values of the abstract

ITo differentiate the notion of head in HPSG from that used for head-corner parsing, we adopt the convention
proposed by LinGO developers to use the term key instead of head for parsing, therefore in the sequel we will use the
terminology key-corner parsing. The notion of head will be reserved for HPSG/linguistics usage.

2All lexical items are passive items; non-lexical passive items are obtained during the parsing process, as shown in

machine’s X registers whose indices are coreferences) and the changes made on the heap during
unification are saved in a newly created environment. The index of this new environment, stored in
the register E will be transmitted to the parser, and it will record E’s value in a newly created active
item;

— the complete mode (only for non-unary) rules: restore the environments corresponding to the
already parsed/instantiated arguments of the rule and unify one of the “active” (i.e., not yet instanti-
ated/parsed) rule arguments with the feature structure corresponding to a passive item. If unification
succeeds, then a new environment is created as above; moreover, if after successful unification the
argument list is exhausted, then a feature structure corresponding to the left hand side (LHS) of the
rule is constructed on the heap, and a passive item is registered on the chart, otherwise we register an
active item. If unification fails, then the changes done on the heap during argument unification will

be undone.

The switch between the two possible modes for rule application is done by examining the register
E when calling for the rule’s application. It will be -1 for the key mode. When applying a binary rule
in the complete mode, E will store the index of the environment corresponding to the key argument.

Remark: In order-sorted (i.e., inheritance based) feature grammars, the distinction between the two
main operations ‘scan’ and ‘complete’ (by which the input string is consumed) is no longer possible,
since the root sort of the arguments in the RHS of a rule can have — and in HPSG usually have! —
as subsorts both lexical (i.e., terminal) symbols and phrase (i.e., non-terminal) symbols. It is often
the case that arguments in the rules’ RHS in lexicalized grammars like HPSG are sort-underspecified
(usually sign- or even Top-sorted), because 1. the aim of building such grammars is to come up with
a very limited number of rules (or better: rule schemata) and 2. their selection during parsing is
determined mainly by checking the satisfiability of the associated feature constraints. This makes
impossible/impractical the prediction (of the symbol to be tried/parsed next) as usually defined in
the parsing theory. Therefore, apart from accepting here the head-corner item deduction (as given
by the unification grammar parsing schemata in [9]), we override here the term complete, and make
it generalise both the ‘scan’ and ‘complete’ notions as defined for instance in [9].

Note that in certain conditions, saving the trail in a new environment may be postponed. The
specialised compilation of rules in the current implementation of Light AM is limited to binary and
unary rules since LinGO [5] — the large-scale HPSG grammar for English implemented at CSLI,
University of Stanford — demonstrated that binary rules are perfectly convenient for expressing
sophisticated HPSG knowledge. Generalisation to rules of arbitrary length is not difficult. (Our
system could however deal with arbitrary long rules, in a version that compiles rules as ordinary
feature structures.) In the sequel, when not otherwise explicitly stated, we will refer to binary rules,
because their treatment is of course more elaborated than that of unary rules.

Technically, for the specialised compilation of a rule via program transformation a new feature
KEY-ARGS is introduced, and its value will be a list obtained from the rule’s arguments (ARGS) list
simply by duplicating it (i.e., by coreferring the elements) and then moving the key argument on the
first position. The feature structure describing a rule has to satisfy the following two well-formedness
conditions: i. the KEY-ARGS feature is the first one among those associated to the rule’s root, and
ii. every coreference has all associated (sort and feature) constraints listed at its first occurrence. Note

that the first well-formedness condition stated above ensures the partitioning of the abstract code into

the sequel.

the areas ARG1, ARG?2, and LHS (all having both “read” and “write” parts), while the second one
allows the removal of the LHS-read area in (the program transformation process that will produce)

the new compiled form of the rule.

In the case of a binary rule, it is exactly at the slots S1, ..., S6 delimiting the areas ARG1, ARG2,

and LHS in the two-stream OSF abstract code of the rule’s feature structure that control sequences

for doing parsing with this rule will be placed. Newly designed abstract instructions — saveEnv and

restoreEnv are used at/by the control sequences placed (via abstract code transformations) at the slot

places S1, ..., S6. An environment is a couple of i. a set of indices corresponding to coreferenced X

variables, together with their values (which represent indices/addresses of heap cells) and ii. a trail

copy that registers the changes done on the heap during unification.® Also, environments will include

information useful for the (compiled form of) quick-check filtering.

Ezample: Consider the next vp rule inspired by [9].
Its non-specialised (OSF) abstract code can be easily get following
the guidelines in [1], while its specialised compiled form in Light is

given in below.

vp
[ARGS < verb
[HEAD #1,
OBJECT #3:np,
SUBJECT #2:sign],
#3 >,
HEAD #1,

SUBJECT #2 1

vp: set corefs, { 3, 4, 5 }
cond E != -1, jump R3
RO: % ARG1 %S1
set X[2], Q
intersect_sort X[2], verb
test_feature X[2], HEAD, X[3], 3, W3, verb
R1: test_feature X[2], OBJECT, X[4], 3, W4, verb
intersect_sort X[4], np
R2: test_feature X[2], SUBJECT, X[5], 3, W5, verb
jump W6 %S2
R3: % ARG2
restoreEnv E %S3
cond unify(X[4], Q) = FALSE, Failure
R5:jump WO
W3: % ARG1 %S4
push_cell X[3]
set_feature X[2], HEAD, X[3]
write_test 3, R1
Wa: push_cell X[4]
set_feature X[2], OBJECT, X[4]
set_sort X[4], np
write_test 3, R2
W5: push_cell X[5]
set_feature X[2], SUBJECT, X[5]
W6: saveEnv corefs %S5
jump W8 %
% ARG2
WOo: % LHS
saveEnv NULL %S6
set Q, H /A
Wi: push_cell X[0]
set_sort X[0], vp
W7: set_feature X[0], HEAD, X[3]
set_feature X[0], SUBJECT, X[5]
W8:

Apart from the (basic) fact that the parsing control instructions replace the KEY-ARGS list-
oriented stuff at the control slots other transformations are done: 1. The LHS-read part is deleted,

since it is no longer needed: once the two arguments unify (with two certain feature structures

represented on the abstract machine’s heap), we have to built/write the LHS feature structure; no

“read” action is any longer needed. For the same reason, the write_test instructions are eliminated from

3 Actually, the trail content will be saved in the (corresponding part of an) environment in a compressed form.

the LHS-write area. 3. The ARGS feature is “discarded” i.e., not created in the LHS code.* Other,
interesting details on this abstract program transformation schema for parsing rules in unification
grammars are provided in [3].

This strategy of specialised compilation of rules in Light provided us a factor of speeding up of 2.75
on the test suite provided by the CSLI, University of Stanford for the LinGO grammar.

This paper was written while the author was supported by an EPSRC grant in the framework of
the ROPA project at the Computer Science Department of the University of York. The conception
and implementation side of the work here reported was done while the author worked at the LT Lab
of the German Research Center for Artificial Intelligence (DFKI) in Saarbriicken, Germany, and he
would like to express here his gratitude for the possibility he had to develop the Light system there.

References

[1] H. Aft-Kaci and R. Di Cosmo. Compiling order-sorted feature term unification. Technical
report, Digital Paris Research Laboratory, 1993. PRL Technical Note 7, downloadable from
http://www.isg.sfu.ca/life/.

[2] L.-V. Ciortuz. Scaling up the abstract machine for unification of OSF-terms to do head-corner
parsing with large-scale typed unification grammars. In Proceedings of the ESSLLI 2000 Work-
shop on Linguistic Theory and Grammar Implementation, pages 57-80, Birmingham, UK, August
14-18, 2000.

[3] L.-V. Ciortuz. Compiling HPSG into C. Research report, The German Research Center for
Artificial Intelligence (DFKI), Saarbruecken, Germany, and the Computer Science Department,
University of York, UK, 2001. (In preparation).

[4] L.-V. Ciortuz. On compilation of the Quick-Check filter for feature structure unification. In
Proceedings of the IWPT 2001 International Workshop on Parsing Technologies, Beijing, China,
October 17-19, 2001.

[5] A. Copestake, D. Flickinger, and I. Sag. A Grammar of English in HPSG: Design and Imple-
mentations. Stanford: CSLI Publications, 1999.

[6] M. Kay. Head driven parsing. In Proceedings of Workshop on Parsing Technologies, Pittsburg,
1989.

[7] R. Malouf, J. Carroll, and A. Copestake. Efficient feature structure operations without compila-
tion. Journal of Natural Language Engineering, 6 (1) (Special Issue on Efficient Processing with
HPSG):29-46, 2000.

[8] C. Pollard and I. Sag. Head-driven Phrase Structure Grammar. Center for the Study of Language
and Information, Stanford, 1994.

[9] N. Sikkel. Parsing Schemata. Springer Verlag, 1997.

[10] S. Wintner and N. Francez. Efficient implementation of unification-based grammars. Journal of
Language and Computation, 1(1):53-92, 1999.

4This omission is supported by the Locality Principle in the HPSG theory [8], and is adopted in the Light setup, as
it was implemented in the other LinGO-parsing systems.

