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Abstract

Since the early 90s, there has been a rising sitémeapplying probabilistic models in syntactiagag,
and significant progress has been achieved. The infagential work include, among others, reseansing
probabilistic lexicalized context free grammarghe form of production rules (or similarly, treej@iding
grammars and its derivatives), probabilistic degeoy grammars; and probabilistic constraints-based
grammars [Lafferty, J., Sleator, D., and Tempery,1992; Magerman, D., 1995; Collins, M, 1997srgr,
J., 1997; Chelba and Jelinek, 1997; Ratnaparkhil®99; Charniak, E., 2000]. Based on the discassfo
different methods, we propose a new bottom-up linKication parsing algorithm in the link grammar
framework together with a novel probabilistic madel addition, we also try to provide some intuitiv
justification for the assumptions made in the piolgtic model. Initial results in terms of bracketcall and
precision on the Penn TreeBank close-test set heaghed beyond 91%, which shows that our proposed
probabilistic model is leading to an encouragingaion.

1. Introduction
Since the early 90s, there has been a rising stténeapply probabilistic models in natural langeag
processing, particularly in syntactic parsing, amghificant progress has been achieved. The miseitial

1 This work is mostly done while the authors wertéhvitel China Research Center, Intel Corp, Beijing



work includes, among others, research using préibtbilexicalized context free grammars in thenfioof
production rules (or similarly, tree-adjoining gnaars and its derivatives), probabilistic dependency
grammars; and probabilistic constraints-based gramsm

In [Briscoe, E. and J. Carroll 199®8agerman, D., 1995; Hermjakob and Mooney 1997; Ntamand
Carpenter 1997; Chelba and Jelinek 1998; Ratnapatkh1999], English grammars are represented by
context-free production rules or compiled into pagstables. A parsing decision is made based en th
parsing history, usually, the left context in ttegni of constructed partial and full phrases, stawklR
state$. The probabilistic decision is computed throughiows methods, such as decision tree approach and
maximum entropy model. To make the approaches walk systematic and automatic selection of the
features to be included in history becomes veryoitgmt, since, on one hand, one needs to account fo
various linguistic phenomena, and on the other haned needs to avoid data-sparseness.

In [Collins, M, 1997; Eisner, J., 1997; Charniak, Z000], a derivation of a sentence is modeleduttin
the successful application of context-free produrctiules, and its probability is computed accorlyiray
applying the chain rule to the joint probability af the rules applied (generative models). Thedhgard of
each production rule is kept for accurately chamadzing its behavior. To properly handle the dgtarseness
problem and provide a feasible training, the prdbgtof a production rule is computed by makingpéiit
Markovian assumption so that only limited contexinicluded in conditional part when chain rule ppléed.

To refine the general approach, [Charniak, E., 20@8grates features in a ME-like fashion.

[Lafferty, J., Sleator, D. and Temperley, D., 19@2llins, M., 1996; Eisner, J., 1996; Chelba, &.al,
1997] directly models dependency relations in sergs. While [Lafferty, J., Sleator, D. and Tempgre.,
1992] computes the probability of a sentence $frifdllowing the steps in the top-down link parsing
algorithm, and making. Another approach [Chelbg,eC.al, 1997] tries to compute the probabilitytioé
dependency strictly from left to right in a way 8anto history-based approach.

This paper describes our parsing work that diretitglels the dependency relations through link gramm
formalism. Instead of decomposing the models basedhe parsing algorithms, as described before, it
focuses on the linguistic sound independence agsamsfor model decomposition. The key idea is rovwg
regions bottom-up, similar to unification procesghwcertain features encoded in the link names, igsd
probabilistic model for a unified region is complitthrough its two sub-regions with dependence satio
attached, which has a good intuitive explanatioitidl results on Penn Treebank close-test dat& laso
shown encouraging sign in terms of parsing accuracy

The paper is organized as follows. Section 2 dessra novel link unification algorithm. Section i8egp
our probabilistic model, its derivation, and itsioaal, as well as an automatic conversion from ttiee
representation into the link grammar representdtorraining. Then, in Section 4, we present emaging
initial parsing results on Penn Treebank close-tkdh set, as well as some error analysis. Se&ion
concludes with comparison with other work and fatdirections.

2. TheLink Unification Algorithm

In this paper, we introduce a new bottom-up linKication algorithm that simplifies the procedurkliak
analysis, nicely deals with partial parsing, and smoothly integrate with a novel probabilistic rbtb be
introduced in the next section.

2 [Ratnaparkhi, A. 1999] uses both left and rightteats.



The original link parser works in a top-down fashiét enumerates each disjunct of a word and toes
find a match with a disjunct from another word imnsideration. Since a disjunct of a word represants
usage of that word (or a collocation), it is ofteat there are many different usages for one wafidile the
CMU link parser uses look-up in multiple pass pngnto reduce parsing complexity, the newly proposed
algorithm takes advantages of the common prefixsaffix of the different usages of a word duringgiag
in a bottom-up fashion.

The new parsing algorithm takes the lexicon adittgiistic knowledge source and a sentence aspist.

It starts by considering every neighboring wordrpaunifies them if possible, and builds up theager
chunks until the structure for the whole sentesammplete. It returns a set of possible word chuwikh the
largest combined probability when the input sergeiscnot covered by the word usage in the specified
lexicon.

Similar to CMU'’s link parser, for each word in leghn, its neighborhood information (disjuncts) is
represented in the form of an and-or-tree. Theratere and/or nodes in the tree allow the shaahthe
same prefix and suffix in different usages of adiphrase, where and-node indicates the orderecesequ
of disjuncts/disjunct sets, and or-node reflects #fternative disjuncts for this position. We mather
deeply compress and-or-tree or take a relatively dind-or-tree, which only permits the sharing loé t
leftmost and rightmost remaining connectors inegtéht disjuncts of the same word/phrase.

The word/phrase pair unification procedure in tlgpathm works as follows. For any pair of neighimoy
words/phrases, the link unification algorithm tries see whether any leftmost disjunct node of igatr
word/phrase can match any rightmost disjunct nodéhe left word/phrase to form a partially matched
disjunct set for the connected word region, angl $leit of partially matched disjuncts is again repnéed in
the form of an and-or-tree. As before, the resgltand-or-tree can be compressed for removing the
redundancy in the prefix and suffix, and verifiea fegitimacy of all its disjuncts. This operati@called
link unification (orlunification), since it is similar to the unification process.

Because of the compression in the unification ptoog, the number of link unification operationsbi®
performed is reduced, hence the speed of parsimdpeadncreased proportionally. The pseudo-coddef t
link unification parsing algorithm works as follows

1.  Getinput word strindV

2. Look up lexicon for the disjuncts of every wow in the form of and-or-tree, place it in
unified[i][i +1]

3. fori =2,...,ndo{

4 forj =0,...,n —i do{

5 fok = j+1,..., j+i—-1do{
6. if (unifygnified[ j][Kk], unified[K][ j +i] ) is not NULL) then
7 add the unifiegutt to the top or-node afinified[ j][ j +i]
8
9

10. '}
In the above algorithmynified[i][ j] stores unified word strings from positidnto position J , and its

remaining disjuncts towards outside of this regaoa represented in and-or-tree form. Function (még1,



tree?2) tries to unify two consecutive phrasal clsurdpresented by treel and tree2, and returngithaiming
disjuncts towards outside of this region in an andiee.

3. The Probabilistic Model for the Lunification Algorithm

To improve the performance of the link parser, waden a few important modifications on the
probabilistic aspects. First, we derive the disfaraf a word directly from the Penn Treebank anliecb
statistics accordingly. Second, we use a novelairibistic model during the lunification process.

The derivation process of the disjuncts for eachdvie as follows. Let’s explain this through an e
in Fig. 1. Assuming PP(imyP(in) NP(mountain) is a single layer in a phrasacstire tree, where P and NP
are non-terminals/pre-terminals, “in” and “mountadme the corresponding heads of the non-termimads/
terminals, and “in” is the head word for PP. Weikeone disjunct for word “in” from this level im¢ tree:
+PP#P#NP#1 connecting NP from right. We also desive disjunct for word “mountain” from this level i
the tree: -PP#P#NP#1 connecting P from left. Ia tiatation, the sign symbol — and + indicate tHisvied
or rightward disjuncts, and # is the delimiter HAP#P#NP#1, PP is the parent node in the subaneeNP
is to the right of P. Similarly, in -PP#P#NP#1, &ohPP is the parent node in that sub-tree, and & i
constituent to the left of constituent NP. The keghbol 2 (1) in the strings means that the heazhishe
right (left) side of the link. For the sub-tree WiNP as its root in Fig. 1, we can derive additiomard
disjuncts. For probabilistic models, their statisttan be collected in the Treebank by traverdiegtriees.
This notation and conversion are similar in spwit{Collins, 1996], where, however, only base NRgev
processed.

PP Rules:
PP(in) = P(in) NP(mountain)
NP(mountain) - DET(the) ADJ(blue) N(mountain)
NP Word disuncts:
In: (+PPHPENP#1)
The: (+NP#DET#N#2)
Blue: (+NP#ADJ#N#2)
P DET ADJ N Mountain: (-NP#ADJ#N#2 -NP#DET#N#2 -PP#P#NP#1)
in the blue  mountain
1a) The original parse tree. 1b) The converted wdisjuncts.

Fig. 1. Convertinggatrees to word disjuncts of Link Grammar.

The probabilistic model for the Link Grammar is idetl as follows. Let's denott:i'j as the partial
linkage covering the region between wdrénd word | , and Li,j is a triple of di’j ,Wi’k,Wk+l’j) where

Ii'j is the last link that connects its two head wovds' and Wk+l’j, representing the two sub-regions
(i,k) and(k +1, j) to be unified.
P(E,) = P(Ei,k’Ekﬂ,j J Li,j)
:P(Ei,k’Ek+Lj ||-i,j) P(Li,j)

(Conditional independence assionpgiven Li,j )



= P(Ei,k | Li,j) P(Ek+1j | Li,j) P(Li,j)
:P(Ei,k)P(Li,j |E|k) P(Ek+l,j)P(Li,j |Ek+lj)

P(Li;)
P(Li) P(L, ) y
L P, ILOPL L))
= P(L P(L .. i, i, i i
() Plhea) P(L, ;)
(1st order Markov assumption)
=P(L) P(Liyj) (L TP T, 1)

P(L ;)

P(Li,k’Li,j) P(Lk+1,j’Li,j)
P(Li)P(L ;) P(Ly)P(L )

= P(Ei,k) P(Ek+l,j) P(Li,j)

That is:
P(Li,kiLi,j) P(Lk+l,j’Li,j)

P(Ei,j):P(Ei,k)P(Ekﬂ,j)P(L‘vj)P(|_. )P(L, ) P(Ly,y )P(L, ;) ?

Therefore, the probability for large regidh, j) is computed through its two sub-regions, {lgk) and

(k+1, j), and the last link, with an adjustment of two syrtinal ratios. Each ratio specifies the degree of

the dependency of two consecutively built links. [bok at the equation from an information-theoretic
viewpoint, let's take a log to both sides of eqo@t{2). Then, we get the following equation.

(log P(L; )] =[~log P(L; ,)] +[~log P(L,.., )] +[~log P(L, )]
P(Li,k1Li,j) _ P(Lk+1,j’Li,j)
PP, P P(Lu,)P(L, )

So, the left side is the description length fue tvhole region(i, |) , the items on the right side of the

first line is the sum of the description lengthstod two sub-regions plus the length for the curliak, and
the second line is the mutual information of thpresentatives of the smaller regions and the unified region.
So, an intuitive explanation for this equationssfallows.

The description length for the unified region is the sum of the description length for its sub-regions and
the final link, removing the redundancy of the mutual information between the representatives of the sub-
regions and the representative of the unified region.

This interpretation sheds some light on possitigrovements to the model in the future, i.e., t&entis
model more accurate, we should consider other septative features for the model, possibly a wider
context.

We now list the boundary cases for equation (), iwhen one or both sub-regions are actually singl
words, here is the derivation.

Case 1: One side of the link is a word, while titiser side is a linked chunk. Assume the right &da
word, we have:



P(Li,j |Li,j—1)P(Li,j |Wk+l'j)
P(Li ;)
P(L; ; |Wj)P(Wk+l'j)
P(Li ;)

P(L;,)= P(L; ;4) P(W™)

:P(Ei’j_l) P(Li; L)

:P(Ei,j—l) P(Li,j |Li,j—l)

The last equation is becauf{L, ; |W*"*")P(W“"*)) = P(L, ,, W) = P(L, ;) . So,

P(E,) = P(Ei,j—l)P(Li,j | Li,j—l) 3

When we consider a degenerated case, i.e., fgh&branching tree with uniform links, the probéil
for the whole sentence has the following form:

P(Wl,n) = P(w,)P(w, |w,)P(w; [w,W,)...P(w, [w,w,)

where all the links are removed because of thendalcy.
Case 2: Both sides of the link are words. This iegpithat these two words must be adjacent. The
following equation can be easily derived from (3).

P(Li,i+1) = P(Li,i+1) = F)(li,i+17V\{ 7W+1) (4)
For practical reasons such as robust estimatigheoparameters, we need to make further approxamati

to equation (1). For the sake of simplicity, asstutiat the head word for sub-regidiik) is W' (i.e.,

1+1,k

w! ) and it is also the left end of Iirilfk , its right end isw (we can do the same if the right end is the

r

head word). For sub-regiofk +1, j), similarly, we assume thav***" is on the left end of link,,, ;

while w***] (i.e., W”l’j) is on its right end and is the head word for thb-segion. Therefore, for sub-

region (i, j) , the two ends of link; ; are W and wk
P(Ly; L) = PO WS WSS L W W) = PO W[, Wk w )
= P(l;; ||i,k,Wi'k,Wl+lk) P(w) ||i'k,|i'j,Wi’k,W'+l'k)

= P> 1, WH) PO (1L W) (Markov assumpjion  (5)

Similarly, we can approximate the other half.
P(Lij ILeny) = Py e W) PO T W)

As in other probabilistic models proposed for lakimed CFGs, due to the data sparseness, we need to
estimate the cases that do not occur in the tigidata. One commonly used technique is the intatjool.
Take (5) as an example, we can get the followingaggns, wherd(w) is the tag for woralv.

i

P (1 11 W) = A0 PO W) + 455 PA L) + A3 PAL ) (6)
P (W ||i'j,W1):
/\f*P(WZ||i,j7W1)+/]§*P(T(WZ)“i,j’T(Wl))"'/]g*P(WZ||i,j)+/\i*P(T(W2)||i,j) (7)



To see how this model differs from other modelghsas [Collins, M., 1997; Charniak, E., 2000], det’
examine the first assumption made in the model¢ctimgitional independence assumption. That is,

P(Ei,k’Ekﬂ,j |Li,j) = P(Ei,k | Li,j) P(Ek+1,j |Li,j)
It is equivalent to the following equation:
P(Ek+1,j | Li,j ) I—ivk) = P(Ek+1,j | Li,j): P(Ek+1,j ||
This is essentially to say that the model is talftethe right child based on the left/right hetigg current

Wi Wk+1,j)

i

head, and the relation between the left/right heeadithe current head. Becadg? encodes the information

of non-terminals for both heads, which is somevdiage to Charniak’s®lorder Markov model. Notice that
each disjunct contains information beyond singlellecontext free rules. This, on one hand, makes th
parser more powerful, while on the other hand treent probabilistic model doesn't fully utilizeettwider
contextual features encoded in disjuncts, which lwarurther refined in the future, as pointed omitweell
from the above discussion on information-theorigtierpretation of the model.

The computation for the probabilistic link unifigat algorithm using this model is through syncheeui
steps in the link unification algorithm. The desadlre given bellow, whera is thenumber of words in input

word stringW :
1.  Getinput word strindV

2. Look up lexicon for the disjuncts of every wow in the form of and-or-tree, place it in
unified[i][i +1]

3. fori=2,..,ndo{

4 forj =0,...,n —i do{

5. fok = j+1,..., j+i—-1do{

6 if (unifygnified[ j][Kk], unified[K][ j +i] ) is not NULL) then

7 p(j, j+1)=p(. k) pk, j+i)p (L)
pI,I(Lj,k’Lj,j+i) pI,I(Lk,j+i’Lj,j+i)
pI(Lj,k)pI(Lj,j+i) pI(Lk,j+i)p|(Lj,j+i)

8. add the unifieduleso the top or-node ofinified[ j][ j +1]

9. }
10. }

11. )

12.  Viterbi search the best path in score ctid(®,n) .

In the above algorithmynified[i][ j] stores unified word strings from positidnto position J , and its
remaining disjuncts towards outside of this regive represented in and-or-tree forp(i, j) is the array
for  probability P(i, ), p,(L;;) for link probability P(L; ;) , and p;,(L;,L;) for P(L;,L,) .

Function unify(treel, tree2) tries to unify two secutive phrasal chunks represented by treel aad,tand
returns the remaining disjuncts towards outsidénisfregion in an and-or-tree.



4. Experiments

To evaluate the lunification algorithm and the nawwbabilistic model, we conducted a few experiments
on the WSJ part of the English Penn Treebank. dieroito compare with other results, sections 2-2luged
for training. We first convert the Treebank to thiekbank so to remove gaps (such as *NONE?*) forieras
processing. While currently, the Linkbank is dtilla parsing tree format, we plan to make it agsentation
that directly encodes link dependency informatiéreach word in all the Treebank sentences. The 8ink
word statistics are computed on the Linkbank. Bseathe output of the lunification algorithm is the
linkage(s), similar to the Link Parser, a mappimggedure is constructed to map the linkage to tirage
structure representation for bracket evaluation.

The interpolation weights for smoothing the modelgquation (6,7) are selected by using Sectionf24
Penn Treebank WSJ data.

To examine the effect of our model, we use SecliBnas our test data, and further assume that its
sentences have correct tags labeled. That is, wWerpea close-test on Section 18. Section 18 h&618
sentences of about 40,000 words. Using the un-dradanodel, we obtained the link recall and prenisib
93.12% and 93.11%. On the bracketing test, we bta®1.42% and 91.21% for sentences, and 92.18% and
91.75% for sentences of shorter than 40 words.dJgie smoothed model, we obtained the link recadl a
precision of 90.17% and 90.16%. On the bracketewsy, twe obtained 87.86% and 85.93% for all the
sentences, and 88.58% and 86.43% for sentencé®ésthan 40 words. These numbers, though nigt ful
comparable, are approaching to the systems reporfgbllins, 1997; Ratnaparkhi, 1999; CharniakQ@[
which are quite encouraging. We are going to refine model to conduct experiments on Penn Treebank
WSJ open test sentences.

We also performed an error analysis on the closedta set. While some bracketing errors are daloge
the conversion from linkages to brackets, the majources of the errors can be classified into three
categories: 1) the flat structure problem; 2) tnerse structure problem; and 3) the long distatteehment
confusion problem. The typical example of categbyys the case where noun-noun compounds have only
one level structure in Penn Treebank and no intetnacture within the compounds is given therer. the
second category, there are significant amount c8@YOSV in WSJ that the current system does nudlba
properly. These sentences usually have the pattéXX, said Mr. ZZZ". For the third category, it is
usually the case that the sentences are long waitlows conjunctions. We will fix these problemsniear
future.

5. Conclusion

In this paper, we present a new bottom-up link icaffon parsing algorithm for link/dependency
grammar, the lunification algorithm, and a noveblmbilistic model that tries to directly capturesth
collocation of head words and their links. The bttup approach picks up the best path (the one tivith
highest probability) from found phrases/phrasalntisuthrough Viterbi search. The proposed probaiailis
model decomposes a linkage model covering a lagiem into two smaller ones. It has an interpretathat
matches well with both linguistic intuition and @miation theory. This decomposition also allowsreath
integration with lower level processing, and it denwell suitable to the integration with word segration
algorithm for Chinese and other oriental languagdesaddition, the proposed training procedure amal t
parsing approach reflect the connection among thdugtion rule based model, the dependency grammar



based model, and the link grammar based modeloidth still at its early stage, the initial resuligve
shown a quite encouraging sign in terms of paracayracy.

[Eisner, J., 1996]'s dependency models only captiueedependency between words but ignore the types
of the dependency (bare-bone dependency structimdgisner, J., 1996]'s model C, the closest tmeurs
among his three models, the score (or probabiiitya combined region is computed through its twaker
regions multiplied with the probability of the cairg link, i.e., score(C)=score(A)score(B)Pr(coveriink).
[Collins, M., 1996] gives a bi-gram lexical dependg model for baseNPs, which is similar with therent
approach in terms of converting the parse Treehlanthe dependency links. However, in [Collins, M.,
1996], the model assumes that the dependency érksndependent in the process of decomposing the
probabilistic model for baseNPs. This newly prombapproach differentiates itself from the above with
a model that directly models the interdependencyrapntonsecutive dependency links. The interdepearyden
is nicely captured by the two dependency raticeqgnation (2).

[Lafferty, J., Sleator, D. and Temperley, D., 19@helba C., et al, 1997] directly model dependency
relations in sentences. While [Lafferty, J., Sleald. and Temperley, D., 1992] computes the prditghuf
a sentence following the steps in the top-down fpiaksing algorithm, and making corresponding Maikov
assumptions for practical purposes. Another appro@helba, C. et al, 1997] tries to compute the
probability of the dependency strictly from leftright in a way similar to history-based approdutt, using
Maximum Entropy approach to combine different feasu

In a different framework from above, English gramsnare represented by context-free production rules
[Briscoe, E. and J. Carroll 1993/lagerman, D., 1995; Hermjakob and Mooney 1997; Ntaprand
Carpenter 1997; Chelba and Jelinek 1998; Ratnapakkh1999]. A parsing decision is made basedhran
parsing history, usually, the left context in theeni of constructed partial and full phrases, stacklR
states. The probabilistic decision is computedughovarious methods, including decision tree apgraand
maximum entropy model. To make the approaches Heassystematic and automatic selection of the
features to be included in history becomes veryoiigmt, since, on one hand, one needs to account fo
various linguistic phenomena, and on the other hane needs to avoid data-sparseness. Furtheramre,
pointed out by [Eisner, J., 1996], probability misdderived from parsers sometimes focus on incalent
properties, which might not be desirable. Our appho on the contrast, is more independent of acpéat
parsing algorithm, i.e., the model can be eithkeneas a generative model, or as a comprehensidelmo

[Collins, M., 1997]'s probabilistic models starbfn generating the head in a production rule, theeng
the head, the approach generates its right moslified left modifiers in the rule consecutively. Tistance
between the head and its modifier is also includethe conditional part of the probability. [Chaakj E.
2000] proposed a generative model that also drams lexicalized CFG. His approach leans towardsemno
on the flexibility of incorporating new featuresdatries to ease the difficulty in isolating the daional
events as what has been done by Maximum-Entropsoappes. However, as he pointed out, the integratio
of the new features in the model is not strictlgh@bilistic. In contrast, our approach tries tedily model
the dependency relation and tries to capture nbt e words but also the dependency relations gmon
them with a solid probabilistic formation.

Our future work will include improving and finislgnour probabilistic lunifier for an open-test set,
integrating wider contextual features in the modelturally, and establishing connections with lovesrel
language processing. Additional tunings and impnoets on the models, such as the ones used irirff§oll
M., 2000; Johnson, M. et al 1999], will also be sidered.
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