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Abstra
t

The qui
k-
he
k (QC) te
hnique introdu
ed by [11℄ is a highly e�e
tive optimisation te
hnique for

�ltering out the (eventually unsu

essful) uni�
ation of feature stru
tures. This paper presents the


ompilation of the QC �lter as it was designed and implemented in the Light 
ompiler system [4℄. (Light

stands for LIGHT | Logi
, Inheritan
e, Grammars, Heads, and Types.

1

)

Up to our knowledge, it is the �rst attempt to in
orporate this pre-uni�
ation speed-up te
hnique

in a 
ompiler system dealing with large-s
ale typed-uni�
ation grammars, and what makes this work

interesting is that it proposes a 
ompiled form of the QC test, whi
h is signi�
antly more elaborated than

its original form.

This elaboration is motivated not only by the 
ompilation's overall aim to get an in
reased speed

up for parsing, the fa
t is that the original, simple, interpreted form of the QC �lter 
annot dire
tly

a

ommodate with other optimisation te
hniques for 
ompiled parsing with typed-uni�
ation grammars,

and this very fa
t made 
ompilation of Qui
k-Che
k fully justi�ed.

2

0 Introdu
tion

Signi�
ant progress has been a
hieved during the last 
ouple of years in the area of eÆ
ient natural

language pro
essing with large-s
ale feature-based grammars. A re
ent work [15℄ presented some of

the most advan
ed results 
on
erning parsing with wide-
overage HPSG grammars [16℄, notably the

LinGO grammar [8℄ for English developed at CSLI, University of Stanford. The QC pre-uni�
ation

�lter [11℄, one of the most remarkable speed-up te
hniques in this area is, up to our knowledge, used

now in all but one of the systems able to 
ope with LinGO. ( We named LKB [7℄, TDL [10℄, PET and

Light; the ex
eption | the LiLFeS system [12℄ | instead of using QC, employs a CFG �lter whi
h

leads to pra
ti
al results 
omparable to (the best of) the other systems but, up to our knowledge, it is

mu
h more memory 
onsuming. For PET, the reportedly fastest system running LinGO, the author

reports a fa
tor of speed up of about 63% after the introdu
tion of the QC test [2℄. )

The present paper deals with getting a 
ompiled form of the QC �lter, suitable for an elegant and

eÆ
ient integration with 
ompilers for uni�
ation-based grammars.

Making it simple, the idea behind the pre-uni�
ation QC test is the following:

Having got the knowledge about the most probable failure paths �

1

; �

2

; :::; �

n

in the appli
ation of

parsing rules,

3

before doing the uni�
ation of a 
ertain feature stru
ture  

1

(representing a phrase)

1

The analogy with the name of LIFE | Logi
, Inheritan
e, Fun
tions and Equalities | a well-known 
onstraint

logi
 language based on the OSF 
onstraint system [1℄ is evident.

2

The 
on
eption and implementation side of the work here reported was done while the author was employed at the

LT Lab of the German Resear
h Center for Arti�
ial Intelligen
e (DFKI) in Saarbr�u
ken, Germany.

3

These most probable failure paths are identi�ed by running the system (without QC) on a large 
orpus.



with another feature stru
ture  

2

(representing a synta
ti
 rule argument), one 
an 
he
k whether

for every path �

i

, its values in  

1

and respe
tively  

2

are 
ompatible, i.e., root( 

1

:�

i

) ^ root( 

2

:�

i

)

6= ?, where the fun
tion root designates the root sort of its argument FS,  :� is the usual notation

for the sub-stru
ture identi�ed inside  by the (feature) path �, and ? is the bottom/in
onsistent

sort in the grammar's sort hierar
hy. This sort hierar
hy is assumed an inferior semi-latti
e, with s^ t

designating the unique greatest lower bound (glb) of the sorts s and t.

If for su
h a path this 
ompatibility test is not passed, then it follows immediately that the feature

stru
tures  

1

and  

2

don't unify. This simple te
hnique eliminates mu
h of the a
tually unne
essary

work performed during uni�
ation in 
ase of failure.

Now, surprisingly enough, the introdu
tion of the QC te
hnique in the 
ompilation approa
h for the

HPSG-like type uni�
ation grammars as tried out for the Light system was not immediately e�e
tive.

Here follows a �rst explanation:

Even at the �rst sight, one 
an see that the QC �lter might not be so mu
h e�e
tive in the


ompilation approa
h, sin
e 
ompiled uni�
ation is signi�
antly faster than interpreted uni�
ation.

Of 
ourse, doing the QC test 
osts (it is �nally a waste in 
ase of a
tual su

essful uni�
ation).

Measurements done �rst on the LKB, TDL, PET systems revealed that in 
ase of interpreted-like

parsing with LinGO-like grammar, it is worth to pay for the QC test, sin
e most/many uni�
ations

fail (even after the rules' 
ombinatorial �lter was applied). But in the 
ase of 
ompiled parsing, the

trade to be made between the time required by the QC test (expressed as a fun
tion of the number

of failure paths to be 
he
ked) on one side, and the speed of the uni�
ation pro
edure on the other

side is dramati
ally narrowed. A 
ompiled form of the QC �lter as will be presented here is proven

able to \enlarge" again this trade area for speeding up the parsing/dedu
tion.

Basi
ally, this paper shows how QC-ve
tors froot( :�

1

), root( :�

2

), ..., root( :�

n

)g 
an be 
om-

puted in two stages, the �rst one done on
e for all at the 
ompilation time (we 
all it QC pre-


omputation), 
ompleted at the run-time by the se
ond one a

ording to spe
i�
 
ir
umstan
es. The

basis for this \two-step" 
omputation of QC-ve
tors resides in the fa
ts that i . the order in whi
h one

rule's arguments will be pro
essed is known at the grammar prepro
essing/
ompilation time, and ii .

for any (in general not known in advan
e) feature stru
ture  whi
h will be involved in the QC test,

we know that  will be an instan
e of (i.e., subsumed by) a 
ertain feature stru
ture 	 fully known

at the 
ompilation time ( v 	).

Remark: Formally, for any QC feature-path �, the QC

�

( ) = root( :�) value will be 
omputed

by applying at the run-time a fun
tion � to a 
ertain argument preComp(	; �), 
omputed at the


ompilation time:

QC

�

( ) = �(preComp(	; �)).

The three se
tions of the present paper deal respe
tively with 1. explaining the problems we

en
ountered when we tried to a

ommodate the simple (interpreted-like) QC �lter into the Light


ompiler setup, in parti
ular its 
o-existen
e with the other main optimisation te
hnique we proposed

| the spe
ialised 
ompiled form of rules [5℄; 2. getting the 
ompiled (in
omplete, \pre-
omputed")

form of the QC-ve
tors followed by a simple example; 3. 
omputing their run-time, 
ompleted form,

and suggestions for improvements. A �nal, evaluation paragraph provides �gures on the 
ompiled QC

eÆ
ien
y, namely the measurements done for LinGO by running the Light system on the CSLI test

suite both with and without the QC �ltering.



1 Can the (interpreted) QC test be a

ommodated into

the (
ompiled) parsing in Light?

Let us �rst analyse the way the QC was 
on
eived in the interpreting setup (of the LKB and

PAGE/TDL systems) for parsing with HPSG-like grammars:

{ as soon as a phrase is parsed, a \passive" QC-ve
tor is 
omputed for its asso
iated feature stru
ture

(FS)  . This QC-ve
tor is de�ned as froot( :�

1

), root( :�

2

), ..., root( :�

n

)g. If one of the paths �

i

is not de�ned for  , then the i-th 
omponent in the 
omputed QC-ve
tor is taken by de�nition >, the

top element in the grammar's sort hierar
hy;

{ every m-ary rule is asso
iated m \a
tive" QC-ve
tors; in the 
ase of a binary rule ', we will have

�rst a \key" QC-ve
tor froot('

0

:�

1

), root('

0

:�

2

), ..., root('

0

:�

n

)g, where '

0

= '.key-arg, namely

the sub-stru
ture 
orresponding to the head/key argument in the FS representing the rule;

{ before trying to apply the rule ' to a presumptive key argument  i.e., before unifying  with

'

0

, the QC pre-uni�
ation test does root( :�

i

)^ root('

0

:�

i

) for i = 1; n, that means the 
onjun
tion

of the 
orresponding 
omponents of the two QC-ve
tors. If the 
onjun
tion result is always 
onsistent

(i.e., not ?), the system uni�es  with '

0

, and if this uni�
ation su

eeds, then the system produ
es

a new, \a
tive" QC-ve
tor, 
orresponding to the next argument to be parsed. If the 
urrent rule is

a binary one, this new a
tive QC-ve
tor is what we 
all the \
omplete" QC-ve
tor, 
orresponding to

'

00

= �.non-key-arg: froot('

00

:�

1

), root('

00

:�

2

), ..., root('

00

:�

n

)g, where � is what ' has be
ome

after '

0

= '.key-arg has been uni�ed with  .

As already mentioned in the introdu
tory se
tion, the main problem that we've got when we tried

to integrate the QC pre-uni�
ation test with the Light 
ompiler was its a

ommodation with the

previously in
luded main optimisation: the spe
ialised 
ompilation of rules. While the \key" QC-

ve
tor '

0


an be thoroughly 
omputed at the grammar 
ompilation/loading time, 
omputing the

QC-ve
tor for '

00

= �.non-key-arg is not immediately possible simply be
ause the �.non-key-arg

stru
ture does not e�e
tively exists (on the heap). Let us detail this issue:

In Light, synta
ti
 rules are represented as feature stru
tures, and their appli
ation is done in a

bottom-up manner. In order to eliminate unne
essary 
opying, when dealing with LinGO-like gram-

mars (working with only binary and unary rules), we have spe
ialised one rule's exe
ution into i:

key/head-
orner (mode) appli
ation, and ii: 
omplete (mode) appli
ation. This distin
tion between

two di�erent modes for one (binary) rule appli
ation | together with the FS sharing (environment-

based) fa
ility | allows for an in
remental 
onstru
tion of the feature stru
ture representing a phrase,

in su
h a way that, if 
ompletion is �nally not possible, then no spa
e (otherwise needed in an inter-

preter framework) for 
onstru
ting the FS 
orresponding to the rule's 
omplement/non-key argument

is wasted. This strategy of in
remental parsing in Light | whi
h is simple and elegant due the use

of open re
ords/FSs as in the OSF 
onstraint theory [1℄, in 
ontrast with 
losed re
ords used in the

appropriateness-based approa
h [3℄ underlying other LinGO-parsing systems | provided us a fa
tor

of speeding up of 2.75 on the test suite provided by the CSLI, University of Stanford.

Note that even in the hyper-a
tive head-
orner parsing approa
h proposed by Oepen and Car-

roll [14℄, in whi
h an indexing s
hema is used to minimise the 
opying of possibly unne
essary parts of

a rule's FS (notably the non-key argument and the LHS of the rule), one initial full representation of

the rule's FS must be 
onstru
ted before applying the rule in order to �ll its key-argument. In Light

a full FS representation of a rule is obtained only after the rule arguments were su

essfully uni�ed

with FSs already present on the heap.



In order to solve the above problem | namely, that the 
omputation of the \
omplete" QC-ve
tor

is prevented by the missing representation of the non-key argument | we proposed �rstly a rather

naive solution: we relaxed the QC-test for the 
omplete/non-key argument by 
he
king the QC-ve
tor

of the 
andidate argument � against the QC-ve
tor 
omputed for '.non-key-arg. As this last QC-

ve
tor is more general than the one 
omputed for '

00

| in the sense that if both ':non-key-arg:�

and '

00

:� exist, then root(':non-key-arg:�) � root('

00

:�) in the sort hierar
hy |, we were entitled

to use it for QC. However, in this way the speed up e�e
t of the QC test with Light when parsing

the CSLI test suite with the LinGO grammar was not signi�
ant. (We used here the notation priorly

established: ' is the FS asso
iated to the rule whi
h is being applied, and '

00

is obtained from ' after

'

0

= ':key-arg was uni�ed with  , the FS 
orresponding to a passive item.)

The se
ond, a
tual solution we proposed was to 
ompile (the 
omputation of) the QC-ve
tors. It

will be presented in the next se
tions. Basi
ally, the idea is that instead of 
omputing for instan
e

for a binary rule three QC-ve
tors like in the interpreted approa
h | one \key" QC-ve
tor at the

loading/pre-pro
essing time, a \
omplete", and �nally a \passive" one at the run-time

4

|, in the


ompilation approa
h we will 
ompute �ve QC-ve
tors, among whi
h three are 
omputed at the


ompilation time and two at the run-time, the last two building upon the pre-
omputed ones.

QC test \key" QC-ve
tor \
omplete" QC-ve
tor \passive" QC-ve
tor


ompilation-time preComp('

0

) = preComp('

00

) preComp(')

run-time = QC('

0

) QC(�) QC(�

0

)

Figure 1: The QC-ve
tors 
omputed for a rule ' in the 
ompilation approa
h.

In the notation used in Figure 1, � is what ' be
ame after the key argument ('

0

) was uni�ed with

 , the FS of a passive item, and �

0

is what � be
ame after the non-key argument ('

00

) was uni�ed

with  

0

the FS of another passive item.

5

2 Pre-
omputing QC ve
tors

So far we have shown that

� the QC test a
ts as a pre-uni�
ation �lter for rule appli
ation; in interpreted-like parsing with

LinGO-like grammars, rules are represented as FSs, and therefore 
omputing whether a given FS

will mat
h the argument of a rule is straightforward;

� what makes pre-
omputation of QC ne
essary is that spe
ialised 
ompilation of rules in Light

eliminates the presen
e (of full representation) of rule FSs from the heap.

Note that | assuming like in the head/key-
orner parsing [9℄ that the key argument is parsed

always before the non-key/
omplement arguments | the \key" QC-ve
tor, as introdu
ed in the pre-

vious se
tion for a 
ertain rule ' is unique for all key-mode appli
ation of that rule. All the other


omputed QC-ve
tors depend on the a
tual appli
ation of ' i.e., on the already parsed/�lled argu-

ments. However, one 
an see all these QC-ve
tors as 
omputable in two stages/
omponents: i: a

4

These QC-ve
tors are shown on the bottom line in the (somehow) synopti
 table in Figure 1.

5

A more suggestive for the two run-time 
omputed QC-ve
tors notation would be perhaps QC('

00

;  ) and QC(�;  

0

).



preComp( ; �) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

s : sort if root( :�) = s; and

 :�

0

62 X ; for any pre�x �

0

of �;

at the run time QC

�

( ) = s;

i : int if  :�#;  :� = X

i

; and

 :�

0

2 X ; for a pre�x �

0

of �;

at the run time QC

�

( ) = heap[X

i

℄.SORT;

�j : int if  :�";

 :�

0

2 X ; for a pre�x �

0

of �;

�

0

= f

1

: ::: :f

j

is the longest pre�x of � su
h that

 :�

0

#; and  :� = X

j

;

at the run time QC

�

( ) = heap[X

j

:f

j+1

: ::: :f

n

℄.SORT:

Figure 2: QC

�

( ) as fun
tion of preComp( ; �).

pre-
omputed/preliminary form of QC-ve
tors, whi
h 
an be 
omputed at the 
ompilation time inde-

pendently of the FS that will be eventually uni�ed with the arguments; and ii: the a
tual, form/
ontent

of QC-ve
tors will be �lled at the run time starting form the pre-
omputed forms, dependent on the

already parsed arguments.

The QC test idea as introdu
ed in the previous se
tion is very simple: given a �nite set of feature

paths � = f�

1

; :::; �

m

g, and the feature stru
tures  

1

;  

2

, 
he
k whether

root( 

1

:�

i

) ^ root( 

2

:�

i

) 6= ?; for i = 1; :::;m:

It will be assumed by de�nition that root( :�) = > if the feature path � is unde�ned for  (this fa
t

will be denoted as  :�").

Important Remark: A
tually, if �

0

= f

1

: ::: :f

j

is the longest pre�x of � = f

1

: ::: :f

n

su
h that  :�

0

is de�ned ( :�

0

#), and root( :�) = s

j

, then we 
an improve our de�nition of QC-values and take

root( :�) = s

n

, where s

j+1

= 	(s

j

):f

j+1

, s

j+2

= 	(s

j+1

):f

j+2

, ..., s

n

= 	(s

n�1

):f

n

, where 	(s) is

the type asso
iated to the sort s in the input grammar. Of 
ourse, 	(s):f has to be 
onsidered > if f

is not de�ned at the root level in 	(s). Alternatively, we 
ould try to expand  by lo
al unfolding,

i.e. unifying  :�

0

with (a 
opy of) the type 	(s

j

) provided by the grammar. If ne
essary, further

lo
al expansion/unfolding 
an be done. Note that lo
al expansion/unfolding provides more re�ned


onstraints (for the QC-ve
tors), so it is good to use it at 
ompile time, but it is not re
ommendable

at run time, be
ause it would 
onsume additional time and spa
e. At the run time, the previous

solution, based on appropriateness 
onstraints is preferable.

6

We distinguish the following three 
ases in (pre-)
omputing the QC-ve
tors:

1. If  is a rule argument without 
ontaining referen
es to pre
edent

7

arguments | this is the 
ase

of the �rst/head-
orner argument in simple/head-
orner 
hart-based parsing | then we de�ne

preComp( ; �) = s : sort, where s = root( :�):

2. If  is a rule argument with referen
es to substru
tures of the pre
edent arguments, X is the set

of all variables/tags in  whi
h refer to pre
edents arguments (a

ording to the parsing order), and

6

Our 
laim that this Remark invalidates the the opinion of PET's author [2℄ who stated that partial expansion [6℄

is redu
ing the qui
k-
he
k's eÆ
ien
y.

7

Here the term \pre
edent" is used in the sense of the parsing order.



senten
e

[ ARGS < vp

[ HEAD #1:verb

[ AGREEMENT #3:agr ℄,

OBJECT np ℄,

#2:np

[ HEAD noun

[ AGREEMENT #3 ℄ ℄ >,

HEAD #1,

SUBJECT #2 ℄

Figure 3: The OSF-term asso
iated to a senten
e rule.

failure paths key QC-ve
tor preComp 
omplete QC-ve
tor

�

1

= head verb noun noun

�

2

= obje
t np #2:obje
t >

�

3

= head:agreement agr #3 3sg

Figure 4: The a
tive (\key" and \
omplete") QC-ve
tors for the senten
e rule.

� = f

1

f

2

::: f

n

is a feature path, then assuming that the heap is the (main) data stru
ture used for

the internal representation of FSs, we de�ne the values of QC-ve
tors stating from their pre-
omputed

form (preComp) like in Figure 2.

Important Remark: A

ording to the Remark made in the Introdu
tion, in Figure 2 the underlined

expressions are in fa
t extended to QC

�

(') = ..., for any feature stru
ture ' subsumed by  .

Note that if, as in the 
urrent implementation of Light, the 
omputation of 
ertain QC-ve
tors

is delayed until really needed, then the a
tual values of the variables X

i

; X

j

| representing ad-

dresses/indi
es of heap 
ells | will have to be saved (together with those in the set X ) in the

environment asso
iated to the pre
edent argument (saved after it has been parsed), so to make them

available to the 
urrent argument.

3. If  is the feature stru
ture 
orresponding to a non-unary rule instan
e, the \passive" QC-ve
tor


orresponding to that instan
e is de�ned in a similar way to the one detailed above, with the only one

di�eren
e that X is taken as the set of all variables/
oreferen
es shared between the rule's LHS and

the arguments (RHS ).

In the Light system, a pre-
omputed QC-ve
tor is stored as an array of tuples of the form (s, sort),

(i, int), (�j, int), with i � 0, and j > 0, while (at run-time) a QC-ve
tor is represented simply as an

array of sorts.

Example

Let us 
onsider | adapted from [17℄ | a simple rule made of a 
ontext-free ba
kbone s ! np �vp

augmented with feature 
onstraints like in Figure 3. (The � sign marks the rule's head/key argument.)

Suppose that we want to 
onsider the failure paths �

1

= head, �

2

= obje
t, �

3

= head.agreement.

The \key" QC-ve
tor and the two \
omplete" QC-ve
tors (the preComp form and respe
tively the

�nal form) are shown in Figure 4. The preComp QC-ve
tor is shown in a more intuitive form than

in the formalisation given in Se
tion 2. The �nal, 
omplete QC-ve
tor 
orresponds to the (expe
ted)

analysis of the senten
e The 
at 
at
hes a mouse. (Note that in the 
omplete QC-ve
tor, the value



vp

[ ARGS < 
at
hes

[ HEAD #7:verb

[ AGREEMENT #5:3sg ℄,

OBJECT #6:np

[ ARGS < a

[ HEAD det ℄,

mouse

[ HEAD #4:noun

[ AGREEMENT 3sg ℄ ℄ >,

HEAD #4 ℄,

SUBJECT #8:sign

[ HEAD top

[ AGREEMENT #5 ℄ ℄ ℄,

#6 >,

HEAD #7,

SUBJECT #8 ℄

paths QC-ve
tor

�

1

verb

�

2

>

�

3

3sg

np

[ ARGS < the

[ HEAD det ℄,


at

[ HEAD #9:noun

[ AGREEMENT 3sg ℄ ℄ >,

HEAD #9 ℄

paths QC-ve
tor

�

1

noun

�

2

>

�

3

3sg

Figure 5:

The parses 
orresponding to the vp 
at
hes a mouse and the np the 
at,

and the 
omputed \passive" QC-ve
tors.

for �

2

is > sin
e the FS 
orresponding to the noun phrase a mouse doesn't have the obje
t feature

de�ned.)

One 
an easily see that the vp feature stru
ture 
orresponding to the verb phrase 
at
hes a mouse,

as shown in Figure 5, passes the QC test with the key QC-ve
tor presented in Figure 4.

Then the np FS shown in Figure 5 for the noun phrase the 
at passes the QC test in 
onjun
tion

with the 
omplete QC-ve
tor in Figure 4, but the (slightly di�erent) FS for the 
ats wouldn't, due

to an (agreement) in
onsisten
y on the path �

3

(non-3sg vs. 3sg). The sorts non-3sg and 3sg are

both assumed subsorts of agr.

3 From pre-
omputed QC to 
ompiled QC

After getting the preComp ve
tors at 
ompilation time, we must �nd the right pla
e to put together

i. the QC-ve
tors 
omputation, and ii. the QC test within the 
ompiled rule's 
ode or, alternatively,

into the sequen
e 
ontaining a 
all to the rule's appli
ation.

Let us 
onsider  the FS 
orresponding to a rule and ' the FS (
orresponding to a passive item) to

be uni�ed with the next-to-be-parsed argument. For LinGO, whi
h deals only with binary and unary

rules,

1. for the rule's head-
orner/key argument, (i:) its QC asso
iated ve
tor is 
omputed at 
ompile time,

and (ii:) the QC test 
an be 
ompiled as a sequen
e of 
onditional statements of the form

if (glb( s

�

, QC

�

(') = ? ) return FALSE;

where s

�

= QC

�

( .key-arg) = preComp( .key-arg, �) is known at 
ompile time.



2

0

. if  is binary rule, and (after the QC test) ' uni�es su

essfully with the rule's head-
orner

argument, then before building (and saving) the 
orresponding environment, we have to (i:) 
ompute

the QC-ve
tor for the non-head-
orner argument:

8

set QC

�

( 

0

), t

�

where  

0

=  .non-key-arg and

t

�

= �(preComp( 

0

; �)) =

8

>

>

<

>

>

:

s if preComp( 

0

; �) = s : sort;

heap[X

i

℄.SORT if preComp( 

0

; �) = i : int; i � 0;

heap[path(�; j;X

j

)℄:SORT if preComp( 

0

; �) ={j : int; j > 0:

and path(�; j;  

0

) 
omputes the value for the path f

j+1

: ::: :f

n

inside the FS  

0

, starting from the node

X

j

. (Like in the previous se
tion, � = f

1

: ::: :f

n

.)

2

00

. if  is a binary rule, and ' is a 
andidate for its non-head-
orner argument, before restoring the

environment for the item 
orresponding to ', we have to (ii:) perform the QC test, in fa
t a sequen
e

of 
onditional statements of the following form, one for ea
h QC path �:

if (glb( QC

�

( .non-key-arg), QC

�

(') = ? ) return FALSE;

Note that QC

�

( .non-key-arg) was already 
omputed (see 2

0

).

3. if the rule  was su

essfully 
ompleted, then we have to (i:) 
ompute the \passive" QC-ve
tor

for the newly 
reated item/FS: we pro
eed like above (2

00

), with the single di�eren
e that instead

of preComp( 

0

; �) we have to 
onsider preComp

0

( ; �), where preComp

0

is 
omputed similarly to

preComp, but taking X as the set of all variables used in the rule's arguments (as already noti
ed at

the point 3 of the previous se
tion, when we presented the pre-
omputed QC-ve
tors).

Possible improvements

The QC test 
an be in
orporated into the fun
tions \en
apsulating" the rules 
ompiled 
ode as a

sequen
e of if statements. This would have the following advantages (whi
h further improve the

QC-�lter eÆ
ien
y):

� tests like >^ root(�), whi
h in fa
t 
orrespond to paths that are not fully de�ned in the argument

being 
urrently 
he
ked, must be eliminated sin
e they always su

eed;

� also, when using appropriateness 
onstraints [3℄, tests like s^ root(�:f) may be eliminated if s is

the maximal appropriate sort for the feature f ;

� 
ertain parts in the preComp ve
tors overlap; subje
t to the failure paths' order, the de�nition of

these ve
tors 
an be improved so to eliminate dupli
ate work:

if QC

�

( ) = heap[X

j

:f

j+1

: ::: :f

k

:f

k+1

: ::: :f

n

℄.SORT, and

QC

�

0

( ) = heap[X

j

:f

j+1

: ::: :f

k

:f

0

k+1

::: :f

0

m

℄.SORT, then QC

�

0

( ) 
an be 
omputed as

heap[Y

l

:f

j+l

: ::: :f

k

:f

0

k+1

::: :f

0

m

℄.SORT, where Y

l

is the last Y de�nable variable in the sequen
e

Y

1

= X

j

:f

1

; :::; Y

k

= Y

k�1

:f

k

is the sequen
e used to 
ompute QC

�

( );

9

� the sort glb tests (represented by the if statements) 
an be reordered, depending on the applied rule

and the type of the �ltered argument, be
ause most probable failure paths at the grammar-level are

not ne
essarily most probable failure paths for ea
h rule and argument.

8

This QC-ve
tor will be stored within the a
tive item 
orresponding to the head-
orner argument and will be used

for the QC test at the rule's 
ompletion attempt.

9

Note that the Y

1

= X

j

:f

1

; :::; Y

k

= Y

k�1

:f

k

sequen
e might not be entirely 
omputed.



Indeed, one of the main 
riti
s that 
an be addressed to the QC-�lter te
hnique in the form presented

in the beginning of this se
tion (and used as su
h in the LKB, PAGE and PET systems) is that it is

a grammar-level devised te
hnique, in the sense that the QC-paths to be tested are grammar+
orpus

dedu
ed, but they are not \personalised" at the rule and argument level. However, one 
an 
ompute

su
h QC-ve
tors so to be rule+argument dependent. A disadvantage still remaining is that the QC-

ve
tors asso
iated to a passive item (
ompleted rule) must 
ontain/
over all paths addressed by those

rules and arguments for whi
h that 
ompleted rule/passive item is a potential 
andidate. (Therefore

it is unlikely that the dimension of the \personalised" QC-ve
tors would be signi�
antly redu
ed.)

Evaluation and 
on
lusion

Without the Qui
k Che
k pre-uni�
ation �lter when running the LinGO grammar on the CSLI test

suite, the Light system s
ored 0.07 se
/senten
e. With Qui
k Che
k turned on, Light registered 0.04

se
/senten
e. The 
ompiled QC �lter in Light provided thus a speed-up fa
tor of 37%. The tests

were run on a SUN Spar
 server at 400MHz. The optimal set of failure paths 
ontained 43 paths with

lengths between 2 and 14 (features).

As expe
ted | and already explained in the introdu
tory se
tion | this fa
tor is lower than the

speed-up fa
tor of simple, interpreted QC (63% for PET) be
ause 
ompiled uni�
ation is already

signi�
antly faster than interpreted uni�
ation. Otherwise said, one has to keep in mind that in Light

the spe
ialised 
ompiled form of rules already speeds up signi�
antly the parsing, before applying

the QC �lter. However this fa
tor 
an be further in
reased by implementing the above mentioned

improvements.

Those improvements apply also to interpreter-like parsing systems, and the te
hnique for 
ompiling

the QC �lter here presented is in our opinion easily transferable to other 
ompilers for parsing with

uni�
ation-based grammars.

The outlined 
ompilation s
hema for the Qui
k Che
k pre-uni�
ation test is by no means HPSG

dependent. Moreover, it is basi
ally independent of the variant of (order-sorted) feature 
onstraint

logi
s that supports parsing/dedu
tion (whi
h in turn 
alls uni�
ation). In Light we used as logi


ba
kground the order- and type-
onsistent OSF-theories [5℄, a slightly more general 
lass of typed

feature stru
tures than that (of appropriate FSs) de�ned by [3℄. The te
hnique here presented 
an

therefore be applied to other systems dealing with typed-uni�
ation grammars like Amalia [18℄ [19℄

and LiLFeS.
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