
ON THE COMPLEXITY OF SOME EXTENSIONS OF

RCG PARSING

Eberhard Berts
h

Ruhr University

Fa
ulty of Mathemati
s

Universit�atsstra�e 150

D-44780 Bo
hum

Germany

eberhard.berts
h�ruhr-uni-bo
hum.de

Mark-Jan Nederhof

�

University of Groningen

Fa
ulty of Arts

P.O. Box 716

NL-9700 AS Groningen

The Netherlands

markjan�let.rug.nl

Abstra
t

We
onsider the parsing problem for range
on
atenation grammars (RCGs). Two new appli
ations

of RCG parsing are studied. The �rst is the parsing of �nite automata, the se
ond is string-to-string

transdu
tion, with an extension of RCGs. We show that these problems are unde
idable in general, but

be
ome tra
table for sub
lasses of the formalism.

1 Introdu
tion

Range
on
atenation grammar is a formalism that has a number of attra
tive theoreti
al and pra
ti
al

properties. First, the
lass of languages that
an be des
ribed by RCGs (the range
on
atenation

languages, or RCLs) equals the
lass PTIME of languages that
an be re
ognized in polynomial time;

RCGs share this property with a number of other formalisms su
h as ILFP [19℄.

1

This means that

the generative power of RCGs in
ludes that of e.g.
ontext-free grammars, tree-adjoining grammars,

and linear
ontext-free rewriting systems.

Se
ond, the
ombination of its expressiveness and its simpli
ity makes it attra
tive as intermediate

representation in the
onstru
tion of parsers for grammars in some other formalisms [4℄.

Third, it has been argued that it is suitable for des
ription of a number of natural language phe-

nomena [7℄.

Until now, studies of RCGs have
on
entrated on re
ognition of strings. However, most appli
ations

in NLP require more elaborate types of pro
essing. The obje
tive of this paper is to investigate two

extensions of RCG re
ognition of strings: interse
tion with regular languages, and transdu
tion both

for strings and regular languages as input.

The stru
ture of this paper is as follows. In the next se
tion we re
all the main de�nitions
onne
ted

to RCGs, and we present a simple re
ognition algorithm for strings. In Se
tion 3 we generalize this to

the interse
tion with regular languages and show that for arbitrary RCGs, the emptiness problem for

the interse
tion is unde
idable. It is, furthermore, NP-
omplete if the regular language is �nite and is

represented by a �nite automaton. We also show that the interse
tion
an be
omputed in polynomial

time provided we take an RCG satisfying a synta
ti
 restri
tion.

�

Supported by the Royal Netherlands A
ademy of Arts and S
ien
es. Se
ondary aÆliation is the German Resear
h

Center for Arti�
ial Intelligen
e (DFKI).

1

Also worth mentioning are the formalisms from [23, 16℄, whi
h des
ribe languages that are related through logspa
e

redu
tions to various other
omplexity
lasses besides PTIME.

The pra
ti
al interest of this lies e.g. in the realm of spoken-language systems, where grammati
al

pro
essing is often not applied on simple strings, but on a
ompa
t representation of many strings, in

the form of a (weighted) �nite automaton, whi
h is output by a spee
h re
ognizer.

Another generalization of RCG parsing is range
on
atenation transdu
tion, whi
h is investigated

in Se
tion 4. We show that this type of transdu
tion leads to unde
idable problems for un
onstrained

RCGs. However, by imposing synta
ti
 restri
tions similar to the one in the se
tion before, we obtain

tra
table algorithms.

Appli
ations of transdu
tion lie in ma
hine translation, but transdu
tion may also be used merely

to spe
ify more a

urately the desired output format of a parser.

In Appendix A we show that the
lass of languages generated by RCGs indeed equals PTIME.

2 Range Con
atenation Grammar

In this se
tion we de�ne positive range
on
atenation grammars. Sin
e we do not
onsider negative

RCGs in this paper, we will omit the quali�
ation `positive' before `RCG'. For more details we refer

to [9℄.

An RCG is a 5-tuple G = (N; T; V; P; S) where N is a �nite set of predi
ates, T and V are �nite,

disjoint sets of terminals and variables, respe
tively, S 2 N is the start predi
ate, and P is a �nite set

of
lauses of the form:

0

!

1

� � �

m

where m � 0 and ea
h of

0

,

1

, . . . ,

m

is a predi
ate expression of the form:

A(�

1

; : : : ; �

p

)

where A 2 N , p � 1 is the arity of the predi
ate expression, and ea
h argument �

i

, 1 � i � p, is an

element of (T [V)

�

. We assume ea
h predi
ate o

urs with only one arity. The start predi
ate has

arity 1.

Lower-
ase letters a; b; : : : will denote terminals, upper-
ase letters A;B; : : : will denote predi
ates,

and upper-
ase letters X;Y; : : : will denote variables. The empty string is denoted by �. A symbol

su
h as ~� will refer to a list of arguments in a predi
ate expression.

We say an RCG is a simple RCG (sRCG) if the arguments in the RHS of a
lause
onsist of single

variables, and ea
h variable in a
lause has exa
tly two o

urren
es: one in the RHS and one in the

LHS.

An example of a (simple) RCG is given by the following
lauses, whi
h we have labelled for ease of

referen
e:

1

: S(XY)! A(X;Y)

2

: A(Xa; Y a)! A(X;Y)

3

: A(Xb; Y b)! A(X;Y)

4

: A(�; �)! �

As we will explain, this grammar generates the language fww j w 2 fa; bg

�

g.

As for example in [3, 24℄, we
onsider the parsing problem as the
ombination of two steps. First,

we
onstru
t a
ontext-free grammar out of an RCG and an input string, in su
h a way that the CFG

an be seen as a
ompa
t representation of all parses of the string. The se
ond, optional step redu
es

the CFG, removing produ
tions that
annot be part of any derivation.

The nonterminals of the
ontext-free grammar have the form A((r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

p

; r

0

p

)), for

a predi
ate expression A(�

1

; : : : ; �

p

) from some
lause of the RCG, and a
ombination of numbers

r

1

; r

0

1

; r

2

; r

0

2

; : : : ; r

p

; r

0

p

, satisfying 0 � r

i

� r

0

i

� n (1 � i � p). In e�e
t, we repla
e the arguments by

pairs of numbers indi
ating ranges ; ranges represent o

urren
es of substrings in the input. The start

symbol is S((0; n)), where S is the start predi
ate from the RCG.

The produ
tions of the CFG are formed as follows. For ea
h
lause:

0

!

1

� � �

m

we
onsider all possible mappings from o

urren
es of terminals and from variables in the
lause to

pairs of positions (ranges), satisfying:

� if an o

urren
e of terminal a is mapped to a pair (r; r

0

), then a

r+1

� � � a

r

0

must be a, and

� if
onse
utive variables and o

urren
es of terminals in an argument are mapped to

(r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

q

; r

0

q

), some q, then r

0

1

= r

2

; r

0

2

= r

3

; : : : ; r

0

q�1

= r

q

. By de�nition, we then

state that the above-mentioned mapping maps the argument as a whole to range (r

1

; r

0

q

).

For ea
h su
h mapping, we now add to the
ontext-free grammar the produ
tion:

0

0

!

0

1

� � �

0

m

where ea
h

0

i

(0 � i � m) is obtained from

i

by repla
ing ea
h argument by the range it is mapped

to.

For the RCG from the running example and the input abab, we obtain produ
tions su
h as

S((0; 4)) ! A((0; 2); (2; 4)) from
lause

1

, A((0; 2); (2; 4)) ! A((0; 1); (2; 3)) from
lause

3

,

A((0; 1); (2; 3)) ! A((0; 0); (2; 2)) from
lause

2

, and A((0; 0); (2; 2)) ! � from
lause

4

. We also

obtain for example A((3; 3); (4; 4)) ! � from
lause

4

but this produ
tion will never be used. No

produ
tion A((0; 1); (3; 4)) ! A((0; 0); (3; 3)) will be produ
ed, sin
e the �rst and fourth symbols of

the input abab are distin
t, so neither

2

nor

3

an give rise to su
h a produ
tion.

If we now redu
e the CFG, then we obtain a non-empty grammar if and only if some derivation of

the empty string from S((0; n)) exists, and this de�nes whether the input string is in the language

generated by the RCG.

In the running example, the redu
tion would remove e.g. A((3; 3); (4; 4)) ! �, and in the re-

sulting grammar, the existen
e of the derivation S((0; 4)) ! A((0; 2); (2; 4)) ! A((0; 1); (2; 3)) !

A((0; 0); (2; 2))! � indi
ates that the input abab is indeed in the language generated by the grammar.

At the same time, this derivation assigns a stru
ture to the input. In this example, there is only one

derivation. If there are several, the CFG serves to represent all of them in a
ompa
t way.

Sin
e a
ontext-free grammar
an be redu
ed in linear time, the re
ognition and parsing problems

for an RCG
an be no more expensive than the
onstru
tion of the (unredu
ed)
ontext-free grammar

from the RCG and an input string. This time
omplexity is (deterministi
) polynomial in the length

of the string, and linear in the size of the RCG. See [9℄ for more information on RCG parsing.

2

It has been shown by [6℄ that the
lass of languages generated by simple RCGs equals the
lass of

languages that
an be des
ribed by the linear
ontext-free rewriting systems, whi
h is equal to the

2

However, the algorithm as formulated in Table 1 of [9℄ treats
y
les of
lauses in
orre
tly. The author
on�rmed

this in private
ommuni
ation, further
laiming to have developed a
orre
t version after publi
ation. The published

algorithm fails e.g. for the RCG with the
lauses: s(X) ! p(X) r(X), p(X) ! q(X), q(X) ! r(X), q(a) ! �,

r(X)! p(X); the re
ognizer will erroneously reje
t input a.

lasses of languages generated by the multiple
ontext-free grammars [21℄ and the �nite-
opying LFGs

[20℄.

3 Interse
tion with Regular Languages

It has been shown that the problem whether an RCG generates an empty language is unde
idable [8℄.

Sin
e L = L \ T

�

for ea
h RCL L, it is obvious that in general we
annot
onstru
t some des
ription

G

0

of a language L

0

= L \ R, where L is generated by an RCG and R is a regular language, in su
h

a way that the emptiness of L

0

an be de
ided on the basis of G

0

. In other words, the algorithm for

parsing strings in polynomial time that we investigated in the previous se
tion
annot be generalized

to parsing sets of strings, if those sets are arbitrary regular languages.

We
an simplify the task by
onstraining a regular language to be �nite, whi
h means that it is the

language a

epted by a
y
le-free �nite automaton, where we measure the time
omplexity in terms

of the size of the automaton (number of transitions). Now the problem be
omes de
idable, but it is

still NP-
omplete, whi
h is proved by the following.

We
an nondeterministi
ally
hoose a string of length smaller than the size of the automaton. We

an then
he
k in polynomial time whether the string is a

epted by the automaton and whether it

is in the language generated by the RCG, using the algorithm from the previous se
tion. This test

su

eeds for some string if and only if the interse
tion of the two languages is non-empty. Hen
e, our

problem is in NP.

To �nish our proof of NP-
ompleteness,
onsider the NP-
omplete problem 3SAT. An instan
e of

this problem
onsists of a
olle
tion U = fu

1

; : : : ; u

n

g of variables and a
olle
tion C = f

1

; : : : ;

m

g

of
lauses. If u 2 U then u and u are literals. A
lause

j

(1 � j � m) is a set fl

1

; l

2

; l

3

g of literals. A

truth assignment is a fun
tion t : U ! fT; Fg. For more explanation we refer to [11℄.

We will now de�ne a polynomial algorithm to
onstru
t an RCG from an instan
e of the 3SAT

problem, in su
h a way that the RCG a

epts the set of truth assignments satisfying this instan
e.

A truth assignment t will be en
oded as a string l

1

� � � l

n

, where l

i

= u

i

if t(u

i

) = T and l

i

= u

i

if

t(u

i

) = F , for 1 � i � n.

The RCG will have 2n terminals, viz. u and u, for ea
h u 2 U . For ea
h variable u

i

2 U (1 � i � n)

we
onstru
t two RCG
lauses A

i

(u

i

) ! � and A

i

(u

i

) ! � and for ea
h
lause

j

= fl

1

; l

2

; l

3

g

(1 � j � m) we
onstru
t three RCG
lauses B

j

(l

1

) ! �, B

j

(l

2

) ! � and B

j

(l

3

) ! � and the RCG

furthermore
ontains the
lause:

S(Y

1

� � �Y

n

) ! A

1

(Y

1

) � � � A

n

(Y

n

) B

1

(X

1

) � � � B

m

(X

m

)

Next, we
onstru
t a �nite automaton that a

epts the language fu

1

; u

1

g � : : : � fu

n

; u

n

g of all

possible truth assignments. This
an trivially also be done in polynomial time in the size of the

instan
e of the problem. It follows that the interse
tion of the languages des
ribed by the RCG and

the automaton is non-empty if and only if the instan
e of the problem has a solution. Thereby we have

shown that de
iding the emptiness problem for the interse
tion of RCLs and languages a

epted by

y
le-free �nite automata is at least as diÆ
ult as de
iding the 3SAT problem, and hen
e the former

problem is NP-
omplete.

To allow emptiness of the interse
tion with regular languages to be de
idable in polynomial time,

we simplify the problem by
onstraining the RCG to be a simple RCG, and we apply an idea originally

due to [3℄. Let us assume a regular language is given by a �nite automaton with initial state q

0

and a

set F of �nal states, and let us assume without loss of generality that there are no epsilon transitions.

For ea
h
lause in the sRCG we
onsider mappings from o

urren
es of terminals and from variables

to ranges as before, but now the ranges are pairs of states of the automaton, and the �rst
ondition

on su
h mappings is that if an o

urren
e of terminal a is mapped to a pair (r; r

0

), then there must

be a transition labelled a from state r to state r

0

. The se
ond
ondition remains as in Se
tion 2.

As before, ea
h su
h mapping gives rise to a produ
tion of a CFG. In addition, this CFG
ontains

one produ
tion S

y

! S(q

0

; q) for ea
h �nal state q 2 F , and the new symbol S

y

be
omes the start

symbol. The resulting CFG
an then be redu
ed, as before. Thereby the emptiness problem
an be

de
ided in polynomial time in the size of the �nite automaton.

4 Transdu
tion

A transdu
tion is a subset of T

�

1

�T

�

2

, where T

1

is an input alphabet and T

2

is an output alphabet. A

des
ription of a transdu
tion will be
alled a transdu
er. A transdu
er is a formal model of translation

between two languages, whi
h
an be expli
itly based on synta
ti
 stru
tures of varying
omplexity

depending on the kind of ma
hinery that is involved in the des
ription.

Two �nite automata that share some stru
tural properties may be
ombined to form a �nite trans-

du
er [5℄, and two similarly stru
tured CFGs may be
ombined to form a syntax-dire
ted translation

s
hema [1℄.

3

By the same prin
iple, we may
ombine two RCGs, and have them spe
ify a transdu
tion.

We
all su
h a
ombination of two RCGs a range
on
atenation transdu
er (RCT). The di�eren
e

from an RCG is that predi
ate expressions in
lauses have the form:

A(�

1

; : : : ; �

p

)(�

1

; : : : ; �

p

0

)

where A 2 N , p � 1 and p

0

� 1 are the input and output arities, and ea
h input argument �

i

(1 � i � p) and ea
h output argument �

i

(1 � i � p

0

) is an element of (T [V)

�

. We will assume that

ea
h variable o

urs either in input arguments or in output arguments, but not in both.

An example of an RCT is given by the following
lauses:

S(X

1

Y

1

)(X

2

Y

2

)! A(X

1

; Y

1

)(X

2

; Y

2

)

A(aX

1

; Y

1

a)(aX

2

; aY

2

)! A(X

1

; Y

1

)(X

2

; Y

2

)

A(bX

1

; Y

1

b)(bX

2

; bY

2

)! A(X

1

; Y

1

)(X

2

; Y

2

)

A(�; �)(�; �)! �

The transdu
tion it des
ribes is f(ww

R

; ww) j w 2 fa; bg

�

g. (The operator R in w

R

reverses its

argument string.) In other words, input palindromes are
hanged into output strings by reversing

their se
ond halves to produ
e two
onse
utive
opies of the same string.

The meaning of an RCT is spe
i�ed as follows. Given an input string a

1

� � � a

n

we form a grammar

by
onsistently repla
ing the input arguments by ranges, just as in the
ase of re
ognition as explained

in Se
tion 2, but now, be
ause the output arguments remain una�e
ted by this pro
ess, the resulting

grammar is an RCG. The predi
ate expressions in this RCG have the form

A((r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

p

; r

0

p

))(�

1

; : : : ; �

p

0

)

3

Consider also the
ombination of two tree-adjoining grammars to form a syn
hronous TAG [22℄. The approa
h from

[2℄ �ts less well into this
ontext, sin
e it is based on tree transformations that are inherently asymmetri
 with respe
t

to the relation between input and output.

where ea
h (r

i

; r

0

i

) indi
ates a range in the input string, as before, and A((r

1

; r

0

1

); (r

2

; r

0

2

); : : : ; (r

p

; r

0

p

))

in its entirety represents a predi
ate in the resulting RCG. The set of strings that this RCG generates

now represents the output of the transdu
er for input a

1

� � � a

n

.

The order of
omplexity of the above
onstru
tion is identi
al to that of RCG re
ognition, viz.

polynomial in the length of the input. However, the above
onstru
tion merely produ
es an RCG that

generates the set of output strings, but it does not in
lude the pro
ess of a
tually �nding any of those

output strings. In fa
t, it is unde
idable whether, for a given input string and a given RCT, the set

of output strings is empty. We will prove an even stronger statement: there is a �xed RCT su
h that

it is unde
idable whether, for a given input string, the set of output strings is empty.

The idea of this proof is to let the input string represent an instan
e of Post's
orresponden
e

problem (PCP) [18℄. For su
h an instan
e f(s

1;1

; s

1;2

); (s

2;1

; s

2;2

); : : : ; (s

m;1

; s

m;2

)g, where s

i;1

; s

i;2

2

fa; bg

�

(1 � i � m), the representation as input string is $s

1;1

#s

1;2

$s

2;1

#s

2;2

$:::$s

m;1

#s

m;2

$.

The RCT is su
h that the set of output strings is non-empty if and only if the instan
e of PCP

represented by the input has a solution. This RCT is given by the following set of
lauses:

S(Z)(Y)! Post(Z)(Y; Y)

Post(Z)(Y

1

; Y

2

)! Substrings(Z)(Y

1

; Y

2

)

Post(Z)(X

1

Y

1

; X

2

Y

2

)! Post(Z)(X

1

; X

2

) Substrings(Z)(Y

1

; Y

2

)

Substrings(Z

1

$X

1

#X

2

$Z

2

)(Y

1

; Y

2

)! Substring(X

1

)(Y

1

) Substring(X

2

)(Y

2

)

Substring(aX)(aY)! Substring(X)(Y)

Substring(bX)(bY)! Substring(X)(Y)

Substring(�)(�)! �

Please note that the argument Z in S(Z)(Y) represents the input, whi
h en
odes a spe
i�
 instan
e of

PCP, and Y represents a mat
h for the problem instan
e (if one exists). Through the use of predi
ate

Substring we ensure that pairs of strings
ontained in the instan
e of PCP are mat
hed appropriately

with subranges in the output Y .

Let us de�ne the left and right proje
tions of a transdu
tion T to be the sets fw j (w; v) 2 T g

and fv j (w; v) 2 T g, respe
tively. In the
ase of the RCT for PCP above, the left proje
tion is an

unde
idable language, and hen
e not in PTIME and not in the
lass of RCLs. This shows that the left

proje
tion of a range
on
atenation transdu
tion need not be a range
on
atenation language, and by

symmetry, the right proje
tion need not be an RCL either.

We will now
onsider two simpli�ed forms of RCT that allow tra
table transdu
tion. We �rst de�ne

a simple RCT (sRCT) as an RCT whi
h is su
h that both the input and output arguments in the

RHS of a
lause
onsist of single variables, and ea
h variable in a
lause has exa
tly two o

urren
es:

one in the RHS and one in the LHS. We de�ne a right-simple RCT (rsRCT) as an RCT whi
h is su
h

that the above restri
tion holds only on the output arguments and the variables o

urring therein.

Note that the left and right proje
tions of a simple RCT are simple RCLs. The sRCGs generating

these sRCLs are obtained by removing the output or input arguments, respe
tively, of the sRCT.

Similarly, the left proje
tion of a right-simple RCT is an RCL.

Using the transdu
tion algorithm from the beginning of this se
tion, we
an produ
e an RCG from

a right-simple RCT and an input string, in polynomial time, and this RCG is obviously also simple.

The same holds for a simple RCT and a �nite automaton as input, generalizing the
onstru
tion from

Se
tion 3. Let us refer to the simple RCG that results in either of these
ases as G.

The se
ond step is the redu
tion of the grammar G, of whi
h the time
ost is linear in the size of

G, whi
h is polynomial in the size of the input string or input automaton.

The next step is an analysis of G, whi
h will be used to avoid that the derivations we are going

to
ompute
ontain
y
les. We say an sRCG is
y
li
 if for some �xed string it allows derivations of

unbounded length. This is a generalization of the de�nition of
y
li
ity for CFGs [1℄. Our analysis is

similar to that for the variant of Earley's algorithm from [12℄.

For the analysis of
y
les, we �rst need to investigate whi
h predi
ates of the sRCG are nullable.

Nullable predi
ates are de�ned indu
tively as follows:

� If there is a
lause A(~�

0

)! B

1

(~�

1

) � � �B

m

(~�

m

), with m � 0, su
h that B

1

, . . . , B

m

are all nullable,

and the arguments in ~�

0

do not
ontain any terminals, then A is also nullable.

4

Similarly, non-empty predi
ates are de�ned indu
tively as follows:

� If there is a
lause A(~�

0

)! B

1

(~�

1

) � � �B

m

(~�

m

), with m � 0, su
h that at least one of B

1

, . . . , B

m

is non-empty, or if ~�

0

ontains a terminal, then A is non-empty.

We now add new
lauses by merging pairs of existing
lauses. The motivation is that with these

new
lauses, we
an avoid use of existing
lauses in su
h a way that they might lead to
y
les. The

following is to be repeated until no more new
lauses
an be added.

� Consider two
lauses A

0

(~�

0

) ! A

1

(~�

1

) � � �A

m

(~�

m

) and B

0

(~�

0

) ! B

1

(~�

1

) � � �B

m

0

(~�

m

0

) su
h that

A

i

= B

0

, for some i (1 � i � m), and A

1

, . . . , A

i�1

, A

i+1

, . . . , A

m

are all nullable, and ~�

0

does

not
ontain any terminals.

� Assume the sets of variables in these two
lauses are disjoint. (If not, rename the variables in the

�rst
lause.)

� Constru
t ~�

0

from ~�

0

, by repla
ing ea
h variable that o

urs in ~�

i

by the
orresponding argument

in ~�

0

, and by repla
ing ea
h variable that o

urs in ~�

1

, . . . , ~�

i�1

, ~�

i+1

, . . . , ~�

m

by �.

� Add the
lause A(~�

0

)! B

1

(~�

1

) � � �B

m

0

(~�

m

0

).

Note that ea
h RHS of a new
lause is the RHS of an existing
lause from G, and su
h a RHS
ontains

exa
tly as many variables as the output arguments of the RHS of some
lause from the original

(r)sRCT. The predi
ate of the LHS of a new
lause is an existing predi
ate from G. The terminals

in su
h a LHS o

ur together in the output arguments of the LHS of some
lause from the original

(r)sRCT, but they may be distributed in a di�erent way over the respe
tive arguments. Likewise,

for a �xed RHS, ea
h new
lause for that RHS may have its LHS variables (whi
h are the same as

the variables in the RHS) distributed in a di�erent way over the respe
tive arguments. But sin
e

we
onsider the sRCT as �xed, the number of di�erent distributions of variables and terminals over

the arguments does not play any role in the
omplexity analysis of the growth of the grammar by

the above transformation. Therefore, we only need to
onsider the RHSs and the LHS predi
ates.

We
on
lude that the grammar after the above transformation has a size quadrati
 in the size it had

before.

The �nal step is to show that we may e�e
tively extra
t ea
h output string from the resulting sRCG

by a nondeterministi
 pro
ess, indi
ated in Figure 1. This pro
ess operates by re
ursive-des
ent. From

4

Note that if m = 0 and ~�

0

does not
ontain any terminals, then A(~�

0

) is of the form A(�; : : : ; �), sin
e the grammar

is a simple RCG.

Pro
edure generate:

1. Nondeterministi
ally
hoose from steps 2 and 3 as far as they are appli
able.

2. Appli
able if the start predi
ate is non-empty: Let the return value be the string in the result of

alling routine generate-from with argument S.

3. Appli
able if the start predi
ate is nullible: Let the return value be �.

Pro
edure generate-from with argument A

0

:

1. Choose:

� a
lause A

0

(~�

0

)! A

1

(~�

1

) � � �A

m

(~�

m

), and

� two disjoint,
omplementing subsequen
es B

1

(

~

�

0

1

) � � �B

m

0

(

~

�

0

m

0

) and C

1

(

~

�

00

1

) � � �C

m

00

(

~

�

00

m

00

) of

A

1

(~�

1

) � � �A

m

(~�

m

) (i.e. m

0

+m

00

= m), where B

1

, . . . , B

m

0

are all non-empty and C

1

, . . . , C

m

00

are all nullible,

su
h that ~�

0

ontains one or more terminals or m

0

� 2.

2. Call the pro
edure generate-from re
ursively with argument B

1

, . . . , B

m

0

, respe
tively, and let

the returned tuples of strings be ~�

1

, . . . , ~�

m

0

.

3. Constru
t ~�

0

from ~�

0

by
onsistently repla
ing ea
h variable that o

urs in some

~

�

0

i

by the
orre-

sponding string in ~�

i

(1 � i � m

0

), and by repla
ing ea
h variable that o

urs in

~

�

00

1

, . . . ,

~

�

00

m

00

by

�.

4. Let the return value be ~�

0

.

Figure 1: Computing an output string from sRCG G.

the start predi
ate, we des
end the grammar, �nding tuples of strings for RHS predi
ate expressions

that we
on
atenate into tuples of larger strings for LHS predi
ate expressions.

It
an be easily seen that the number of in
arnations of pro
edure generate-from is linear in

the length of the output string, sin
e ea
h in
arnation is responsible either for the generation of a

terminal, if the LHS of the
lause
ontains a terminal, or it is responsible for the joining of tuples

obtained re
ursively for members in the RHS of the
lause, su
h that at least two of these tuples ea
h

ontain at least one non-empty substring. The number of in
arnations
an thereby not ex
eed twi
e

the length of the output string.

Apart from the use of G for nondeterministi
 generation of output strings, it may also be used

to de
ide the emptiness and membership problems for the output language, as follows. The output

language is empty if and only if G be
omes the empty grammar after redu
tion. Membership of a

parti
ular string in the output language
an be de
ided by applying the general re
ognition algorithm

for RCGs from Se
tion 2.

Complexity theory provides us with many language
lasses that are
hara
terized through automa-

ton models and their restri
tions by time and spa
e bounds. One su
h important
lass is PTIME, and

we know that this
lass is exa
tly the
lass of languages generated by RCGs.

Less seems to be known about
hara
terizations of
lasses of transdu
tions through
omplexity

measures. Although simple RCTs and right-simple RCTs have apparently favourable
omplexity

properties, it seems diÆ
ult to
apture these properties in formal terms. The algorithm in Figure 1

an for example be des
ribed in terms of some appropriate nondeterministi
 RAM model with linear

time bounds [13℄, but sin
e su
h models allow NP-
omplete languages, it seems they are too
ourse

for our purposes.

From an algorithmi
 point of view, the most obvious implementation of a transdu
tion is as a test

of membership for pairs, ea
h
onsisting of an input and an output string. In this se
tion we have

hosen another approa
h whereby an input string is
onsidered in isolation and pro
essed to produ
e

the grammar G, to be used in a later phase for identifying mat
hing output strings. This amounts

to a form of prepro
essing for the above-mentioned membership test, and thereby the algorithms in

this se
tion
an be seen in the light of some theory of
ompilability [10℄. Further resear
h is needed

to de
ide whether appli
ation of su
h theory may lead to more a

urate
hara
terizations of types of

range
on
atenation transdu
tion in terms of automaton models and
omplexity measures.

5 Con
lusions

The
lass of range
on
atenation grammars introdu
ed by Pierre Boullier was previously shown to

provide ease of expression in des
riptions of linguisti
 phenomena and to allow, by means of natural

sub
lasses,
omparison with other formalisms known from the
omputational linguisti
s literature.

Furthermore, the
omplexity
lass PTIME known from theoreti
al
omputer s
ien
e is identi
al with

the
lass of RCLs, as demonstrated in the appendix to this paper. The main
ontribution of the present

arti
le
onsists in extending the RCG
on
ept in two dire
tions that seem natural from the point of

view of phrase-stru
ture grammars, but have not been studied in an RC
ontext before: parsing of

representations of regular languages, and grammar-based transdu
tion. The essential results
an be

summarized by stating that both problems be
ome tra
table by
onstraining grammars to be `simple'.

A
knowledgements

Giorgio Satta
ontributed to the proof in Appendix A, and made several helpful remarks on the
ore

ideas of the paper. Pierre Boullier kindly provided referen
es to publi
ations.

Referen
es

[1℄ A.V. Aho and J.D. Ullman. Parsing, The Theory of Parsing, Translation and Compiling, vol-

ume 1. Prenti
e-Hall, 1972.

[2℄ B.S. Baker. Generalized syntax dire
ted translation, tree transdu
ers, and linear spa
e. SIAM

Journal on Computing, 7(3):376{391, 1978.

[3℄ Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase stru
ture gram-

mars. In Y. Bar-Hillel, editor, Language and Information: Sele
ted Essays on their Theory and

Appli
ation,
hapter 9, pages 116{150. Addison-Wesley, 1964.

[4℄ F. Barth�elemy et al. Guided parsing of range
on
atenation languages. In 39th Annual Meeting

and 10th Conferen
e of the European Chapter of the ACL, pages 42{49, 2001.

[5℄ J. Berstel. Transdu
tions and Context-Free Languages. B.G. Teubner, Stuttgart, 1979.

[6℄ P. Boullier. Proposal for a natural language pro
essing synta
ti
 ba
kbone. Rapport de re
her
he

3342, INRIA, Ro
quen
ourt, Fran
e, January 1998.

[7℄ P. Boullier. Chinese numbers, MIX, s
rambling, and Range Con
atenation Grammars. In Ninth

Conferen
e of the European Chapter of the ACL, pages 53{60, 1999.

[8℄ P. Boullier. A
ubi
 time extension of
ontext-free grammars. In Sixth Meeting on Mathemati
s

of Language, pages 37{50, Orlando, Florida USA, July 1999. University of Central Florida. Also

appeared in Grammars, 3:111-131, 2000.

[9℄ P. Boullier. Range Con
atenation Grammars. In Pro
eedings of the Sixth International Workshop

on Parsing Te
hnologies, pages 53{64, Trento, Italy, February 2000.

[10℄ M. Cadoli et al. Prepro
essing of intra
table problems. DIS 24-97, Dipartimento di Informati
a e

Sistemisti
a, Universit�a di Roma \La Sapienza", November 1997. To appear in Information and

Computation, 2001(?).

[11℄ M.R. Garey and D.S. Johnson. Computers and Intra
tability | A Guide to the Theory of NP-

Completeness. Freeman and Company, 1979.

[12℄ S.L. Graham, M.A. Harrison, and W.L. Ruzzo. An improved
ontext-free re
ognizer. ACM

Transa
tions on Programming Languages and Systems, 2(3):415{462, July 1980.

[13℄ E. Grandjean. Linear time algorithms and NP-
omplete problems. SIAM Journal on Computing,

23(3):573{597, 1994.

[14℄ A. Groenink. Surfa
e without Stru
ture { Word order and tra
tability issues in natural language

analysis. PhD thesis, University of Utre
ht, 1997.

[15℄ A.V. Groenink. Mild
ontext-sensitivity and tuple-based generalizations of
ontext-grammar

(si
). Linguisti
s and Philosophy, 20:607{636, 1997.

[16℄ N. Immerman. Relational queries
omputable in polynomial time. In Pro
eedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, pages 147{152, 1982.

[17℄ K.N. King. Alternating multihead �nite automata. Theoreti
al Computer S
ien
e, 61:149{174,

1988.

[18℄ H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prenti
e-Hall,

1981.

[19℄ W.C. Rounds. LFP: A logi
 for linguisti
 des
riptions and an analysis of its
omplexity. Compu-

tational Linguisti
s, 14(4):1{9, 1988.

[20℄ H. Seki et al. Parallel multiple
ontext-free grammars, �nite-state translation systems, and

polynomial-time re
ognizable sub
lasses of lexi
al-fun
tional grammars. In 31st Annual Meeting

of the ACL, pages 130{139, 1993.

[21℄ H. Seki et al. On multiple
ontext-free grammars. Theoreti
al Computer S
ien
e, 88:191{229,

1991.

[22℄ S.M. Shieber. Restri
ting the weak-generative
apa
ity of syn
hronous tree-adjoining grammars.

Computational Intelligen
e, 10(4):371{385, 1994.

[23℄ M.Y. Vardi. The
omplexity of relational query languages. In Pro
eedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, pages 137{146, 1982.

[24℄ K. Vijay-Shanker and D.J. Weir. The use of shared forests in tree adjoining grammar parsing.

In Sixth Conferen
e of the European Chapter of the ACL, pages 384{393, 1993.

A The Class of RCLs Equals PTIME

In Se
tion 2 we saw that the RCLs are in
luded in PTIME. For the
onverse result, that ea
h language

in PTIME is generated by an RCG, no
omplete proof has yet appeared in print. RCG and ILFP

di�er substantially so that the proof from [19℄
annot be easily adapted to RCG, and a proof in [14,

Chapter 5℄ for simple LMG, whi
h is
losely related to RCG, is in
omplete and also the proof in [15℄

is far from expli
it; furthermore, the proof of equivalen
e of simple LMG and iLFP via iLMG in [14,

pp. 102 and 106℄ does not suÆ
e either sin
e Groenink's iLFP di�ers from Rounds' ILFP in a number

of respe
ts. Instead of revising any of the above proofs, we give a new proof that does not
onsider

any other grammati
al formalism than RCG.

Our proof
onsists of two steps. First, in [17℄ it is shown that PTIME equals the
lass of languages

a

epted by two-way alternating �nite automata with k heads.

5

Se
ond, we show that for any two-

way alternating �nite automaton with k heads, we
an
onstru
t an equivalent RCG. In this RCG,

existential states are modelled by having several
lauses for a predi
ate and universal states are

modelled by having a
onjun
tion of predi
ate expressions in the RHS of a single
lause. The RCG

has 2

k

predi
ates per state, and in addition there is a start predi
ate S, a predi
ate symbol de�ned by

one
lause symbol(a)! � for ea
h symbol a 2 T , and a predi
ate equal de�ned by equal(X;X)! �.

A predi
ate for a state q will have arity k + 1 and will have the form q

~

b

, where

~

b 2 f0; 1g

k

. The

use of su
h a predi
ate in a predi
ate expression represents a
on�guration of the automaton. Ea
h

of the k symbols of

~

b is 1 if and only if the
orresponding tape head would be positioned on the

start-of-senten
e marker
. Ea
h of the �rst k arguments will represent a suÆx of the input, i.e. a

range (i; n), indi
ating the following properties of the
orresponding tape head:

� If the
orresponding symbol from

~

b is 0, then the tape head would be on position i+2. This means

the tape head would be positioned on the end-of-senten
e marker $ if i = n.

� If the
orresponding symbol from

~

b is 1, then the tape head would be positioned on the �rst symbol

of the tape, i.e. the start-of-senten
e marker
. (This will only o

ur if i = 0.)

The last argument will be the
omplete input string (i.e. the range (0; n)) throughout.

There is one
lause de�ning the start predi
ate:

S(X)! q

1

k

0

(

k

z }| {

X; : : : ;X;X)

where q

0

is the initial state of the automaton. This indi
ates that all tape heads are initially on the

start-of-senten
e marker
.

5

In an alternating automaton, a given state
an be either \existential" or \universal". The former notion expresses

the ne
essity of
ontinued
omputation via one of the available su

essor
on�gurations, whi
h amounts to traditional

nondeterminism, while the latter requires su

essful
omputation via all su
h
on�gurations. The type of alternating

�nite automaton
onsidered here has a

ess to a read-only tape through k heads that
an ea
h move independently in

both dire
tions. The tape
ontains the start-of-senten
e marker
, followed by the input, followed by the end-of-senten
e

marker $.

We re
all that a two-way alternating �nite automaton with k heads has a head sele
tor fun
tion

� that maps the
urrent state p to a tape number j. The j-th tape head reads a symbol a and the

transition fun
tion Æ is applied on the pair (p; a) to yield a set of pairs (q; d), where q is a next state

and d 2 f�1; 0; 1g en
odes a movement of the j-th tape head.

For ea
h existential state p, ea
h a 2 T , and ea
h

~

b = b

1

� � � b

k

2 f0; 1g

k

su
h that �(p) = j and

b

j

= 0, and for ea
h pair (q; d) 2 Æ(p; a) su
h that d = 0, the grammar has one
lause of the form:

p

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)! q

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)

For ea
h pair (q; d) 2 Æ(p; a) su
h that d = 1, we have an identi
al
lause ex
ept that the RHS

argument expression
ontains X

j

instead of aX

j

, to indi
ate the tape head has shifted one position

to the right. If d = �1, then the grammar
ontains the
lauses:

p

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)! symbol(Y) q

~

b

(X

1

; : : : ; X

j�1

; Y aX

j

; X

j+1

; : : : ; X

k

; X)

p

~

b

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)! equal(aX

j

; X) q

~

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)

where ~
 is
onstru
ted from

~

b by
hanging the j-th symbol to 1, whi
h indi
ates the j-th tape head is

now positioned on the start-of-senten
e marker. Note that if aX

j

is equal to X, whi
h represents the

entire input string, then this means that the tape head would be on the se
ond position just before

applying the transition.

For ea
h existential state p, a = $, and ea
h

~

b = b

1

� � � b

k

2 f0; 1g

k

su
h that �(p) = j and b

j

= 0,

and for ea
h pair (q; d) 2 Æ(p; a) su
h that d = 0, the grammar has one
lause of the form:

p

~

b

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)! equal(X

j

; �) q

~

b

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)

The
ase a = $, b

j

= 0 and d = �1 is left to the imagination of the reader. For the
ase a =
 and

b

j

= 1, we have the
lause:

p

~

b

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)! q

~

(X

1

; : : : ; X

j�1

; X

j

; X

j+1

; : : : ; X

k

; X)

where ~
 =

~

b if d = 0, and if d = 1 then ~
 is
onstru
ted from

~

b by
hanging the j-th symbol to 0.

For ea
h universal state p, ea
h a 2 T , and ea
h

~

b = b

1

� � � b

k

2 f0; 1g

k

su
h that �(p) = j and

b

j

= 0, the grammar has two
lauses, one
lause to model the
ase that the j-th tape head is at

least two positions away from the start-of-senten
e marker
, and one for the
ase that the head

is immediately next to
. Both
lauses have the same LHS, whi
h is as in the
ase of existential

states. The RHS of the �rst
lause starts with symbol(Y) and the se
ond with equal(aX

j

; X). For

ea
h (q; d) 2 Æ(p; a), ea
h of the two RHSs has one further predi
ate expression. For d = �1, this

is q

~

b

(X

1

; : : : ; X

j�1

; Y aX

j

; X

j+1

; : : : ; X

k

; X) for the �rst, and q

~

(X

1

; : : : ; X

j�1

; aX

j

; X

j+1

; : : : ; X

k

; X)

for the se
ond
lause, where ~
 is as for existential states. Other
ases are left to the imagination of

the reader.

If a state p is �nal, then for all

~

b 2 f0; 1g

k

, the grammar also
ontains the
lause:

p

~

b

(X

1

; : : : ; X

k

; X)! �

This
on
ludes the proof.

