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In this paper, we will show that the performance of
vector-based semantic analysis can be improved by
considering basic linguistic structures in the data—
e.g. morphology. For this purpose, we have used a
new method for vector-based semantic analysis
that computes semantic word vectors based on
distributed representations by means of random
labeling of words in narrow context windows. This
form of representation is more natural than
previously reported techniques, and, as we will
show, equivalent or even superior in performance
when subjected to a standardized synonym test.
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The use of vector-based models of information for the
purpose of semantic analysis is an area of research that
has gained substantial recognition over the last decade.
Pioneering techniques such as Latent Semantic
Analysis (LSA; Landauer & Dumais, 1997) and
Hyperspace Analogue to Language (HAL; Lund &
Burgess, 1996) have demonstrated the viability of
computing semantic word vectors from the co-
occurrence statistics of words in large text data.

However, the prevailing techniques have been
almost exclusively statistical, and consequently paid
little or no attention to the linguistic structures of the
data used in the experiments. This negligence regarding
linguistics has, of course, been at least partly deliberate,
as one of the primary goals of the techniques has been
to develop representations of word meanings from text
data “ that was minimally preprocessed, not unlike
human human-concept acquisition”  (Burgess & Lund,
1998).

LSA and HAL are both purely statistical methods
that treat the text data simply as a bag-of-words in
which the only relevant piece of structural information
is the words-by-contexts co-occurrence frequencies.
What separates the two approaches is their treatment
and conception of ���a�a�  ¢¡6� . In LSA, the text data is
represented as a words-by-documents co-occurrence
matrix where each cell indicates the frequency of a
given word in a given text sample of approximately
150 words. The frequencies are normalized, and the
normalized matrix is transformed with Singular Value
Decomposition (SVD) into a smaller matrix with
reduced dimensionality. The purpose of using SVD to
reduce the dimensions of the normalized frequency

matrix is that this operation appears to accomplish
inductive effects that capture latent semantic
structures in the text data. Words are thus
represented in the reduced matrix by semantic
vectors of £  dimensionality (300 proving to be
optimal in Landauer & Dumais’  (1997)
experiments).

In HAL, the data is represented as a words-by-
words co-occurrence matrix where each cell
indicates the co-occurrence counts for a single
word pair (a word pair being an asymmetrical
relation so that “ ¤¢¥ ”  and “¦6§ ”  represent different
entries in the matrix). Each word is thus
represented in the matrix by both a row and a
column, and these row/column pairs may be
concatenated to produce a co-occurrence vector for
each word. Assuming an ¨  × ©  co-occurrence
matrix, words are thus represented as semantic
vectors of 2ª  dimensionality.

The point in all of this is that the word vectors
capture relative meaning, thereby deserving the
epithet “semantic” . The semantic content is relative
rather than absolute since it is only in relation to
each other that the vectors «�¬�­a®  anything, so
semantic similarity between words can be
established by comparing the vectors with each
other. That the vectors in this way capture word
meaning has been verified in a number of
experiments where the high-dimensional vectors
are used for executing different kinds of linguistic
tasks pertaining to semantic knowledge, such as
passing a standardized synonym test (Landauer &
Dumais, 1997), comparing vector similarities with
reaction times from lexical priming studies (Lund
& Burgess, 1996), or evaluating the quality of
content of student essays on given topics
(Landauer, Laham, Rehder & Schreiner, 1997).
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We have studied the use of high-dimensional
random distributed representations for
accumulating a words-by-contexts co-occurrence
matrix from which semantic word vectors can be
extracted. In Kanerva, Kristofersson & Holst
(2000), 1,800-dimensional semantic word vectors
were computed using 1,800-dimensional sparse
random » ¼a½a¾¢¿ À6¾�Á�Â ÃÅÄ�Æ  representing documents of
approximately 150 words each. The index vectors
were accumulated into a words-by-contexts matrix
by adding a document’s index vector to the row for
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a given word every time the word appeared in that
document. This Random Indexing method is
comparable to LSA except that the resulting matrix is
significantly smaller than the words-by-documents
matrix of LSA, since the dimensionality of the index
vectors is smaller than the number of documents. By
comparison, assuming a vocabulary of 60,000 words
divided into 30,000 text samples, LSA would represent
the data in a 60,000 × 30,000 words-by-documents
matrix, whereas the matrix in Random Indexing would
be 60,000 × 1,800, when 1,800-dimensional index
vectors are used. This seems to accomplish the same
inductive effects as those attained in LSA by applying
SVD to the matrix, but in a more efficient way.

In the present experiment, the high-dimensional
random vectors of Random Indexing have been used to
index words and to calculate semantic word vectors by
means of ÇaÈÅÉ�ÉËÊÅÌ  context windows consisting of only a
few adjacent words on each side of the focus word. As
an example, imagine that the number of adjacent words
in the context window is set to two. This would imply a
window size of five space-separated linguistic units, i.e.
the focus word and the two words preceding and
succeeding it—a what we may call a “2 + 2 sized”
context window. Thus, the context for the word Í Î  in
the sentence Ï�ÐaÑ ÒÔÓ�ÕÅÖ�ÖË×aØÙÑ ÒÛÚa×
Ü�×ÅÖËÝ would be “This
parrot”  and “no more,”  as denoted by:

[(This parrot) is (no more)]

The reason for using narrow context windows as
opposed to whole documents is the assumption that the
semantically most significant context is the immediate
vicinity of a word. Computing semantic word vectors
using random indexing of words in narrow context
windows is done by first assigning an Þ -dimensional
sparse random vector called a ßËàaáaâaãaä¶å àaæaç�å  to each
word type in the text data. These random labels have a
small number è  of randomly distributed –1s and +1s,
with the rest set to 0. The present experiment has
utilized 1,800-dimensional random labels with é  = 8.7
(±2.9). Thus, a label might have, for example, four –1s
and five +1s.

Next, every time a given word—the focus word ê�ë —
occurs in the text data, the labels for the words in its
context window are added to its ì�íFîaï ð¢ñ6ïOò6ð�ì�ï íÅó . For
example, assuming a 2 + 2 sized context window as
represented by:

[(ôÔõ -2 öÔ÷ -1) ø�ù  (úÔû +1 üÔý +2)]

the context vector of þ�ÿ  would be updated with:
�

(��� -2) + � (��� -1) + � (��	 +1) + 
 (��� +2)

where 
 (� ) is the random label of � . This summation
has also been weighted to reflect the distance of the
words to the focus word. The weights were distributed
so that the words immediately preceding and
succeeding the focus word would get more significance
in the computation of the context vectors. For the four
different window sizes used in these experiments, the
window slots were given weights as follows:

1 + 1: [(1) 0 (1)]
2 + 2: [(0.5, 1) 0 (1, 0.5)]
3 + 3: [(0.25, 0.5, 1) 0 (1, 0.5, 0.25)]
4 + 4: [(0.1, 0.1, 0.1, 1) 0 (1, 0.1, 0.1, 0.1)]

where the 0 in the middle represents the focus
word.

This method is comparable to HAL, except that
we use ��� ��� ��� ����� ���  representations that are more
“brainlike,”  efficient and scalable. By comparison,
assuming a vocabulary of 60,000 words, the HAL
vectors would be (2 × 60,000) 120,000-
dimensional, whereas our vectors are only 1,800-
dimensional, regardless of the size of the
vocabulary. Also, we use somewhat smaller
context windows to capture the meaning of words.
For example, in Burgess & Lund (1998), a context
window spanning 10 words were used, whereas we
found in our experiments that the performance of
the method degrades significantly when the
window size exceeds an upper limit of 4 + 4 words.
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Up to this point, the only structural relations of
language that are utilized in the creation of the
context vectors by the above-described techniques
are the distributional patterns of linguistic entities.
Since there are more complex structural features of
language (like morphology and part-of-speech
information, e.g.) that may very well be significant
for uncovering semantic information, it seems
unmotivated not to take these features into account.
By introducing linguistic information to the
system, we would have the opportunity to
investigate whether or not this addition of
structural information enhances the performance of
vector-based semantic analysis.

First, a naïve form of morphological analysis
was tested. By simply truncating the word tokens at
a predefined number of letters one would hope to
approximate word stems. Truncation lengths of 6,
8, 10 and 12 were investigated. A more reliable and
linguistically established way of extracting the
word stems of each word token is, of course, to use
a parser. In our experiments, the Conexor FDG-
parser was used. The point in using morphological
analysis is to convert word tokens into word types,
thus reducing the vocabulary and thereby
compressing the words-by-context matrix. By
comparison, the complete vocabulary when no
preprocessing has occurred is, in our text data,
94,000 words, and when truncating the words after
eight characters 79,000.

In an attempt to resolve problems due to
ambiguity, the morphologically analyzed text was
also marked with part-of-speech information. Since
the system (without linguistic information) is
insensitive to different semantic meaning with two
or more identical word representations (e.g. the
verb and the noun “roll” ), it will create the exact
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same entry in the matrix for them both. By appending
to the beginning of every word a part-of-speech tag
consisting of one letter, this ambiguity will be
remedied. In this way the verb “roll”  would be “vroll”
and the respective noun would be “nroll,”  allowing the
system to produce different entries in the matrix for the
originally same word representations depending on
which part-of-speech the representation in question
affiliates to.
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The technique was evaluated on a ten-million-word
balanced corpus of unmarked English with the help of a
vocabulary test, TOEFL (Test Of English as a Foreign
Language). This is a standardized test employed by, for
example, American universities to survey foreign
applicants’  knowledge of the English language. In the
synonym finding part of the test, the test taker is asked
to find the synonyms to certain given words. For each
given word, a multiple-choice answering suggestion of
four alternatives is provided, where one alternative is
the intended synonym, and is supposed to be indicated
by the test person. In the present experiment, 80 test
items of this type have been used.

Table 1: Average results (±1.5) given in percent of
correct answers to the TOEFL-test, where Tr. means
truncation length, WS means word stems and PoS+WS
means part-of-speech tagged word stems.

Context WindowLinguistic
Analysis 1 + 1 2 + 2 3 + 3 4 + 4

Average
(J 0.73)

None 64.5 67 65.3 65.5 65.6
Tr. 6 55 57.5 57.3 55.3 56.3
Tr. 8 61.5 64.3 62 63.3 62.8
Tr. 10 66 68.5 66.3 66.3 66.8
Tr. 12 64.8 65.3 63.8 64.8 64.6
WS 63.5 70.8 72 66 68.1
PoS+WS 66 64.5 65 65.5 65.3
Average
(K 0.56)

63.0 65.4 64.5 63.8

The numbers in the cells of Table 1 are the average
results of five runs. The standard deviation for these
results is 1.5. For the average result of each context
window, the standard deviation is 0.56, and for the
average of each “ linguistic parameter”  0.73. All results
are given in percent of correct answers to the TOEFL-
test. By comparison, tests with LSA on the same text
data, using the LSIBIN program from Telecordia
Technologies, produced top scores at 600 factors of
58.75% using the unnormalized matrix, and 65% using
a normalized one. The average result reported by
Landauer & Dumais (1997) with LSA (using
normalization and different text data) is 64.4%, and
foreign (non-English speaking) applicants to U.S.
colleges average 64.5%.

The results from our experiments show that by
using high-dimensional random distributed

representations to label words in narrow context
windows, it is possible to reach a result on a
standardized synonym test that is equivalent with
the performance of previously reported techniques.
Without using linguistic information, the system
averages 65.6%. However, when supplying
morphological information in the form of carefully
applied truncation (using a truncation length of 10
characters), the system’s average result increases to
66.8% correct answers. When using stemming of
the words, the result is even better, with an average
of 68.1% correct answers to the synonym part of
TOEFL.

Adding part-of-speech information does not
further improve the performance reached when
using carefully applied truncation or proper word-
stem analysis. The average result when adding
part-of-speech information drops to 65.3%. This
might be an effect of the increase in the number of
unique words in the text data that is the
consequence of supplying part-of-speech
information for each word.

That the inclusion of morphology in the form of
proper word-stem analysis or carefully applied
truncation yields the best overall results indicates
that taking advantage of other inherent structural
relations in text, in addition to the distributional
patterns of linguistic entities, really might be
significant for uncovering semantic information.
We thus conclude that the performance of vector-
based semantic analysis benefits from the
implementation of linguistic information.
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