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Abstract

One of the particular characteristics
of text classificationtasksis that they
presentlarge classimbalances.Sucha
problemcaneasilybetackledusingre-
samplingmethods.However, although
theseapproachesareverysimpleto im-
plement,tuning them most effectively
is not an easy task. In particular,
it is unclearwhetheroversamplingis
moreeffective thanundersamplingand
which oversamplingor undersampling
rateshouldbeused.Thispaperpresents
a methodfor combiningdifferent ex-
pressionsof the re-samplingapproach
in amixtureof expertsframework. The
proposedcombinationschemeis evalu-
atedonavery imbalancedsubsetof the
REUTERS-21578text collectionandis
shown to be very effective on this do-
main.

1 Intr oduction

A typical useof MachineLearningmethodsin
thecontext of NaturalLanguageProcessingis in
the domainof text classification.Unfortunately,
several characteristicsspecificto text datamake
its classificationa difficult problemto handle.In
particular, thedatais typicallyhighlydimensional
andit presentsa largeclassimbalance,i.e., there,
typically, arevery few documentson thetopic of
interestwhile texts on unrelatedsubjectsabound.
Furthermore,althoughlargeamountsof texts are
availableon line, little of themarelabeled. Be-
causethe classimbalanceproblemis known to
negatively affect typical classifiersand because

unlabeleddatahave no placein conventionalsu-
pervisedlearning,usingoff-the-shelfsupervised
classifiersis likely not to be very successfulin
the context of text data. It is, instead,recom-
mendedto devisea classificationmethodspecifi-
cally tunedto thetext classificationproblem.

The purposeof this studyis to target someof
thecharacteristicsof text datain thehopeof im-
proving theeffectivenessof theclassificationpro-
cess. The topics of finding a good representa-
tion for text dataand dealing with its high di-
mensionalityhave been investigatedpreviously
with, for example,theuseof Wordnet[e.g.,(Scott
& Matwin, 1999)]andSupportVectorMachines
[e.g.,(Joachims,1998)],respectively. Wewill not
beaddressingtheseproblemshere.Thequestion
that we will tackle in this paper, instead,is that
of dealingwith the classimbalance,and, in the
processof doingso,thatof finding a way to take
advantageof theextra,albeit,unlabeleddatathat
areoftenleft unusedin classificationstudies.1

Several approacheshave previously beenpro-
posedto dealwith the classimbalanceproblem
includingasimpleandyetquiteeffectivemethod:
re-sampling[e.g., (Lewis & Gale,1994),(Kubat
& Matwin,1997),(Domingos,1999)].Thispaper
dealswith the two differenttypesof re-sampling
approaches:methodsthat oversamplethe small
classin orderto make it reacha sizecloseto that
of thelargerclassandmethodsthatundersample
the large classin order to make it reacha size
closeto that of the smallerclass. Becauseit is
unclearwhetheroversamplingis more effective
than undersamplingand which oversamplingor
undersamplingrateshouldbeused,we proposea

1Note,however, thatunlabeleddatais notalwaysleft un-
usedas in the work on co-learningof (Blum & Mitchell,
1998). As discussedbelow, however, our approachwill
make useof theunlabeleddatain adifferentway.



methodfor combininganumberof classifiersthat
oversampleand undersamplethe dataat differ-
ent ratesin a mixtureof expertsframework. The
mixture-of-expertsis constructedin thecontext of
adecisiontreeinductionsystem:C5.0,andall re-
samplingis donerandomly. This proposedcom-
binationschemeis, subsequently, evaluatedon a
a subsetof the REUTERS-21578text collection
andis shown to beveryeffective in thiscase.

The remainderof this paper is divided into
four sections. Section 2 describesan experi-
mental study on a seriesof artificial data sets
to explore the effect of oversamplingandunder-
samplingandoversamplingor undersamplingat
different rates. This study suggestsa mixture-
of-expertsschemewhich is describedin Section
3. Section4 discussestheexperimentconducted
with that mixture-of-expertsschemeon a series
of text-classificationtasksanddiscussestheir re-
sults.Section5 is theconclusion.

2 Experimental Study

We begin this work by studying the effects of
oversamplingversus undersamplingand over-
samplingor undersamplingatdifferentrates.2 All
theexperimentsin this partof thepaperarecon-
ductedoverartificialdatasetsdefinedoverthedo-
main of 4 x 7 DNF expressions,wherethe first
numberrepresentsthe numberof literals present
in eachdisjunctandthesecondnumberrepresents
the numberof disjunctsin eachconcept.3 We
usedan alphabetof size 50. For eachconcept,
we createda trainingsetcontaining240 positive
and6000negative examples.In otherwords,we

2Throughoutthis work, we considera fixed imbalance
ratio,afixednumberof trainingexamplesandafixeddegree
of conceptcomplexity. A thoroughstudyrelatingdifferent
degreesof imbalanceratios, training setsizesandconcept
difficulty waspreviously reportedin (Japkowicz, 2000).

3DNF expressionswere specificallychosenbecauseof
their simplicity aswell astheir similarity to text datawhose
classificationaccuracy we are ultimately interestedin im-
proving. In particular, like in thecaseof text-classification,
DNF conceptsof interest are, generally, representedby
much fewer examplesthan thereare counter-examplesof
theseconcepts,especiallywhen 1) the conceptat handis
fairly specific;2) thenumberof disjunctsandliteralsperdis-
junct grows larger;and3) thevaluesassumedby theliterals
are drawn from a large alphabet. Furthermore,an impor-
tantaspectof conceptcomplexity canbeexpressedin sim-
ilar waysin DNF andtextual conceptssinceaddinga new
subtopicto a textual conceptcorrespondsto addinga new
disjunctto aDNF concept.
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Figure1: Re-SamplingversusDownsizing

createdanimbalanceratio of 1:25in favor of the
negative class.

2.1Re-SamplingversusDownsizing

In thispartof ourstudy, threesetsof experiments
wereconducted.First,we trainedandtestedC5.0
on the 4x7 DNF 1:25 imbalanceddatasetsjust
mentioned.4 Second,we randomlyoversampled
the positive class,until its size reachedthe size
of the negative class,i.e., 6000 examples. The
addedexampleswerestraightcopiesof the data
in theoriginalpositiveclass,with nonoiseadded.
Finally, we undersampledthe negative classby
randomlyeliminating datapoints from the neg-
ative classuntil it reachedthesizeof thepositive
classor, 240 datapoints. Here again,we used
a straightforward randomapproachfor selecting
thepointsto beeliminated.Eachexperimentwas
repeated50 timesondifferent4x7DNF concepts
andusingdifferentoversampledor removed ex-
amples. After eachtraining session,C5.0 was
testedon separatetestingsetscontaining1,200
positive and1,200negative examples.Theaver-
ageaccuracy resultsarereportedin Figure1. The
left sideof Figure1 showstheresultsobtainedon
thepositive testingsetwhile its right sideshows
theresultsobtainedon thenegative testingset.

As canbe expected,the resultsshow that the
numberof falsenegatives (resultsover the pos-

4(Estabrooks,2000) reportsresultson 4 other concept
sizes.An imbalancedratio of 1:5 wasalsotried in prelim-
inary experimentsand causeda loss of accuracy aboutas
largeasthe 1:25 ratio. Imbalancedratiosgreaterthan1:25
werenot tried on this particularproblemsincewe did not
wantto confusetheimbalanceproblemwith thesmallsam-
pleproblem.



itive class) is a lot higher than the numberof
falsepositives(resultsoverthenegativeclass).As
well, theresultssuggestthatbothnaive oversam-
pling andundersamplingarehelpful for reducing
the error causedby the classimbalanceon this
problemalthoughoversamplingappearsmoreac-
curatethanundersampling.5

2.2.Re-Samplingand Down-Sizingat various
Rates

In orderto find out whathappenswhendifferent
samplingratesareused,we continuedusingthe
imbalanceddatasetsof theprevioussection,but
ratherthan simply oversamplingand undersam-
pling themby equalizingthe sizeof the positive
andthenegative set,we oversampledandunder-
sampledthemat differentrates.In particular, we
dividedthedifferencebetweenthesizeof thepos-
itiveandnegativetrainingsetsby 10andusedthis
valueasanincrementin ouroversamplingandun-
dersamplingexperiments.We choseto make the
100%oversamplingratecorrespondto the fully
oversampleddatasetsof theprevioussectionbut
to makethe90%undersampledratecorrespondto
the fully undersampleddatasetsof the previous
section.6 For example,datasetswith a10%over-
samplingratecontain
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positive examplesand6,000negative exam-
ples. Conversely, data setswith a 0% under-
samplingratecontain240positive examplesand
6,000negative oneswhile datasetswith a 10%
undersamplingratecontain240positiveexamples
and
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negative
examples. A 0% oversamplingrate and a 90%
undersamplingratecorrespondto thefully imbal-
anceddatasetsdesignedin the previous section
while a 100%undersamplingratecorrespondsto
thecasewhereno negative examplesarepresent
in thetrainingset.

Onceagain,andfor eachoversamplingandun-
dersamplingrate,theruleslearnedby C5.0onthe
training setsweretestedon testingsetscontain-
ing 1,200positive and1,200negative examples.

5Notethat theusefulnessof oversamplingversusunder-
samplingis problemdependent.(Domingos,1999),for ex-
ample,findsthatin someexperiments,oversamplingis more
effective thanundersampling,althoughin many cases,the
oppositecanbeobserved.

6Thiswasdonesothatnoclassifierwasduplicatedin our
combinationscheme.(SeeSection3)

The resultsof our experimentsare displayedin
Figure2 for thecaseof oversamplingandunder-
samplingrespectively. They representthe aver-
agesof 50 trials. Again, the resultsarereported
separatelyfor thepositiveandthenegative testing
sets.
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Figure2: OversamplingandDownsizingat Dif-
ferentRates

Theseresultssuggestthat different sampling
rateshave different effects on the accuracy of
C5.0 on imbalanceddatasetsfor both the over-
samplingandtheundersamplingmethod.In par-
ticular, thefollowing observationcanbemade:

Oversamplingor undersamplinguntil a
cardinalbalanceof the two classesis
reachedis notnecessarilythebeststrat-
egy: bestaccuraciesarereachedbefore
thetwo setsarecardinallybalanced.

In moredetail, this observation comesfrom the
fact that in both the oversamplingand under-
samplingcurvesof figure2 theoptimalaccuracy
is not obtainedwhen the positive and the neg-
ative classeshave the samesize. In the over-
samplingcurves,whereclassequalityis reached
at the 100% oversamplingrate, the averageer-
ror rateobtainedon the datasetsover the posi-
tive classat that point is 35.3%(it is of 0.45%
over thenegative class)whereastheoptimalerror
rate is obtainedat a samplingrateof 70% (with
an error rate of 22.23%over the positive class
andof 0.56%over thenegative class).Similarly,
althoughlesssignificantly, in the undersampling
curves,whereclassequalityis reachedat the90%
undersamplingrate7, the averageerror rate ob-

7Thesharpincreasein errorratetakingplaceatthe100%



tainedat thatpoint is worsethantheoneobtained
atasamplingrateof 80%sincealthoughtheerror
rateis thesameoverthepositiveclass(at38.72%)
it wentfrom 1.84%at90%oversamplingover the
negative classto 7.93%.8

In general,it is quite likely that the optimal
samplingratescanvary in a way that might not
be predictablefor variousapproachesandprob-
lems.

3 The Mixtur e-of-ExpertsScheme

Theresultsobtainedin theprevious sectionsug-
gestthat it might beusefulto combineoversam-
pling and undersamplingversionsof C5.0 sam-
pledat differentrates.On theonehand,thecom-
binationof the oversamplingandundersampling
strategies may be useful given the fact that the
two approachesarebothusefulin thepresenceof
imbalanceddatasets(cf. resultsof Section2.1)
andmaylearna sameconceptin differentways.9

On theotherhand,thecombinationof classifiers
usingdifferentoversamplingandundersampling
ratesmaybe usefulsincewe maynot beableto
predict,in advance,which rateis optimal(cf. re-
sultsof Section2.2).

We will now describethecombinationscheme
we designedto deal with the class imbalance
problem.Thiscombinationschemewill betested
on a subsetof theREUTERS-21578text classifi-
cationdomain.10

3.1 Ar chitecture

A combination schemefor inductive learning
consistsof two parts. On theonehand,we must
decidewhich classifierswill becombinedandon
theotherhand,we mustdecidehow theseclassi-
fierswill becombined.We begin our discussion
with a descriptionof thearchitectureof our mix-
tureof expertsscheme.This discussionexplains

undersamplingpoint is causedby thefact thatat this point,
nonegative examplesarepresentin thetrainingset.

8Furtherresultsillustratingthis point over differentcon-
ceptsizescanalsobefoundin (Estabrooks,2000).

9In fact, further resultscomparingC5.0’s rule sizesin
eachcasesuggestthat the two methods,indeed,do tackle
theproblemdifferently[see,(Estabrooks,2000)].

10This combinationschemewas first testedon DNF ar-
tificial domainsandimproved classificationaccuracy by 52
to 62% over the positive dataanddecreasedthe classifica-
tion accuracy by only 7.5 to 13.1%over the negative class
ascomparedto theaccuracy of a singleC5.0classifier. See
(Estabrooks,2000)for moredetail.

which classifiersarecombinedandgivesa gen-
eralideaof how they arecombined.Thespecifics
of ourcombinationschemearemotivatedandex-
plainedin thesubsequentsection.

In orderfor a combinationmethodto beeffec-
tive, it is necessaryfor thevariousclassifiersthat
constitutethe combinationto make differentde-
cisions(Hansen,1990). Theexperimentsin Sec-
tion 2 of this papersuggestthat undersampling
andoversamplingat different rateswill produce
classifiersable to make different decisions,in-
cludingsomecorrespondingto the“optimal” un-
dersamplingor oversamplingratesthatcouldnot
have beenpredictedin advance. This suggests
a 3-level hierarchicalcombinationapproachcon-
sistingof theoutputlevel, whichcombinesthere-
sultsof theoversamplingandundersamplingex-
pertslocatedattheexpertlevel, whichthemselves
eachcombinetheresultsof 10 classifierslocated
at theclassifierlevelandtrainedondatasetssam-
pledat differentrates.In particular, the10 over-
samplingclassifiersoversamplethe dataat rates
10%, 20%, ... 100%(the positive classis over-
sampleduntil thetwo classesareof thesamesize)
and the 10 undersamplingclassifiersundersam-
ple the negative classat rate0%, 10%, ..., 90%
(thenegative classis undersampleduntil the two
classesareof thesamesize). Figure3 illustrates
the architectureof this combinationschemethat
wasmotivatedby (Shimshoni& Intrator, 1998)’s
IntegratedClassificationMachine.11

3.2 DetailedCombination Scheme

Ourcombinationschemeisbasedontwodifferent
facts:

Fact #1: Within a single testing set, different
testingpointscouldbebestclassifiedby dif-
ferent single classifiers. (This is a general
factthatcanbetruefor any problemandany
setof classifiers).

Fact #2: In classimbalanceddomainsfor which
thepositive trainingsetis smallandtheneg-
ative training set is large, classifierstendto
make many false-negative errors. (This is

11However, (Shimshoni& Intrator, 1998)is a generalar-
chitecture.It wasnot tunedto the imbalanceproblem,nor
did it take into considerationthe useof oversamplingand
undersamplingto inject principledvarianceinto the differ-
entclassifiers.



Figure3: Re-SamplingversusDownsizing

a well-known fact often reportedin the lit-
eratureon the class-imbalanceproblemand
whichwasillustratedin Figure1, above).

In orderto dealwith thefirst fact,we decided
not to averagethe outcomeof different classi-
fiersby letting themvoteonagiventestingpoint,
but rather to let a single “good enough”classi-
fier make a decisionon that point. The classi-
fier selectedfor a singledatapoint needsnot be
the sameasthe oneselectedfor a differentdata
point. In general,lettinga single,ratherthansev-
eralclassifiersdecideon a datapoint is basedon
theassumptionthattheinstancespacemaybedi-
videdinto non-overlappingareas,eachbestclas-
sified by a differentexpert. In sucha case,av-
eragingtheresultof differentclassifiersmaynot
yield thebestsolution. We, thus,createda com-
binationschemethatallowedsinglebut different
classifiersto makeadecisionfor eachpoint.

Of course,suchanapproachis dangerousgiven
thatif thesingleclassifierchosento make adeci-
sionon a datapoint is not reliable,the resultfor
this datapoint hasa goodchanceof beingunreli-
ableaswell. In orderto preventsucha problem,
we designedan eliminationproceduregearedat
preventing any unfit classifierpresentat our ar-
chitecture’s classificationlevel from participating
in thedecision-makingprocess.This elimination
programreliesonoursecondfactin thatit invali-
datesany classifierlabelingtoomany examplesas
positive. Sincetheclassifiersof thecombination
schemehaveatendency of beingnaturallybiased
towardsclassifyingtheexamplesasnegative, we
assumethataclassifiermakingtoomany positive
decisionis probablydoingsounreliably.

In moredetail, our combinationschemecon-
sistsof

$ acombinationschemeappliedto eachexpert
at theexpertlevel

$ a combinationschemeappliedat theoutput
level

$ aneliminationschemeappliedto theclassi-
fier level

The expert and output level combination
schemesusethe samevery simple heuristic: if
oneof thenon-eliminatedclassifiersdecidesthat
anexampleispositive,sodoestheexperttowhich
thisclassifierbelongs.Similarly, if oneof thetwo
expertsdecides(basedonits classifiers’decision)
that an example is positive, so doesthe output
level, andthus,the exampleis classifiedaspos-
itive by theoverall system.

The elimination schemeusedat the classifier
level usesthe following heuristic: thefirst (most
imbalanced)andthe last (mostbalanced)classi-
fiers of eachexpert are testedon an unlabeled
dataset. The numberof positive classifications
eachclassifiermakeson theunlabeleddatasetis
recordedandaveragedandthis averageis taken
asthe thresholdthat noneof the expert’s classi-
fiers must cross. In other words, any classifier
thatclassifiesmoreunlabeleddatapointsaspos-
itive thanthe thresholdestablishedfor theexpert
to which this classifierbelongsneedsto be dis-
carded.12

It is importantto note that, at the expert and
output level, our combinationschemeis heav-
ily biasedtowardsthepositive under-represented
class. This was doneas a way to compensate
for thenaturalbiasagainstthepositive classem-
bodiedby theindividual classifierstrainedon the
classimbalanceddomain. This heavy positive
bias, however, is mitigated by our elimination

12Becausenolabelsarepresent,this techniqueconstitutes
an educatedguessof what an appropriatethresholdshould
be. This heuristicwastestedin (Estabrooks,2000)on the
text classificationtask discussedbelow and was shown to
improve thesystem(over thecombinationschemenotusing
this heuristic)by 3.2%whenmeasuredaccordingto the %'&
measure,0.36%whenmeasuredaccordingto the %)( mea-
sure,and5.73%whenmeasuredaccordingto the %�*,+ - mea-
sure. Seethe next section,for a definition of the %). mea-
sures,but notethatthehigherthe % . value,thebetter.



schemewhich strenuouslyeliminatesany classi-
fier believedto betoo biasedtowardsthepositive
class.

4 Experimentson a Text Classification
Task

Our combinationschemewastestedon a subset
of the10 top categoriesof theREUTERS-21578
DataSet.Wefirst presentanoverview of thedata,
followedby theresultsobtainedbyourschemeon
thesedata.

4.1 The Reuters-21578Data

The ten largestcategoriesof the Reuters-21578
datasetconsistof thedocumentsincludedin the
classesof financialtopicslistedin Table1:

Class. DocumentCount

Earn 3987
ACQ 2448

MoneyFx 801
Grain 628
Crude 634
Trade 551

Interest 513
Wheat 306
Ship 305
Corn 254

Table1: Thetop10Reuters-21578categories

Severaltypicalpre-processingstepsweretaken
to preparethe datafor classification. First, the
datawasdividedaccordingto theModAptesplit
which consistsof consideringall labelleddocu-
mentspublishedbefore04/07/87astrainingdata
(9603 documents,altogether)and all labelled
documentspublishedonor after04/07/87astest-
ing data(3299documentsaltogether).Theunla-
belleddocumentsrepresent8676documentsand
wereusedduringtheclassifiereliminationstep.

Second,the documentsweretransformedinto
featurevectorsin several steps. Specifically, all
the punctuationandnumberswereremoved and
thedocumentswerefiltered througha stopword
list13. The words in eachdocumentwere then

13Thestopword list wasobtainedat:
http://www.dcs.gla.ac.uk/idom/itresources/
linguistic utils/stop-words.

stemmedusingtheLovinsstemmer14 andthe500
most frequentlyoccurringfeatureswereusedas
thedictionaryfor thebag-of-word vectorsrepre-
sentingeachdocuments.15 Finally, the dataset
was divided into 10 conceptlearningproblems
whereeachproblemconsistedof a positive class
containing100 examplessampledfrom a single
top 10 Reuterstopic classand a negative class
containing the union of all the examplescon-
tainedin the other9 top 10 Reutersclasses.Di-
viding the Reutersmulti-classdataset into a se-
ries of two-classproblemsis typically donebe-
causeconsideringtheproblemasa straightmul-
ticlass classificationproblem causesdifficulties
dueto thehigh classoverlappingrateof thedoc-
uments,i.e., it is not uncommonfor a document
to belongto several classessimultaneously. Fur-
thermore,althoughtheReutersDatasetcontains
morethan100examplesin eachof its top10cat-
egories(seeTable1), we found it morerealistic
to usearestrictednumberof positive examples.16

Having restrictedthe numberof positive exam-
plesin eachproblem,it is interestingto notethat
the classimbalancesin theseproblemsis very
high sinceit rangesfrom an imbalanceratio of
1:60 to one of 1:100 in favour of the negative
class.

4.2 Results

Theresultsobtainedby our schemeon thesedata
were pitted againstthoseof C5.0 ran with the
Ada-boostoption.17 The resultsof theseexper-

14The Lovins stemmer was obtained from:
ftp://n106.isitokushima-u.ac.ip/pub/IR/Iterated-Lovins-
stemmer

15A dictionaryof 500 words is smallerthan the typical
numberof wordsused(see,for example,(Scott& Matwin
1999)),however, it was shown that this restrictedsize did
not affect theresultstoo negatively while it did reducepro-
cessingtimequitesignificantly(see(Estabrooks2000)).

16Indeed,very often in practicalsituations,we only have
accessto a small numberof articles labeled“of interest”
whereashuge numberof documents“of no interest” are
available

17Our schemewascomparedto C5.0 ran with the Ada-
boostoption combining20 classifiers. This was done in
order to presenta fair comparisonto our approachwhich
alsouses20 classifiers.It turnsout, however, that theAda-
boostoptionprovidedonly amarginal improvementoverus-
ing asingleversionof C5.0(whichitself comparesfavorably
to state-of-the-artapproachesfor thisproblem)(Estabrooks,
2000). Please,notethatotherexperimentsusingC5.0with
the Ada-boostoption combiningfewer or more classifiers
shouldbeattemptedaswell since20classifiersmightnotbe



imentsarereportedin Figure4 asa function of
the micro-averaged(over the 10 differentclassi-
ficationproblems)/10 , /32 and /3465 7 measures.In
moredetail,the /98 -measureis definedas:

/ 8 �;: 8 (
< 0>=,?�@1?�A8 ( ?�@ < A
wherePrepresentsprecision,andR,recall,which
arerespectively definedasfollows:

B � C'DFEHG @JI�KMLONPLOQ G KC'DFEHG @JI�KMLONPLOQ G K <SRJTVU K G @JI�KWLXNPLOQ G K
Y[Z C\D,E]G @JI�KWLXNPLOQ G KC'DFEHG @JIFKWLONPLOQ G K <SRJT^U K GF_�GW` T NPLOQ G K

In otherwords,precisioncorrespondsto thepro-
portionof examplesclassifiedaspositive thatare
truly positive; recallcorrespondsto theproportion
of truly positive examplesthat are classifiedas
positive; the /98 -measurecombinestheprecision
andrecall by a ratio specifiedby a . If a �b� ,
thenprecisionandrecallareconsideredasbeing
of equalimportance.If a �c� , thenrecallis con-
sideredto be twice asimportantasprecision. If
a �c��de" , thenprecisionis consideredto betwice
asimportantasrecall.

Because10 different resultsare obtainedfor
eachvalue of B and eachcombinationsystem
(1 resultperclassificationproblem),theseresults
hadto beaveragedin orderto bepresentedin the
graphof Figure4. We usedtheMicro-averaging
techniquewhich consistsof a straightaverageof
the F-Measuresobtainedin all the problems,by
eachcombinationsystem,andfor eachvalueof B.
UsingMicro-averaginghastheadvantageof giv-
ing eachproblemthesameweight,independently
of thenumberof positive examplesthey contain.

The resultsin Figure4 show that our combi-
nationschemeis muchmoreeffective thanAda-
booston both recallandprecision.Indeed,Ada-
boostgetsan /�0 measureof 52.3%on the data
set while our combinationschemegets an /10
measureof 72.25%. If recall is consideredas
twice more importantthanprecision,the results
are even better. Indeed,the mixture-of-experts
schemegetsan /32 -measureof 75.9%while Ada-
boostobtainsan / 2 -measureof 48.5%. On the
other hand, if precisionis consideredas twice
more important than recall, then the combina-
tion schemeis still effective, but not aseffective

C5.0-Ada-boost’s optimalnumberonourproblem.
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Figure4: Averageresultsobtainedby Ada-Boost
and the Mixture-of-Expertsschemeon 10 text
classificationproblems

with respectto Ada-boostsinceit bringsthe /f465 7 -
measureon thereduceddatasetto only 73.61%,
whereasAda-Boost’s performanceamountsto
64.9%.

Thegenerallybetterperformancedisplayedby
our proposedsystemwhen evaluatedusing the
/32 -measureandits generallyworseperformance
when evaluatedusing the /3465 7 -measureare not
surprising,sincewe biasedour systemso that it
classifiesmoredatapointsaspositive. In other
words, it is expectedthat our systemwill cor-
rectly discover new positive examplesthat were
notdiscoveredby Ada-Boost,but will incorrectly
label as positive examplesthat are not positive.
Overall, however, theresultsof our approachare
quite positive with respectto both precisionand
recall. Furthermore,it is importantto note that
this methodis not particularly computationally
intensive. In particular, its computationcostsare
comparableto thoseof commonlyusedcombina-
tion methods,suchasAdaBoost.

5 Conclusionand Future Work

This paper presentedan approachfor dealing
with the class-imbalanceproblemthat consisted
of combiningdifferentexpressionsof re-sampling
basedclassifiersin an informedfashion. In par-
ticular, ourcombinationsystemwasbuilt soasto
biasthe classifierstowardsthe positive setso as
counteractthe negative bias typically developed
by classifiersfacinga higherproportionof nega-
tive thanpositive examples.Thepositive biaswe
includedwascarefully regulatedby an elimina-



tion strategy designedto prevent unreliableclas-
sifiersto participatein theprocess.Thetechnique
was shown to be very effective on a drastically
imbalancedversionof a subsetof theREUTERS
text classificationtask.

Thereare different ways in which this study
couldbe expandedin the future. First, our tech-
niquewasusedin thecontext of averynaiveover-
samplingandundersamplingscheme.It wouldbe
usefulto applyour schemeto moresophisticated
re-samplingapproachessuchasthoseof (Lewis&
Gale,1994)and(Kubat& Matwin, 1997). Sec-
ond, it would be interestingto find out whether
our combinationapproachcouldalsoimprove on
cost-sensitive techniquespreviouslydesigned.Fi-
nally, wewouldliketo testourtechniqueonother
domainspresentinga largeclassimbalance.
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