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Abstract

We investigated the applicability of probabilis-
tic context-free grammars to syllabi�cation and
grapheme-to-phoneme conversion. The results
show that the standard probability model of
context-free grammars performs very well in
predicting syllable boundaries. However, our
results indicate that the standard probability
model does not solve grapheme-to-phoneme con-
version su�ciently although, we varied all free
parameters of the probabilistic reestimation pro-
cedure.

1 Introduction

In this paper we present an approach to un-
supervised learning and automatic detection
of syllable boundaries as well as automatic
grapheme-to-phoneme conversion using prob-
abilistic context-free grammars (PCFGs). A
text-to-speech system (TTS), like those de-
scribed in Sproat (1998), needs a module where
the words are converted from graphemes to
phonemes, i.e. its transcription, and one that
syllabi�es the obtained phoneme string before
they can be further processed to speech. The
two tasks can be solved both with rule-based
and with probabilistic methods. Rule-based
methods are facing the problem that they have
to return one analysis. If there are several possi-
ble analyses then the rule-based system has the
problem of disambiguation. Probabilistic meth-
ods, however, yield the most probable analy-
sis according to the training corpus. Our ap-
proach builds on two resources. The �rst re-
source are manually constructed context-free
grammars (CFGs) for both syllabi�cation and
grapheme-to-phoneme conversion (G2P). The
CFG generates for the G2P task all sequences
of phonemes corresponding to a given ortho-
graphic input word. For the syllabi�cation task,

the CFG generates all possible syllable bound-
aries. We use context-free grammars for gen-
erating transcriptions, and syllabi�ed phoneme
strings, because grammars are expressive and
writing grammar-rules is easy and intuitive. We
trained the CFGs on a training corpus that was
extracted from a large newspaper corpus. The
second resource consists of the inside-outside al-
gorithm that was used for the training proce-
dure, sustaining probabilistic context-free gram-
mars.

The obtained models were evaluated on a
test corpus. The results of our experiments
show that PCFGs are good in predicting sylla-
ble boundaries, but simple PCFGs do not yield
good results for grapheme-to-phoneme conver-
sion.

2 Syllabi�cation

A syllabi�er splits a sequence of phonemes
to syllables, e.g. the German phoneme se-
quence [lUftlOx] (air pocket) can be syllabi-
�ed as [lU][ftlOx], [lUf][tlOx], [lUft][lOx], and
[lUftl][Ox].
Our method, used for the experiments de-

scribed in this paper, is based on a manually
constructed context-free grammar with about
50 rules which returns for a given phoneme
string all possible analyses. Our grammar de-
scribes how words are composed of syllables and
syllables branch into onset, nucleus and coda.
These syllable parts are re-written by the gram-
mar as sequences of natural phone classes, e.g.
stops, fricatives, nasals, liquids, as well as long
and short vowels, and diphtongs. The phone
classes are then re-interpreted as the individual
phonemes that they are made up of. Figure 1
shows some of the rules of the context-free gram-
mar.

The �rst rule (1.1) in �gure 1 describes a



(1.1) Word ! Syl
(1.2) Word ! Syl Syl
(1.3) Word ! Syl Syl Syl
(1.4) Syl ! Nucleus
(1.5) Syl ! Onset Nucleus
(1.6) Syl ! Onset Nucleus Coda
(1.7) Syl ! Nucleus Coda
(1.8) Onset ! On
(1.9) Onset ! On On
(1.10) On ! Liquid
(1.11) Nucleus ! Vow
(1.12) Vow ! SVowel
(1.13) Coda ! O�
(1.14) Coda ! O� O�
(1.15) O� ! Plosiv
(1.16) O� ! Fricative
(1.17) Liquid ! [l]
(1.18) Fricative ! [f]
(1.19) Fricative ! [x]
(1.20) Plosiv ! [t]
(1.21) SVowel ! [U]
(1.22) SVowel ! [O]

Figure 1: Fragment of a context-free syllable
grammar

monosyllabic word and rule (1.2) and (1.3) a
word consisting of two and three syllables, re-
spectively. The subsequent rule (1.4) speci�es a
syllable without an onset and coda, whereas in
rule (1.5) the coda is missing and in (1.7) the
onset. Rule (1.6) depicts how a syllable consists
of an onset, nucleus and coda. The next two
rules (1.8)-(1.9) describe the complexity of the
onset and the rules (1.13)-(1.14) the complex-
ity of the coda, each consisting of one or two
phonemes. An onsets consists of a liquid, which
is shown in rules (1.10). Rule (1.12) describe a
short vowel, which is re-written in rule (1.21)-
(1.22) as the vowels [U] and [O]. According to
rules (1.15)-(1.20) a coda consonant can be re-
interpreted as a plosive or a fricative, which are
in turn re-written as a [p], a [f], a [x], or a [t].
Figure 2 depicts one of four possible analyses

of the phoneme string [lUftlOx].
We transform the context-free grammar by a

training procedure to a probabilistic CFG. We
then choose the analysis with the highest proba-
bility. The probability of one analysis is de�ned
as the product of the probabilities of the gram-
mar rules appearing in the analysis. In our ex-
ample the correct syllable segmentation received
the highest probability: [lUft][lOx].
We use the inside-outside algorithm devel-
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Figure 2: Possible segmentation of the word
�Luftloch� air pocket

oped by Baker (1979), and generalized by Lari
and Young (1990), for the transformation of a
context-free grammar to a PCFG, the so called
training procedure. In an initializing phase, the
grammar rules are assigned random probabili-
ties, which are reestimated during several itera-
tions yielding the rule probabilities. There are
three free parameters that can be varied: (1) the
training corpus, (2) the number of iterations,
and (3) the start parameters. We used the freely
available lopar parser, implemented by Schmid
(2000).
Figure 3 shows a fragment of the best per-

forming PCFG with the rule probabilities used
for syllabi�cation. Rules (2.1)-(2.3) show that
the most probable word structure is a word con-
sisting of one syllable, a two-syllabic word is less
probable and the least probable structure is a
three-syllabic word. Almost 50% of the syllables
consists of onset, nucleus and coda (rule (2.4)).
Rules (2.5)-(2.6) show that syllables with empty
onsets are preferred to open syllables. Sim-
ple onsets consisting of one consonant are more
probable than complex ones, which is also true
for codas (rules (2.7)-(2.8) and (2.13)-(2.14)).
Rules (2.9)-(2.10) show that fricatives are more
probable than liquids in the onset. Moreover, it
is more likely that a nasal appears in the coda
than a liquid (rule (2.15)-(2.16)).

2.1 Experiments

Our experiments are based on two di�erent cor-
pora: (i) a spoken news corpus of 1.5 h and
(ii) the Sternzeit corpus, a feature series consist-
ing of 2 hours read text. The corpus comprise



(2.1) 0.450488 Word ! Syl
(2.2) 0.29816 Word ! Syl Syl
(2.3) 0.141141 Word ! Syl Syl Syl
(2.4) 0.487529 Syl ! Onset Nucleus Coda
(2.5) 0.198562 Syl ! Onset Nucleus
(2.6) 0.260016 Syl ! Nucleus Coda
(2.7) 0.878341 Onset ! On
(2.8) 0.115892 Onset ! On On
(2.9) 0.114081 On ! Liquid
(2.10) 0.234265 On ! Fricative
(2.11) 0.906921 Nucleus ! Vow
(2.12) 0.679005 Vow ! SVowel
(2.13) 0.854933 Coda ! O�
(2.14) 0.13788 Coda ! O� O�'
(2.15) 0.37867 O� ! Nasal
(2.16) 0.257495 O� ! Liq'

Figure 3: Grammar fragment of the PCFG used
for syllabi�cation

96165 words, which are automatically looked up
in a pronunciation dictionary, CELEX (Baayen
et al., 1993) . The transcribed words are devided
into 9/10 training and 1/10 test corpus. The
training corpus does not include syllable bound-
aries, whereas the test corpus is annotated with
syllable boundaries.
Training. We utilized the following training

procedure:

� we initialize the CFG 10 times with ran-
domized rule probabilities (10 start gram-
mars),

� each of the start grammars is re-estimated
10 times on the training corpus with the
inside-outside algorithm.

Evaluation. We evaluated our system on
a test set of almost 9000 words. The ambigu-
ity expressed as the average number of anal-
yses per word was about 90. We evaluated
the obtained models after each training iter-
ation by calculating the most probable anal-
ysis (viterbi-parse) and extracting the syllable
boundaries from the analysis. The yielded syl-
labi�ed phoneme strings are compared with the
annotated evaluation corpus and the syllable
accuracy is measured, which is calculated as
the number of the correctly predicted syllable
boundaries devided by the number of all sylla-
ble boundaries. The results are shown in �gure
4.
Each accuracy curve show how the current

model performs on the test data. At the value
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Figure 4: Accuracy of the syllabi�er, number of
iterations (x-axis), accuracy (y-axis)

0 of the x-axis, the accuracy of the randomly
initialized grammar is depicted. At the value
1, the accuracy after the �rst iteration, and at
value 2 the accuracy after the second iteration
is displayed, and so forth. The curves point out
that �ve iterations would be enough for the syl-
labi�cation task. Furthermore, it is quite im-
portant to experiment with a high number of
start grammars. The accuracy usually increases
of about 30% until the maxima is reached, inde-
pendently which start grammar was used. The
range between the best and the worst grammar
of the start grammars is about 30%. The large
range indicates that it is worthwhile to search
for a start grammar with a high start precision
value. The described training procedure o�ers
a number of grammars that vary in their per-
formance. The next step is to choose the best
grammar with the highest performance, which
yield a syllable accuracy of almost 90% on the
test data.

Qualitative Evaluation. We found 938 er-
rors that were made on the evaluation suite by
the best model. The trained model showed main
de�cits in predicting the coda structure. 60.1%
(i.e. 564) of the errors were made when the
model predicts that the consonants belongs to
the onset, however they are part of the coda.
39.9% (i.e. 374) of the errors were made when
the models predicts the onset structure.

83% of the wrong coda prediction are made
with alveolar consonants. Out of 564 items, 364
items were [t], followed by [n] with 42, [ts] with



34, [s] with 29, and [R] with 25 errors.

Fricatives seemed to be the main source of
wrong onset prediction, almost 65% of the 374
errors are due to fricatives: [S] 149 errors, [s] 60
errors, [f ] 34 errors, followed by [k] (28), [g] 25,
[R] 24, [l] 18, [b] 15, [t] 12. The rest the errors
of the following list occured less than 10 times:
[p; d;m; ks].
If we analyze how the errors could be avoided,

the most important improvement could be made
by writing rules for pre�xes and su�xes in the
grammar similar to those suggested by Meng
(2001) for English. 189 errors were made on pre-
�xes and 108 on su�xes. A further improvement
could be made by modelling numerals seperately
in a pre-processing procedure, which could avoid
120 errors. Names and acronyms are found to
be a minor source of errors (27, and 19 respec-
tively). Another problem are morpheme bound-
aries in compound words. It would be very in-
teresting to insert in the hierarchy a morpholog-
ical level, where words are split to pre�x, root
and su�x, and where a recursive rule allows this
again, as compounding in German is a very pro-
ductive process.

Evaluation of the perplexitiy. The per-
plexity of a PCFG is measured after each train-
ing iteration on the training corpus and is de-
�ned as a monotonously decreasing function.
Moreover, the inside-outside algorithm tries to
reduce the perplexity of a PCFG during the
training procedure. It is very interesting if the
perplexity correlates with the accuracy. We ex-
tracted for each of the 10 start grammars the
grammar with the best accuracy values and the
perplexity measured at that point. The upper
curve of �gure 5 shows the best precision val-
ues of all 10 grammars and the lower one shows
the measured perplexity. The grammars were
ordered on the x-axis by decreasing accuracy.
Figure 5 shows that there is no correlation be-
tween the accuracy and the perplexity.

3 Grapheme-to-phoneme conversion

A grapheme-to-phoneme converter transforms
an orthographic word to its transcription, e.g.
the German word Luftloch (air pocket) to the
phoneme string [lUftlOx]. The aim of our work
is to use the same grammar described in sec-
tion 2. We enriched the grammar by rules that
expand the phonemes to graphemes. Figure 6
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Figure 5: Syllabi�er: grammars with maximal
accuracy and their perplexity values

(3.1) phon=l ! l
(3.2) phon=O ! o
(3.3) phon=U ! u
(3.4) phon=f ! f
(3.5) phon=x ! c h
(3.6) phon=t ! t

Figure 6: Fragment of the additional rules

shows a fragment of the expanded grammar.
The example word Luftloch (air pocket) yields
41 analyses according to the new grammar. Fig-
ure 7 depicts the correct analysis. The main idea
is to use the standard probability model for dis-
ambiguation of the analyses.

3.1 Experiments

In this section, we present the application of
the standard probability model to grapheme-to-
phoneme (G2P) conversion (i) using a CFG to
produce all possible phonemic correspondences
of a given grapheme string, (ii) predicting pro-
nunciation by choosing the most probable anal-
ysis, and (iii) reading o� the transcription from
the phoneme tier. A fragment of the grammar
is already described in section 2. We employed
389000 words of the Stuttgarter Zeitungskor-
pus (STZ), a German newspaper corpus for our
training procedure.
Training. We used the same training proce-

dure like in section 2.1:

� we initialize the CFG 10 times with ran-
domized rule probabilities (10 start gram-
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Figure 7: The correct grapheme-to-phoneme
conversion of the word Luftloch (air pocket)

mars),

� each of the start grammars is re-estimated
10 times on the training corpus with the
inside-outside algorithm.

Evaluation. The evaluation corpus consists
of 1731 words, not appearing in the training
corpus. The words were extracted from 295105
words of the CELEX dictionary not appearing
in the newspaper corpus. From this test set
we manually eliminated (i) foreign words, (ii)
acronyms, (iii) proper names, (iv) verbs, and
(v) words that did not exactly consist of two
syllables. The ambiguity expressed as the aver-
age number of analyses per word was 289. Each
of the grammars is evaluated linguistically by
comparing the most probable transcription of a
word with the transcription of the CELEX dic-
tionary. The word accuracy was measured by:
the number of correctly analyzed words devided
by the number of all words appearing in the test
corpus. Figure 8 shows the results of the train-
ing procedure. Almost all of the 10 grammars
reached the maximum of the accuracy after one
iteration. The best grammar yields a word accu-
racy of almost 40%, which is nonsatisfying. The
worse result can be due to the various parame-
ters that play a role with PCFGs, e.g. size of the
training corpus, number of start grammars. We
systematically varied these parameters in addi-
tional experiments, presented in section 3.2

Qualitative evaluation. We found 1346 er-
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Figure 8: G2P accuracy of 10 start grammars
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rors (in 1047 words) in the G2P task. Note, that
there could be several errors in a word. Predict-
ing vowel quality was a main error source, how-
ever it was not easy to �nd main error sources
for consonants. 906 errors (i.e. 67.3%) are due
to vowel quality. There are 641 errors where the
algorithm predicted a short vowel instead of a
long vowel: [a] instead of [a :] - 179 times, [U ]
instead of [u :] 125 times, [O] instead of [o :] 110
times, [I] instead of [i :] 102 times, [@] instead
of [e :] 54 times, [9] instead of [2 :] 30 times, [Y ]
instead of [y :] 26 times, [E] instead of [E :] 15
times. A further problem was to decide whether
a /e/ is transcribed as a schwa [@] or a [E]. In
200 cases the model predicted that /e/ is tran-
scribed as [@] instead of [E]. Some problems ap-
peared when two adjacent identical graphemes
were found e.g. Schneeball (snow ball). Between
the two /ee/s, there could either be a morpheme
boundary i.e. the �rst vowel belongs to the �rst
syllable and the second vowel to the succeeding
syllable, or the two vowels refer to a long vowel
([e :]).

The errors regarding the consonants are mul-
tifarious. 155 out of 440 errors are made on the
feature voiced vs. unvoiced. The model pre-
dicted a [d] instead of a [t] in 53 cases. [p] instead
of [b] was predicted 11 times, and [b] instead of
[p] 12 times. 39 times a [v] was predicted instead
of a [f ], and 20 times a [s] instead of a [z], and 12
times a [z] instead of a [s]. Another problem was
that the algorithm transcribed 66 times a /s/ as
a [S] in the coda, which can be avoided if the rule
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Figure 9: G2P: grammars with maximal accu-
racy and their perplexity value

s! S is restricted to the onset. A further error
comes from the su�x /ig/ e.g. in �üssig (liquid).
The model transcribed a /g/ 62 times as a [x] 1

instead of a [k]. Another source of error (48
times) is that the algorithm transcribes an /n/
preceding a /k/ as an [n] instead of a [N ]. This
rule have to be applied except when there is a
morpheme boundary. Meng (2001) shows that
for grapheme-to-phoneme conversion the mod-
elling of pre�xes and su�xes in the grammar
could help to improve the performance of the
trained model.

Evaluation of the perplexity. Figure 9
shows the results of the accuracy and the per-
plexity. The accuracy is a decreasing function,
whereas the perplexity did not change remark-
ably. Thus, there is no correlation between ac-
curacy and perplexity. The results correspond
to the �nding shown in section 2.1 for syllabi�-
cation.

3.2 Additional experiments

Start parameters. We varied the parameter
�start grammar�, as the grammars are randomly
initialized in the beginning of the training proce-
dure and the inside-outside algorithm can only
detect local maxima. We experimented with 50
randomly initialized start grammars yielding a

1Note, that CELEX transcribe both the velar frica-

tive [x] and the palatal fricative [C] as [x]. They suggest

that the correct fricative can be chosen in a pre-lexical

step.

3% increase in accuracy to 42.5%.

Size of training corpus. In further experi-
ments we varied the size of the training corpus
systematically: 4500, 9600, 15000, 33000, 77000,
182000, 398000 and 1000000 words. We initial-
ized 50 start grammars and trained each gram-
mar with 10 iterations on the di�erent corpora.
The best grammar achieved a 42.6% accuracy on
a corpus size of 182000 words. It is quite inter-
esting that a corpus size of 398000 and 1000000
did not yield better results than a smaller cor-
pus.

Type training. In another experiment we
investigate if the accuracy can be increased by
using a typenized training corpus, i.e. a training
corpus where a word appears only once. The size
of the training corpus was systematically varied:
250, 500, 1000, 2000, 4000, 8000, 16000, 32000
and 64000. We trained 50 randomly initialized
start grammars with 10 training iterations. The
accuracy increased from 38.01% with 250 types
to 41.25% with 32000 types and then started to
decrease again.

4 Discussion

We have presented an approach to unsuper-
vised learning and automatic detection of sylla-
ble boundaries and grapheme-to-phoneme con-
version using the standard probability model.
Automatic conversion of a string of characters,
i.e. a word, into a string of phonemes, i.e. its
pronunciation, is essential for applications such
as speech synthesis from unrestricted text in-
put, which can be expected to contain words
that are not in the system's pronunciation dic-
tionary or otherwise unknown to the system.
The phoneme string received by grapheme-to-
phoneme conversion has to be syllabi�ed before
it can be further processed to speech. In our �rst
experiment a phoneme string was segmented to
syllables. The best model achieved a syllable ac-
curacy of almost 90%. In a further experiment
we added supplemantary grapheme-to-phoneme
rules to the context-free grammar and applied
the CFG to G2P. The results of 42.5% show
that the G2P task cannot be solved su�ciently
with a simple PCFG. The variation of the pa-
rameters: size of the training corpus, number of
start grammars, and type training did not note-
worthy increase the word accuracy.

We assume that the grammar models syllab-



i�cation quite well but grapheme-to-phoneme
conversion needs a more elaborate grammar that
expresses e.g. the position of the syllable in a
word, a di�erent treatment of onset and coda
consonants, the position of the consonant in the
consonant cluster. Meng (2001) experimented
with grammar rules that model pre�xes, su�xes
and roots, which could improve the performance
of the models. Alternatively, we suppose that
another probability model performs better on
the G2P task.

Although, it is di�cult to compare the per-
formance with other systems and methods, we
want to refer to several approaches that ex-
amined the syllabi�cation and grapheme-to-
phoneme conversion task. Müller et al. (2000)
showed that G2P yields a word accuracy of
75% using multidimensional clustering mod-
els. They used a CFG to generate all possible
phonemic corresponcences of a given grapheme
string and then applied a probabilistic sylla-
ble model predicting pronunciation by choos-
ing the most probable analysis. The proba-
bilistic syllable model was trained on a large
transcribed database. The Bell Labs German
TTS system (Möbius, 1999) performed at bet-
ter than 94% word accuracy on our test set.
This TTS system relies on an annotation of mor-
phological structure for the words in its lexicon
and it performs a morphological analysis of un-
known words (Möbius, 1998); the pronunciation
rules draw on this structural information. Meng
(2001) reported a 69.3% word accuracy on En-
glish test data. However, she trained and eval-
uated on about 10.000 most frequent words ap-
pearing in the Brown Corpus. Damper et al.
(1999) reported a 72% word accuracy on un-
aligned English data. Bouma (2000) achieved a
92.6% word accuracy for Dutch, using a 'lazy'
training strategy on data aligned with the cor-
rect phoneme string, and a hand-crafted sys-
tem that relied on a large set of rule templates
and a many-to-one mapping of characters to
graphemes preceding the actual G2P conversion.

Müller (to appear 2001) showed that the
results for syllabi�cation can be improved to
96.5% with a new algorithm combining the
advantages of treebank and bracketed corpora
training. Van den Bosch (1997) investigated the
syllabi�cation task with �ve inductive learning
algorithms. He reported a generalisation error

for words of 2.2% on English data. However,
in German (as well as Dutch and Scandinavian
languages) compounding by concatenating word
forms is an extremely productive process. Thus,
the syllabi�cation task is much more di�cult
in German than in English. Daelemans and
van den Bosch (1992) report a 96% accuracy
on �nding syllable boundaries for Dutch with a
backpropagation learning algorithm. Vroomen
et al. (1998) report a syllable boundary accu-
racy of 92.6% by measuring the sonority pro�le
of syllables.

5 Conclusion

We have presented an approach to unsuper-
vised learning and automatic detection of sylla-
ble boundaries and grapheme-to-phoneme con-
version using the standard probability model.
In our �rst experiment a phoneme string was
segmented to syllables. We achieved a syllable
accuracy of 90%. In a further experiment we
added supplementary rules to the context-free
grammar and applied the CFG to grapheme-
to-phoneme conversion. The results of 42.5%
show that the G2P task cannot be solved su�-
ciently. The variation of the parameters: size of
the training corpus, number of start grammars,
and type training did not noteworthy increase
the word accuracy. A more elaborate grammar
that models morphological structure, might in-
crease the accuracy. Moreover, another prob-
ability model increases the performance of the
task.
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