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Abstract

In many domains such as speech recognition
and machine translation it is extremely useful
to be able able to distinguish coherent from
non-coherent sentences. We introduce a set of
word-based statistical features which measure
semantic coherence and can be used to enhance
any language application where coherent sen-
tences need to be generated or recognized. We
train a decision tree using the constructed fea-
ture set to automatically classify sentences as
coherent or not. We find that our combination
of boosted decision trees and coherence features
achieves an accuracy of 80% when distinguish-
ing trigram-generated sentences (non-coherent)
from those in the Broadcast News dataset (co-
herent).

1 Introduction

In order to improve conventional statistical
language models, we need to find aspects of
language which are not adequately captured,
and then incorporate them into the model.
Although adding any computable feature of
a language which discriminates between the
true’ English language model and the statisti-
cal model will give some improvement, an ideal
feature should occur frequently, yet exhibit a
significant discrepancy (Rosenfeld et al., 2001).

Perhaps the most salient deficiency of conven-
tional language models is their complete failure
at modeling semantic coherence. These mod-
els capture short distance correlations among
words in a sentence, yet are unable to distin-
guish meaningful sentences (where the content
words come from the same semantic domain)
from ’fake’ sentences (where the content words
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are drawn randomly). As a result, in many lan-
guage technology applications such as speech
recognition, errors that are obvious to a human
observer (e.g. a noun replaced by an acousti-
cally similar but semantically different noun)
cannot be salvaged by the model. For example,
if the speaker says I would like a glass full of
water, and the system recognizes class instead
of glass, we would like to automatically identify
and correct this error.

One way to identify and thus avoid these
types of errors is to identify sentences which are
not semantically coherent. This work is an at-
tempt to automatically construct features which
can then be used to learn a function which will
distinguish between coherent and non-coherent
sentences.

Once we have learned such a measure of se-
mantic coherence, we can combine it with the
initial baseline model. One model which is nat-
urally suited for this task is the maximum en-
tropy model introduced by Rosenfeld (1997),
which directly models the probability of an en-
tire sentence. The model is ideal for model-
ing whole-sentence phenomena because it treats
each sentence as a ’'bag of features’ where fea-
tures are arbitrary computable properties of the
sentence.

To incorporate semantic coherence into this
exponential model, (Cai et al., 2000) did some
initial work on constructing within-sentence se-
mantic coherence features. A set of five features
was extracted from each sentence and added di-
rectly to the exponential model. These features
decreased perplexity over the baseline trigram
model by 3 to 5%.

In this paper we augment the limited fea-
ture set presented in (Cai et al., 2000) by con-
structing roughly seventy features, which fall
into nine broad classes. The majority of the fea-



Table 1: Yule’s Statistic

WORD 1 | WORD 1
YEs No
WORD 2 YES Ci1 Cia
WORD 2 No Cy Caa

ture classes rely on word-pair correlation values
in sentences. To derive a measure of whole sen-
tence coherence, we used our feature set to build
a classifier which distinguishes between real sen-
tences generated by a human (taken as exam-
ples of coherent sentences) and fake sentences
generated by a conventional language model
(taken as examples of non-coherent sentences).
The confidence score produced by our classifier
has an accuracy of 80%, which is a significant
performance improvement over the results ob-
tained by using only the features developed in
previous work. This measure of semantic co-
herence can be used to improve the original
language model, and thus improve performance
in any application where language modeling is
used.

2 Approach

We use semantic association between word-pairs
and other sentence characteristics (described
later) to construct useful features for distin-
guishing between coherent and non-coherent
sentences.

2.1 Semantic Association between
Word-Pairs

We use the same correlation measure as in
(Cai et al., 2000). For each word-pair in our
dataset, we calculate a measure of association
called Q (Yule’s statistic) based on the appro-
priate 2x2 contingency table of training data
co-occurrences of the two words in the pair. Ta-
ble 1 shows such a contingency table for two
words. Cq; is the count of sentences in the train-
ing corpus which contain both words, C12 is ob-
tained by subtracting C;; from the number of
sentences with Word; in it; Cs; is obtained by
subtracting C1; from the number of sentences
with Words in it; Cyo is the total number of
sentences minus the other three counts. Based
on such tables we can compute the Q statistic
for each pair of words using equation 1.

_ Ci1-Co — Ci2-Coy (1)
Ch1 - Cy + Cig - Coy

The values of Q thus range from -1 to 1; the
higher the Q value, the stronger the correlation
between the two words. Q is -1 when two words
have never occurred in the same sentence, and
is 1 when they always occur together. Each sen-
tence, coherent or non-coherent, can be repre-
sented by a variable length list of Q values—a Q
value for each pair of content words. By defining
some statistics on these Q lists and comparing
the true and fake data, we observe differences
in the distributions of the statistics. A classifier
can use these statistics to distinguish between
coherent and non-coherent sentences.

2.2 Features

In order to train a classifier to discern between
coherent and non-coherent sentences, we first
generated a large set of features. We did not
explore features which use syntactic knowledge,
information about specific words, or lexical re-
sources like thesauri. The features are based
only on the word-pair correlation values, the co-
occurrence counts, and statistics on stop words.
We have implemented roughly seventy features,
which fall into nine classes. These classes are:

1. Simple statistics - the simple correlation
characteristics of a sentence: mean, me-
dian, maximum, minimum, range and vari-
ance of word pair correlation values. These
fall into two sub-groups:

(a) Statistics considering all word-pairs

(b) Statistics considering only pairs sepa-
rated by at least 5 words - short dis-
tance correlations and local coherence
are usually well modelled by trigram
language models

2. Sentence Length

3. Percentage of correlation values above
some threshold.

4. High/low correlations across large/small
distances - very high correlations across
large distances are strong evidence that
the sentence is from Broadcast News, as
are negative correlations at very close dis-
tances. We use thresholds to vary what is



considered a high correlation or large dis-
tance.

5. Number of word clusters - the number of
topics in a sentence can be approximated
by clustering the content words in the sen-
tence. We use a greedy, agglomerative clus-
tering algorithm, where similarity is de-
fined as the largest word-pair correlation
between any pair of words from the two dif-
ferent clusters. We stop merging clusters
when the maximum similarity is smaller
than a threshold, which ranged from 0 to
0.8.

6. Word and phrase repetition - in real sen-
tences content words are often repeated, as
are some phrases. We calculate the number
of repetitions, as well as the length of the
longest repeated phrase.

7. Unseen pairs - trigram-generated sentences
are much more likely to include pairs of
words that were never seen together in a
large training corpus. We use both the
number and percent of unseen pairs.

8. Content and Stop Words - the percentage
of words in the sentence which are content
words, the percentage of stop words, and
the longest consecutive sequences of con-
tent words and of stop words.

9. Likelihood Ratio - the likelihood that a sen-
tence came from a coherent source divided
by the likelihood the sentence was trigram-
generated. This feature is described in
more detail in the following section.

2.3 Likelihood Ratio

In a trigram language model the semantic corre-
lation between pairs of content words is primar-
ily determined by the distance between the two
words. Thus, adjacent words will generally be
semantically similar, but as the words get far-
ther apart the effects of the trigram will weaken,
and the association diminish. In real sentences,
on the other hand, we hypothesize that the se-
mantic correlation between word-pairs should
decrease more slowly with distance.

We tried to model this behavior by generat-
ing density estimates (for each corpus) of the Q
values conditioned on the distance between the
words. The distance is defined so that adjacent

words are considered to be at a distance of one.
Kernel density estimation was used to smooth
the density function.
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Figure 1: Distribution of Q values for word-
pairs at a distance of 1
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Figure 2: Distribution of Q values for word-
pairs at a distance of 3

Figures 3 and 2 show the distributions of the
Q values in Broadcast News and in trigram-
generated sentences for word- pairs at distances
of one and three respectively. As expected,
these distributions are almost identical for adja-
cent words, but outside the trigram model (dis-
tance 3), there are significant differences.

We used the generated density estimates
to derive a feature, which we call the
likelihood ratio. Each sentence is repre-
sented as a set of correlation/distance pairs:
(Ql, dl), (QQ, dg), ceey (Qn, dn) where n is the
number of content word-pairs in the sentence,
Q; is the correlation between the i*! pair of con-
tent words, and d is the distance between the
two content words.



From these density estimates we can esti-
mate the probability in each corpus of see-
ing a word-pair with a correlation of @ at
a distance d: D(Q|d, BroadcastNews) and
D(Q|d, Trigram). If we assume (incorrectly
but for simplicity) that each pair was generated
independently we can reduce the likelihood of
the sentence to the product of the likelihood of
each content word-pair correlation:

n
L(s|BNews) = H D(Qild;, BNews)
i

n
L(s|Trigram) = H D(Qild;, Trigram)
i

We can then use the ratio of these likeli-
hoods L(sﬁzgﬁgfz%;ws) as a measure that the
sentence is a real Broadcast News sentence.
For practical purposes we actually calculate
log L(s|BroadcastNews) — log L(s|Trigram).

If the value of this feature is a very large posi-
tive number, we are very confident that the sen-
tence came from Broadcast News, and is thus
likely to be semantically coherent. If the ratio
is a very large negative number, it is not likely
that the sentence was an actual broadcast news
sentence, and is therefore most likely not se-
mantically coherent. The closer the feature is
to zero, the more uncertain we are in our clas-
sification.

Distribution of the Likelihood Ratio Feature
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Figure 3: Distribution of the Likelihood Ratio

2.4 Learning Algorithms

We used the features described in the previous
sections to train decision trees to classify a sen-
tence as coherent or not.

The decision tree algorithm was C5.0 (an ex-
tension of C4.5 proposed by (Quinlan, 1993)),
and the selection criterion applied was gain ra-
tio. We set a minimum of twenty training ex-
amples per rule, but also tried other values.
We also experimented with boosting decision
trees, using an implementation of Adaboost.MH
(Schapire, 1999).

3 Datasets

Our dataset consists of approximately 104 mil-
lion words of Broadcast News text (BN). We use
103 million words to estimate the word-pair cor-
relations. We also construct a conventional tri-
gram model from this data using a variation of
Kneser-Ney smoothing (Kneser and Ney, 1995).
By sampling from this initial trigram distribu-
tion we generate an artificial corpus of non-
coherent sentences. We combined the remaining
1 million words of broadcast news with an equal
number of trigram-generated sentences to get a
corpus of approximately 60,000 sentences.

Since we are only concerned with the seman-
tic content of each sentence, we ran experiments
with two different stop lists, a small list of the
50 most frequent words and a much larger list
of 630 function words. These stop lists removed
around 40% and 60% of the tokens respectively.
Any word which was not removed we considered
a content word.

In general the sentences generated by the tri-
gram model are not coherent. However, since
the trigram model does effectively model lo-
cal behavior, it is incorrect to assume that
short sentences produced by the model will
not be coherent. For example, the sentences
Mike Stevens says it’s not real and We’ve been
hearing about it were generated by the tri-
gram model. For this reason, we excluded from
the corpus all sentences with fewer than seven
words. Also, because most of features look at
the correlation between pairs of content words,
we discarded any sentence with fewer than two
content words.

4 Results and Discussion

For each experiment Table 2 reports the average
accuracy and standard deviation after perform-
ing 5-fold cross validation on 60,000 sentences.
The boosting experiments were all run for 300
rounds, since the performance tended to level



Table 2: Classification Accuracy

| FEATURE SET

| Stop Worbs [ DT Acc. [ DT STpDEV. [ BoosT Acc | BoOST STDDEV. ]

PREVIOUS FEATURES 630 72.85
PrREVIOUS FEATURES 50 74.30
LIKELIHOOD RATIO 630 76.20
LIKELIHOOD RATIO 50 77.64
ALL BUT LIKELIHOOD 630 76.22
ALL BUT LIKELIHOOD 50 76.91
ALL FEATURES 630 77.53
ALL FEATURES 50 78.73

0.92 71.74 0.64
0.58 73.39 0.36
0.30 76.53 0.65
0.53 77.76 .49
0.68 78.90 0.42
0.30 80.37 0.46
0.43 78.90 0.42
0.49 80.37 0.46

off after that point.

As can be seen in the table, the best accuracy
achieved (80.37%) was when pre-processing
with a small stoplist, and using all of our fea-
tures with Adaboost. This result is a signifi-
cant improvement over the results obtained by
using features developed in previous work (Cai
et al., 2000). The features used in previous re-
search were never evaluated on the classification
task. In order to compare our results, we ran an
experiment using a similar set of features, and
obtained an accuracy of 74.30%.

In general, removing the 50 most frequent
words gave better accuracy than using a stan-
dard stoplist containing 630 words, and boost-
ing also consistently made slight improvements.
Although boosting the decision trees resulted in
slightly better performance, this improvement
was achieved at the cost of substantially in-
creased runtime.

An example of a useful rule learned by C5.0
is:

Likelihood_Ratio > 0.93 &

Mazimum_Q_at_Distance_4 > 0.915 &

Number_Clusters < 14 == Coher-
ent_Sentence

This rule has a test accuracy of 93% on the
15,000 sentences to which it applies.

Figures 4 and 5 show the distribution of two
discriminating features. There are significant
differences between the distribution of these
features in sentences generated by the trigram
model and those found in human-generated sen-
tences.

Looking at the rules generated by C5.0 we no-
ticed that the likelihood ratio had the highest
information gain among all the features. Using
this feature alone gives an accuracy of 77.76%

Maximum Q Value at Distance 4

Figure 4: Maximum (@ Value at Distance 4
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Figure 5: Median QQ Value

However, adding the rest of the features only
increases accuracy to 80.37%. Most likely this
is because there is significant overlap in the in-
formation captured by the two sets of features.
However, when determining the feature weights
an exponential language model takes into ac-
count the dependencies among features, and
therefore the high degree of overlap should not
be of concern.



4.1 Shannon-Style Experiment

Users Split
50% Agreement
10 Sentences

Perfect Agreement
15 Sentences

60-69%
Agreement
18 Sentences

90-99%
Agreement
20 Sentences

70-79%
Agreement
11 Sentences

80-89% Agreement
25 Sentences

Figure 6: Agreement Among Users

We carried out a Shannon-style experiment
to try to determine an upper bound for this dis-
crimination task. We constructed two test sets.
Each set was comprised of 50 sentences, evenly
divided between Broadcast News and trigram-
generated. We use the same pre-processing
steps as described in Section 3. Using the 630-
word stop list, we replaced all function words
with a dash so that only the content words were
identifiable.

Each participant was presented with one
of these sets and asked to decide whether
each sentence was Broadcast News or trigram-
generated. Given the reduced version of the sen-
tences, the average accuracy of our 30 partici-
pants was 73.77%, with a standard deviation of
6, a median of 74% and a maximum of 84%.

We tested our classifier on the 100 test sen-
tences processed with the same stop list. With
the models learned from our earlier experi-
ments, the decision tree trained on all the fea-
tures achieved 76.16% accuracy with a standard
deviation of 1.36. With boosting we reached
78.9% accuracy with a standard deviation of
0.42.

The purpose of this experiment was to com-
pare the success of our classifier to human per-
formance. On these experiments we did not ob-
serve statistically significant differences between
the two means (within one standard deviation).
However, we can say that our classifier performs
almost as well as the most accurate of the par-

ticipants.

On average, 81% of the participants gave the
same classification to a sentence. Figure 6 di-
vides the sentences in the experiment into six
groups of varying user agreement. The group of
sentences with perfect user agreement, for ex-
ample, consists of those sentences which all the
users classified with the same label, regardless of
whether their classifications were correct. This
group includes the easiest sentences, which ev-
eryone got right, as well as the most difficult
sentences, which everyone missed.

It is also interesting to compare people’s accu-
racy on specific sentences with the learner’s per-
formance on the same sentences. On average, a
sentence was classified correctly by the partici-
pants of the study 72.65% of the time. For the
sentences misclassified by our learner this num-
ber was only 60.07%, while for those correctly
classified, their accuracy was 76.92%. This sug-
gests that the sentences which the learner mis-
classifies are also harder for people to label cor-
rectly.

4.2 Perplexity Reduction

In addition to reporting classification accuracy,
we can also evaluate the expected reduction in
perplexity when combining this feature with the
baseline trigram model in an exponential lan-
guage model. The upper bound on improve-
ment from a single binary feature f; is the
Kullback-Leibler divergence between the true
distribution (p(f;)) and the distribution accord-
ing to the baseline model (p,(f;)) (Pietra et al.,
1997). If we estimate p(f;) with the empirical
distribution p(f;), then the probability of the
semantic coherence feature being 1 is estimated
at .78 for a Broadcast News sentence, compared
to .18 for a trigram-generated sentence. We can
then compute >, D(p(fi)||po(fi)) = 1.24 which

translates into an expected perplexity reduction
.819 .
of 4.19% (2721 , where 21 is the average number

of words in a sentence).

Although 4.19% does not appear to be a very
large improvement, it is important to remember
that this number reflects the average perplex-
ity reduction per word. The improvement ob-
tained by adding this feature to a model might
be significantly greater on a a task like n-best
list rescoring, which requires a whole-sentence
judgment. Measuring the magnitude of this im-



provement remains to be done as future work.

5 Future Work and Summary

Yule’s QQ statistic is not necessarily the best
measure of word-pair correlation because it is
extremely susceptible to data sparseness. The
point estimates of the Q values for words that
appear infrequently in our corpus are often un-
reliable. One idea for reducing the effect of these
unreliable estimates is to use a confidence dis-
tribution instead of the current point estimate.
Another possible approach would be to use a
different correlation statistic; one possibility is
the x statistic. Another possibility is to use
the method of (Dagan et al., 1995) to improve
the estimates of the likelihood of co-occurrences
that are rare in the training data.

When people are given this classification task
of distinguishing coherent and non-coherent
sentences, they tend to group together words
in the sentence that belong to the same topic.
We would like to model this process by using
other clustering methods to group the seman-
tically similar words together in each sentence.
Then statistics based on these clusters could be
used as additional features to improve the co-
herence measure.

In this paper we developed a successful ap-
proach for automatically distinguishing between
coherent and non-coherent sentences. Our com-
bination of feature sets and learners achieved a
reduction in error of 24% from the features used
in previous work (Cai et al., 2000). Our suc-
cessful approach used the semantic association
between word-pairs as well as simple features
such as sentence length and percentage of stop
words to construct a highly accurate classifier.

More work remains to be done to evaluate
how well the semantic coherence measure im-
proves the baseline language model. This eval-
uation can be performed by incorporating the
semantic coherence features into an exponential
language model and then using the model for a
practical application such as n-best list rescor-
ing.
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