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Abstract

In this paper, we introduce a formalism called contextual tree adjoining grammar (CTAG].
CTAGSs are a generalization of multi bracketed contextual rewriting grammars (MBICR) which
combine tree adjoining grammars (TAGs) and contextual grammars. The generalization is to
add a mechanism similar to obligatory adjoining in TAGs. Here, we present the definition of
the model and some results concerning the generative capaciry and closure properiies of the
classes of langiages generated by CTAGs.

Introduction

Contextual grammars are a formalization of the linguistic idea that more complex, well tormea
strings are obtained by inserting contexts into already well formed strings, They were first
introduced by Marcus in 1969; all models presented here are based on so-called internal con-
textual gramimars which were intraduced by Piun and Nguyen. References and further details
about contextual grammars can be found in the monograph (Piun, 1997); a survey is given in
(Ehrenfeucht ¢t al., 1997).

Tree adjoining grammars {TAGs) and contextual grammars are linguistically well il ond
have been considered as a good model for the description of natural languages (c.f. (Marcus,
1997)). Alithough contextual grammars and tree adjoining grammars seem very difterent at first
sight, a closer loak reveals many similarities between both formalisms. Therefore, it seems
natural to combine those formalisms in order to obtain a generalized class of granunars for the
description of natural languages, which combines the mechanisms of various classes, A first
step were so-called multi-bracketed contextual grammars (MBIC) and muiti-bracketed contex-
tual rewriting grammars (MBICR), c.f. (Kappes, 1999). These grammars operate on a tree
structure induced by the grammar (the first approach aiming in this direction was introduced in
(Martin-Vide & P#un, 1998)).

However, the families of Janguages generated by MBIC and MBICR-grammars are either strictly
included in or incomparable to the family of languages generated by TAGs. This is the case
since, in MBIC and MBICR-grammars, each yield of a derived tree is immediately a word in
the language generated by the grammar. In other words, there is no mechanism to distinguish
between “finished” and “unfinished” trees like obligatory adjoining allows in TAGs. Here, by
adding obligatory adjoining to MBICR-grammars, we obtain a generalized class whicli is also
a proper extension of TAGS.

Definition and Example

Let ©* denote the set of all words over the finite alphabet & and ¥7 = T* — {A}, where A
denotes (he empty word. We denote the length of a string # by |x[. Tn this paper, we use the
term derived tree for a tree where the internal nodes are labelled by symbols from a nonter-
minal alphabet A and the leaves are labelled by symbols from a terininal alphabet . We use
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Figure 1. Derived trees corresponding to the Dyck-covered words (from left to right)
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a linear representation of derived trees called Dyck-covered words. A Dyck-covered word is
a string consisting of terminal symbols and opening and closing brackets indexed with non-
terminal symbols. Formally. for the nonterminal alphabet & we define the bracket alphabet
By = {[+.]4]4 € A} Througheut the paper we always assume £ 1 By = (. The set of
all Dyck-covered words DCL(E) over & with respect to the index alphabet A is inductively
defined by

e Forall w e T and A € A, [yw]y s in DCL(Z).

e letn » Iheapusinciners W4 e Nand ay.ay.... o, are in DCA{TZI U T, then
Lpapas,oa, ] isin DCA(E).

It is not difficult to see that each o € DCL{Z) can be interpreted as unique encoding for a
derived tree. wheve  is the label alphabet for the internal nodes and X is the label alphabert for
the leaf nodes in the following way: A string [.4(1],-1 € DC,(T) 1sidentified with a tree where the
root is labelled by A. and the subtrees of the root are determined by the unique decomposition
of o = ayay... 0, such that o; € DC4(Z) U X, 1 €4 < n. For examples see Figure 1. By
DC3(X} we denote the set of all elements in DC (T) where the root node is labelled by A.

A contextual free adjoining gramunar {CTAG) 15 a tuple G = (S, 5, T.8.7), where T g
a finite set of terminals, A is a finite set of indices, T C A is a set of permitted indices,
1 C DCL (Y)Y A} isa finite set of axioms and PP is a finite set of productions. Each production
is of the form (S, C, K, H}, where § C T7F is the selector language, ', H C A are sets of
nonterminals and € is a finite subset of contexts where each context is of the form (¢, i) such
that 1 € DCA(Z).

The derivation process in a CTAG is illustrated in Figure 2: A context (j1, ) may be adjoined to
an ov = oy [pan) pevy yielding a tree aypgas)prag if and only if there is an (S.C. N, H) € P
such that the yield of ara isin S, {2, #) € C, |pry)p € DCR(Z), B € N and E € H. The
string [1cvy] 4 is called selector. In the above figure, we have « € DCA(T), v € DCR(T) and
the vield of ). eva, tvy g1, 1218 @y, wo, wa, u, v respectively. The set of ali sentential forms of
@, S{{), consists of all trees which can be derived in the above way starling from an axjom
in £}, The set of all trees derived by a CTAG G, T(G), consists of all trees in S{G') where the
internal nodes are only labelled by nonterminals in T. The weak generative capacity L(G} is
the yield of all trees in T(G). Hence, internal nodes labelled by symbols from )\ — T have 1o
be relabelled during the derivation process in order 10 obtain a tree in T{G).
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Figure 2: The derivation process in a CTAG

Up to some technical modifications necessary to keep our formalism consistent 1o the usual
model of contextual grammars, we only added selector languages to the productions of a TAG,
These selector Janguages are used to control the derivation process as they do in contextual
grammars, the adjunction of an auxilliary tree is only possible if the yield of the node where the
adjunction takes place is in the selecior language.

We can classify CTAGs by their selector languages: A CTAG G = (T A T.Q. 1) is called
with F-choice for a family of languages F.if 5 € Fforall (S C N Hy € PP

Consider for example the CTAG with =7 -szlection

G (o boecd e LA B A4} {lso[abelpd]a}. {71 7)) where
(SF Al Apdla)h{ B} {A}) and
(S A e el b {BY AT

It is nor difficult to see that using 7, 7 times yvields a derivation

oy

e

[,-i”[b‘b(']b‘J];\ ﬂ(,- ({_.1” }ih‘- ! {Hl’l([_.lb)i (f'].v'l )'-r']B(rf]A)""] .

In order to abtain a string in 7 (() we have to use production 7, exactly once te remove the pair
of brackets indexed by 3 from the sentential form, After applying 7, once, no fuither derjvation
steps are possible, hence L(G)} = {e"clMed” |n > 1},

Generative Capacity

CTAGs are a generalization of MBICR-grammars. For A = 7T these models are equivalent
{CTAGs could thus also be called multi-bracketed contextual gramumars with obligatory rewrit-
ing (MBICRO}). The obligatory adjcining featurs increases the generative capacity, For in-
stance, the fanguage in the above example cannot be generated by any MBICR-grammar. This
is due to the fact that each language L generated by an MBICR-gramntar fulfills the so-called
internal bounded step property (c.f. (Pdun, 1997)): There is a constant p such that for each
string .+ € L, || > pthereis ay € L such that » = ryuzanmy, y = ajaes and U < |uw| < p,

CTAGs using only the selector language T+, i.e,, in effect ignoring the selector language mech-
anism, and TAGs are, up to some details, descriptions of the same model. 1t is possible to
construct a TAG equivalent to a given CTAG with Lt+-choice and vice versa, The technical
detail is that all elementary trees of a TAG must be elements of DCa (T) if the foot nodes of the
auxilliary trees are not taken into account, Formally, the equivalence holds if the initial trees in a
TAG are elements of DCa (2) and each auxilliary tree 7 of G is of the form c; = 1] 4,) 4,7 such
that ;1,1 € DCA'(T). Notice that the pair 4], represents the foot node of ;. The construction
of an equivalent TAG for a given CTAG with T+ -choice is a straightforward generalization of
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a similar construction for MBICR-grammars which can be found in (Kappes, 1999).

For the other direction. consider 2 TAG G of the above form. Let .V denote the selective {(or X
in case of an obligatory) adjoining constraint of an internal node in an elementary tree. X (or
Ty thus dereferences the subset of auxilliary trees which may be adjoined at this node. We can
construct an equivaient CTAG G = (. A T Q" P') with Z*-choice as follows: The set of
indices A" and the set of permitted indices T’ of (' is given by

A= {4 j4€edand X is a (selective or obligatory) adjoining constraint}
T o= {(4.X}]4€ Aand Y is aselective adjoining constraint}.

For each initial tree o of & we insert a tree oo’ into €Y. where each node labelled by 4 € A
with (selective or obligatory) adjoining constraint Xis replaced by the index {.4.,.&'). We thus
consider the adjoining constraint of a node as part of its index. For each auxilliary tree 7 : n; =
piila )4 we insert a production m = (S*{(ph )} (AL ) € X {(4 2))) into
where ;7 is obtained from yi;14 by the samie procedure as above and Z is the (selective or
obligatory) adjoining consiaint of the foot node of 1, It is possible to prove that both grammars
are equivalent.

[t can be shown that each CTAG wilh finite selection generates a context-free language. This
is the case since the length of each string which may be used as selector in a derivation step
can be bounded by some constant. Due to the bracket structure it is impossibie to shift infor-
mation through the sentential form of a CTAG if the Tength of the selectors is finite, Therefore
it js possible to construct a centext-free grammar generating the same language. Also. for
each context-lree language there is a CTAG with finite selection generating that fanguage. So.
CTAGs with finite selectors generate exactly the context-free languages.

CTAGs with regular selectors can generate languages which cannot be generated by TAGs
aven if we do not take advantage of the obligatory adjoining feature. The language L(G) =
{aht e di e fon > 0 > 1} con be generated by an MBICR-grammar and hence by a CTAG
with regular selector languages (c.f. (Kappes, 1999)) but not by any TAG because of the
pumping-temma for TAGs (cf. (Vijay-Shanker, 1988)).

With context-sensitve selector languages. CTAGs generate exactly the context-sensitive lan-
guages: Let L € ©7F be a context-sensitive language. We construct the CTAG

G = (S {4 BL{ALQ {zs} U {r, |7 € Z}). where
Q = {[ar]alr el frl=1Yu][go]pla e}

r = (S (oo ) |7 € Sh B}, {4}) and

me = (lreTtore L} {(lso. ) B} 44D,

Since the family of context-sensitive language is closed under quotient with singleton sets, all
selector languages are context-sensitive, and it is not difficult to prove L{() = L.

1
[

This result shows that the combined use of selectar languages and obligatory adjoining leads
10 a very powerful formalism. Whereas there are context-sensitive languages (such as L =
{a" el *ed™ |n > 1}) which cannot be generated by any MBICR-grammar regardlessly of
the used selector languages, the above construction shows that for each family of languages I
closed under quotient with singleton sets and containing all finite languages each L € F' can
also be generaled by a CTAG with F-choice.

Closure Properties

The class of Tanguapes generated by CTAGs with F-choice is ciosed under union, concatenation
and Kleene-star for all families of languages F with &1 € /. Let Gy = (T, 0. 1,80, )
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and Gy = (Sy Ao Y2, €2,. %) be two CTAGs with F-choice for a family of languages F
with T~ ¢ F. Without Joss of generality we may assume that 5, 1 Ay = @, Therefore it is
casy 10 see that for G = (S U Za. 2 U Ao, T U e £ UL P U ) we have L(G) =
LGy e L(G;). For concatenation we take a new index 5 ¢ Ay U A\, and construct ¢
(T, 2S00, U U{SET UY, U{Sh{[cadlsta € O = {A}. F € L~ {A}J U {a
0,18 e Y uda € QN e O} P U R Clearly L(G’) = L(G)) - L(Gy). For Kleene-star
we construet G = (X, U{S} T U{S} {lsolsla € Q) = {XJYU{A}. PU{7}). where
= = X7 e a) Hn € 8y — {A 1 {53 {5} It is a techinical exercise to prove L(G"} =

LG

For each CTAG G and regular language 2 we can construct a CTAG &7 such that L(G) =
L(G) i R, Furthermore, G uses the same selector languages as . Hence. this construction
directly proves that the class of fanguages generated by CTAGs with F-cheice is closed under
intersection with regular languages for any family of languages I, For the relevance of clasure
under intersection with regular sets we refer the reader to (Lang, 1994},

il

m

1 the tollowing, we will present a sketch of the proof. Let & = (. AT, €, 7) be an arhitrary
CTAG and R a regular Janguage. Without Joss of generality we assume that GG is in a normal
{orm such that eacly internal node either has exactly one leaf or only internal nodes as immediate
successors: formally for each cyauny € T(G) such that oy € DCL(E) we either have ny =
failg forsome s € Sand A € Moray = [49.. F)y foran 4 € dand . & DCA(\_}.
1< ¢ = n. Since 7 is regular. there exists a deterministic finite automaton M = (1.4, ¢y, F)
with L{Y) = & (c.f. (Hoperoft & Ullman., 1979) for notational details). We construct a
grammar (' where the label of each internal node addition’xlbf an‘ieq iwa pairs of states of 3.
formally the sei of indices of G is givenby @ = {{d. {p.g]. [ s} A € A pg.r.s€ Q).

Intuitively. in the tree interpretation. if an interna! node is labe]lcd by (A. ;. gJ Lr }) then
{12 ¢] is a value propagated from the immediate predecessor of the node stating that this node is
supposed to generate a vield u such that & 1) = ¢. The pair 1. s denotes that the immediate
successors of the node are supposed to generate a yield w such that (r. v} = »,

(" generates as sentential forms exactly the sentential forms of & where a Jabel of an jnternal
node 4 in S5{G) is replaced by all labels (4. [p. ). [ 5] oo r v € (L in S(G') such that for
the resulting strings o € S{"} the following properties hold:

(1) For each partition i = a;aqng such that oy € DCA(E) and oy = [\ . ,,j\ we have
No= (A pg] [po. ) v € DCA(R) and ;= [ivih Yo = (Bv:[fhh:-ﬂde[ S8l
1 < ¢ £ n. In other words. for each internal node with other internal nedes as immediate
successors, the second pair of states of the node is consistent with the first pairs of states
of its immediate descendants (in the sense of the usual triple costruction}. See Figure 3
for an illustration.

For each partition a = ajasay such that iy € DCA(T) and oy = [yoly where X =
(4. fir. g [r,8]) and 0 € E we have d(r,a) = 5. In other words, for ali internal nodes
having a leaf labelled by ¢ as immediate successor we have (. o) = « for the second
pair of states [r. s].

—

2

(3) For cach n = [xo'lx we have X' = (4, [n, f1.[r, 5]) where gy is the initial state of Af
and f is a final state of M, f € F. In other words, the first pair of states of the root node
of each tree consists of AM’s initial state and a final state of A1,

The details of converting the axioms and contexts of G into axioms and contexls of & are
omitted due (o the limited space. The conversion leaves the selector languages untouched, so
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Figure 3: Exampie for a part of a tree in 5{G’) corresponding ro a part of a tree in 5(G). The
above part of a tree with root labelled by .1 and immediate nonterminal successors B, ... . B,
is converted into all parts of the above form for arbitrary p. ¢ p. .5 € Q, 0 < 7 < n (not
considering further restrictions due to the immediate predecessor or the immediaie descendants
of this part of the ree).

(' uses the same selector languages as G. If we define the set of permitted indices of G' by
O = {A gl pal) 1 d € Topg € QF we obiain L(G') = L(G) N R.

The same construction ¢an also be used to show the closure of TAL under intersection witl
regular sets without involving a corresponding automata mouei liz: EPDAs,

Conclusion and Further Work

T this paper. we iniroduced CTAGs and discussed their generative capacity and some ciosure
preperties. CTAGs seem a significant progress compared to MBICR-grammars. As allowing
both obhigatory adjoining and selector languages leads to a very powerful model, our foture
work will focus on CTAGs with “weak™ selector languages. Open preblems which we would.
like 1o tackle in the future are whether the classes of languages generated by such grammars are
closed under hamomorphism and jnverse homomorphism or not and the relationship to other
formalisms such as range concatenation grarmnars and recursive matrix systems.
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