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We discuss a number of practical issues that have arisen in the development of a wide-coverage 
lexicalized grammar for English. In particular, we consider the way in which the design of the 
·~rammar and of its encoding was infiuenced by issues relating to the size of the grammar. 

Introduction 
Hand-crafting a wide-coverage grammar is a difficult task, requiring consideration of a seem­
illgly endless number of constructions in an attempt to produce a treatment that is as uniform 
and comprehensive as possible. In this paper we discuss a number of practical issues that have 
#dsen in the development of a wide-coverage lexicalized grammar for English: the LEXSYS 

'grammar. In particular, we consider the way in which the design of the grammar and of its 
tncoding-from the viewpoint both ofthe grammar writer and of the parsing mechanism-was 
~ftuenced by issues relating to the size of the grammar. 
(jne criterion that is often used as a judge of grammar quality is the extent to which 'linguistic 
~eneralizations' have been captured. ·Generally speaking, concern over this issue leads to a 
·preference for smaller rather than !arger grammars. A second reason for preferring smaller 
grammar sizes is on the basis of parsing efficiency, since the running time of parsing algorithms 
g6nerally depends on the size of the grammar. 
!Jowever, a rather different criterion determining grammar quality has to do with the analyses 

.that the grammar assigns to sentences: in particular, the extent to which they provide a good 
pasis for further, perhaps deeper processing. lt is not necessarily the case that this criterion is 
sompatible with the desire to minimize grammar size. 
Jn developing the LEXSYS grammar we have explored the consequences of giving the grammar 
\>Jriter the freedom to write a grammar that maximizes analysis quality without any regard for 
grammar size. In the next three sections we present detailed statistics for the current LEXSYS 

grammar that give an indication of what the grammar contains, its current size, and why it has 
grown to this· size. 

fn order to ease the process of engineering such a !arge grammar, we have made use of the 
exical knowledge representation language DATR (Evans & Gazdar, 1996) to compactly encode 

the elementary trees (Evans et al., 1995; Smets & Evans, 1998). In Section 5 we present some 
flgures that show how the size of the encoding of the grammar has increased during the gramm~ 
~evelopment process as the number and complexity of elementary trees has grown. 
yve have addressed problems that result from trying to parse with such a !arge grammar by using 
~ technique proposed by (Evans & Weir, 1997) and (Evans & Weir, 1998) in which all the trees 
that each word can anchor are compactly represented using a collection of finite state automata. 
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In Section 6 we give some data that shows the extent to which this technique is successful in 
compacting the grammar. 

2. Coverage of the LEXSYS Grammar 
The LEXSYS grammar has roughly the same coverage as the A1vey NL Tools grammar (Grover 
et al„ 1993), and adopts the same set of subcategorization frames as in the Alvey lexicon. There 
are at present 143 families in the grammar. Each family contains the base tree of the family, and 
definitions of lexical rules which derive trees from the base tree. There are currently 88 lexical 
rules. Possible rule combinations are determined automatically (see (Smets & Evans, 1998)). 
There are 7 noun and pronoun families. Tue noun families include trees for bare nouns, for 
small clauses headed by a noun, for noun-noun modifiers and for coordination. Coordination 
can be at the N, N or NP Jevels. There are 19 adjective families, distinguished according to the 
position of the adjective and its subcategorization frames. Trees derived by lexical rules include 
small clauses headed by an adjective, comparative constructions, trees with unbounded depen­
dencies for adjectives which subcategorize for a complement (wh-questions, relative clauses, 
topicalization), a tree for tough-movement, and trees for coordination. 
Numerals also anchor adjective trees. Rules derive from the base tree uses of numerals as 
pronouns and nouns, and coordination of cardinal numbers (for example, hundred and ten). 
However, the grammar does not as yet have a complete account of complex numerals. For
ordinals, there are rules to derive fractions with complement, fractions without complement, 
and the use of ordinals as degree specifiers. 
Adverbs are distinguished according to whether they are complements or modifiers. Modifier 
trees differ according to the modified category and the relative position of the adverb and its
argument. Rules derive coordinated structures headed by adverbs, and also adverb distribution. 
Long distance dependencies possibly involving adverbs (for example, How did he behave) are 
handled in the PP modifier famil y.1 

The grammar contains an account of constituent and sentential negation (but in the latter disre­
garding scope issues arising when an adverb comes in between rhe auxiliary and the negation). 
Specifier families include families for determiners, quantifying pre-determiners and genitive 
determiners. There is also a family for adjective and adverb specifiers. 
Prepositions followed by an NP are divided into two families: a family for case-marking prepo­
sitions and a family for predicative prepositions. These two types of prepositions differ in their 
semantic content, and syntactically also: case-marking prepositions do not head PP-modifiers: 
The case-marking preposition family includes trees for long-distance dependencies with prepo­
sition stranding (wh-questions, relative clause, tough-constructions) and trees for coordination.
Tue family of predicative prepositions inherits these trees, and also contains trees for adjunc
preposition phrases and long-distance dependencies involving adjunct PPs. There are also fam­
ilies for prepositions introducing ss, VPs, PPs and AP. There are two families for complemen~
tizers (introducing an s or a VP). 
The 94 verb· families constitute the bulk of the grammar. Verb families include trees2 for ·
gerunds (nominal and verbal), long-distance dependencies (topicalization, relative clause and 
wh-questions), VP complements, VP complements for tough-constructions, small clauses (headed
by a present participle or a passive verb),for-to clauses, extraposition, imperative, passive with 
or without by, inversion (for auxiliaries and modals), VP-ellipsis (after auxiliaries and modals), 
dative alternation, movement of particles, and coordination (at V, VP and s). 
Finally, we have recently extended the grammar to include semantic features capturing predicate 

1 lt would be redundant also to have such a rule in the adverb family. 
10f course, these constructions are not relevant for every single family. 
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argument structures. We have not implemented quantification yet. The grammar adopts a se­
mantic representation inspired by the Minimal Recursion Semantics (MRS) framework (Copes­
take et al., unpublished). MRS representations are ftat lists of elementary predications, with 
relations between predications being expressed through coindexation. 

3. Localization of Syntactic Dependencies 
The LEXSYS grammar has been designed to localize syntactic dependencies, not only un­
bounded dependencies between filler and gap, but agreement relations, case and mode of the 
clause, etc. (Carroll et al., 1999). One immediate advantage is that there is no need for feature 
percolation during parsing: all syntactic features are grounded during anchoring. There are, 
however, a few cases where all syntactic features cannot be localized in the same tree. This 
happens when the values of syntactic features are determined by more than one consti tuent. 
This is the case, for example, in raising constructions: the subject raising verb agrees with 
its syntactic subject but the complement of the raising verb (adjective or verb) determines the 
category of the subject. In such cases, feature percolation is needed, unless one define trees for 
all the possible feature combinations. This is what we have done in the grammar, and 9 more 
trees are needed to that effect. 
In there-constructions, the NP following the verb (be) determines the agreement of the verb. 
This does not represent a problem if the dependency is local. However, if a subject raising verb 
comes in between there and the rest of the sentence, agreement cannot be determined locally 
anymore. We need one more tree to cover both possible instantiations of agreement features. 
Finally, PP phrases can involve a wh-NP or a rel-NP, t1'11~ !""'~~ !::;- ~p~~i~ec! :is such. Because the 
head of PPs does not set that feature, feature percolation would be needed between the NP and 
the root of the PP. In the grammar, we define three PP trees, one for each possible instantiation 
of that feature. Thus, two more trees are needed than if we had feature percolation. 
In all the above cases, the specification of all possible feature combinations does not involve the 
creation of many more trees. However, from a Iinguistic point of view, we do miss generaliza­
tions. 
With coordination, however, the problem is not the loss of linguistic generalizations, but the 
substantial increase in the number of trees. Indeed, coordination3 trees are anchored by the 
head of one of the coordinated constituents. The advantage of this is that constraints on the 
coordination phrase are defined at anchoring. But the disadvantage is that this doubles the 
number of trees in the grammar: every structure can occur in coordination. 

4. Anchored Trees 
The previous two sections discussed the coverage of the grammar, and how some decisions have 
increased the number of unanchored trees. Another important property of the grammar is the 
number of trees that result from anchoring with lexical items. 
We find that some verbs induce a very !arge number of anchored trees: for example, get results 
in 2847 trees, put 3465, come 2656, and turn 1425. To illustrate why, consider get. First, 
get has 17 different subcategorization frames (it can be transitive, ditransitive, it can have a 
prepositional complement, be followed by one or more particles, etc.). lt therefore belongs to 
L 7 different families, and each family contains a number of trees (for example, the v _pp family, 
>elected by get, has 33 trees, and the v ...NP J>Pto family contains 146 trees). 
v.toreover, when a lexical item anchors a tree, features get grounded, and different feature in­
;tantiations characterize different trees. For example, get can be followed by one of 12 different 
)ff positions which means that there are at least 12 x 33 trees for the single subcategorization 

30nly samc constituent coordination has been implemented so far. 
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# trees # sets # merged #minimized ratio merged I 
in set states (mean) states (mean) minimized 
1-10 112 17.9 6.9 2.6 

1 I-20 83 53.9 13.I 4.1 
21-50 69 133 18.1 7.4 
51-100 47 364 28.l 13.0 

101-200 68 687 33.0 20.8 
201-500 56 1815 42.8 42.4 
501-1000 23 3654 48.9 74.7 

1001-5000 16 10912 60.1 181.5 
Totals 474 927.7 23.5 39.4 

Table l: Grammar compaction statistics 

frame v _PP. Similarly, there are 16 different particles which can follow get, and this also mul­
tiplies the number of trees. 
Finally, there are other features that get instantiated and are responsible for the creation of 
new trees, such as agreement features of the anchor, verb form feature of the anchor and of 
its verbal complement. Thus the different instantiations of features together with the various, 
subcategorization frames that a word selects explain the very high number of trees anchored by 
some individual words. 

5. Encoding for Grammar Development 
Following (Evans et al., 1995) and (Smets & Evans, 1998) the LEXSYS grammar is encoded 
using DATR, a non-monotonic knowledge representation language. 
In 1998, the grammar contained 620 trees organized into 44 tree families and produced using 
35 rules. This grammar was encoded in 2200 DATR statements, giving an average of 3.55 DATR 

statements per tree. The grammar currently contains around 4000 trees in 143 families produceci 
with 88 rules. This grammar is encoded with around 53004 DATR statements, giving an average 
of 1.325 statements per tree. Thus, as the grammar has grown the number of DATR statements 
needed to encode it has grown, but not as rapidly. 

6. Encoding for Parsing 
Following (Evans & Weir, 1997) and (Evans & Weir, 1998) each elementary tree is encodec 
as a finite state automaton that specifies an accepting traversal of the tree from anchor to root 
For each input word, the set of all the alternative trees that can anchor an input word can bc 
captured in just one such automaton, which can be minimized in the Standard way, and the1 
used for parsing. 
In order to assess the extent to which this technique alleviates the problem of grammar sizt' 
we produced automata for the words appearing in the 1426 sentences (mean length 5. 70 word! 
forming the Alvey NL Tools grammar development test suite. Bach sentence was processe 
by a morphological analyser, and the result was then used in conjunction with the Jexicon 1 

determine for each word in the sentence the complete set of anchored trees, feature valuc 
being determined by the morphological analyser or lexicon as appropriate. 4 7 4 distinct sets 1 

anchored trees ('tree sets') were produced in this way, ranging in size from 1 to 3465 tree 
The total number of anchored trees was 24198, with a mean of 175.5 trees in each tree sc 

4We have excluded from this figure around 700 DATR statements that specify the semantics associated w 
elementary trees. 
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# # sets # trees in # minimized states 
occurrences sets (mean) in sets (mean) 

1 98 256 25.8 
2-5 178 205 26.6 
6-10 68 182 23.0 

11-20 56 83 19.6 
21-50 48 64 16.7 
51-100 12 84 21.2 

101-200 9 54 11.2 
201-500 3 21 13.0 
501-1000 2 5 6.0 

Table 2: Occurrences of tree sets in test sentences 

Before parsing, the trees in each tree set are stripped of their anchor, merged into a single 
automaton and minimized; at parse time the relevant automaton is retrieved and the appropriate 
nchoring Jexical item inserted. Table 1 shows what happens when the tree sets are converted 
nto automata and minimized, giving figures for the distribution of tree sets, mean numbers of 
merged and minimized states in each tree set, and ratios of numbers of merged and minimized 
states. 
What is not clear from Table 1 is how often each of the 474 distmct tree sets occurred in the 
test sentences. This is shown in Table 2 which gives the numbers and mean sizes of tree sets 
(number of trees and minimized states) relative to the number of times they occurred in the test 

suite sentences. This shows that the ]arger tree sets tend to occur less often than small ones, and 
that very few of those tree sets containing more than 100 trees anchored more than 10 of the 
foore than 8100 word tokens in the test sentences. 
The results we have presented in this section appear to show that by encoding the anchoring pos­
~ibilities for words with minimized automata we are able to alleviate the grammar size problem 
fo a considerable extent. 
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