
orkshop TAG+5, Paris, 25-27 May 2000

Engineering a Wide-Coverage Lexicalized Grammar

)\.bstract

J. Carroll, N. Nicolov, 0. Shaumyan, M. Smets & D. Weir
School of Cognitive and Computing Sciences

University of Sussex
Brighton, BNI 6RG

UK

55

We discuss a number of practical issues that have arisen in the development of a wide-coverage
lexicalized grammar for English. In particular, we consider the way in which the design of the
·~rammar and of its encoding was infiuenced by issues relating to the size of the grammar.

Introduction
Hand-crafting a wide-coverage grammar is a difficult task, requiring consideration of a seem­
illgly endless number of constructions in an attempt to produce a treatment that is as uniform
and comprehensive as possible. In this paper we discuss a number of practical issues that have
#dsen in the development of a wide-coverage lexicalized grammar for English: the LEXSYS

'grammar. In particular, we consider the way in which the design of the grammar and of its
tncoding-from the viewpoint both ofthe grammar writer and of the parsing mechanism-was
~ftuenced by issues relating to the size of the grammar.
(jne criterion that is often used as a judge of grammar quality is the extent to which 'linguistic
~eneralizations' have been captured. ·Generally speaking, concern over this issue leads to a
·preference for smaller rather than !arger grammars. A second reason for preferring smaller
grammar sizes is on the basis of parsing efficiency, since the running time of parsing algorithms
g6nerally depends on the size of the grammar.
!Jowever, a rather different criterion determining grammar quality has to do with the analyses

.that the grammar assigns to sentences: in particular, the extent to which they provide a good
pasis for further, perhaps deeper processing. lt is not necessarily the case that this criterion is
sompatible with the desire to minimize grammar size.
Jn developing the LEXSYS grammar we have explored the consequences of giving the grammar
\>Jriter the freedom to write a grammar that maximizes analysis quality without any regard for
grammar size. In the next three sections we present detailed statistics for the current LEXSYS

grammar that give an indication of what the grammar contains, its current size, and why it has
grown to this· size.

fn order to ease the process of engineering such a !arge grammar, we have made use of the
exical knowledge representation language DATR (Evans & Gazdar, 1996) to compactly encode

the elementary trees (Evans et al., 1995; Smets & Evans, 1998). In Section 5 we present some
flgures that show how the size of the encoding of the grammar has increased during the gramm~
~evelopment process as the number and complexity of elementary trees has grown.
yve have addressed problems that result from trying to parse with such a !arge grammar by using
~ technique proposed by (Evans & Weir, 1997) and (Evans & Weir, 1998) in which all the trees
that each word can anchor are compactly represented using a collection of finite state automata.

56
Carroll et al.

In Section 6 we give some data that shows the extent to which this technique is successful in
compacting the grammar.

2. Coverage of the LEXSYS Grammar
The LEXSYS grammar has roughly the same coverage as the A1vey NL Tools grammar (Grover
et al„ 1993), and adopts the same set of subcategorization frames as in the Alvey lexicon. There
are at present 143 families in the grammar. Each family contains the base tree of the family, and
definitions of lexical rules which derive trees from the base tree. There are currently 88 lexical
rules. Possible rule combinations are determined automatically (see (Smets & Evans, 1998)).
There are 7 noun and pronoun families. Tue noun families include trees for bare nouns, for
small clauses headed by a noun, for noun-noun modifiers and for coordination. Coordination
can be at the N, N or NP Jevels. There are 19 adjective families, distinguished according to the
position of the adjective and its subcategorization frames. Trees derived by lexical rules include
small clauses headed by an adjective, comparative constructions, trees with unbounded depen­
dencies for adjectives which subcategorize for a complement (wh-questions, relative clauses,
topicalization), a tree for tough-movement, and trees for coordination.
Numerals also anchor adjective trees. Rules derive from the base tree uses of numerals as
pronouns and nouns, and coordination of cardinal numbers (for example, hundred and ten).
However, the grammar does not as yet have a complete account of complex numerals. For
ordinals, there are rules to derive fractions with complement, fractions without complement,
and the use of ordinals as degree specifiers.
Adverbs are distinguished according to whether they are complements or modifiers. Modifier
trees differ according to the modified category and the relative position of the adverb and its
argument. Rules derive coordinated structures headed by adverbs, and also adverb distribution.
Long distance dependencies possibly involving adverbs (for example, How did he behave) are
handled in the PP modifier famil y.1

The grammar contains an account of constituent and sentential negation (but in the latter disre­
garding scope issues arising when an adverb comes in between rhe auxiliary and the negation).
Specifier families include families for determiners, quantifying pre-determiners and genitive
determiners. There is also a family for adjective and adverb specifiers.
Prepositions followed by an NP are divided into two families: a family for case-marking prepo­
sitions and a family for predicative prepositions. These two types of prepositions differ in their
semantic content, and syntactically also: case-marking prepositions do not head PP-modifiers:
The case-marking preposition family includes trees for long-distance dependencies with prepo­
sition stranding (wh-questions, relative clause, tough-constructions) and trees for coordination.
Tue family of predicative prepositions inherits these trees, and also contains trees for adjunc
preposition phrases and long-distance dependencies involving adjunct PPs. There are also fam­
ilies for prepositions introducing ss, VPs, PPs and AP. There are two families for complemen~
tizers (introducing an s or a VP).
The 94 verb· families constitute the bulk of the grammar. Verb families include trees2 for ·
gerunds (nominal and verbal), long-distance dependencies (topicalization, relative clause and
wh-questions), VP complements, VP complements for tough-constructions, small clauses (headed
by a present participle or a passive verb),for-to clauses, extraposition, imperative, passive with
or without by, inversion (for auxiliaries and modals), VP-ellipsis (after auxiliaries and modals),
dative alternation, movement of particles, and coordination (at V, VP and s).
Finally, we have recently extended the grammar to include semantic features capturing predicate

1 lt would be redundant also to have such a rule in the adverb family.
10f course, these constructions are not relevant for every single family.

Engineering Lexicalized Grammar 57

argument structures. We have not implemented quantification yet. The grammar adopts a se­
mantic representation inspired by the Minimal Recursion Semantics (MRS) framework (Copes­
take et al., unpublished). MRS representations are ftat lists of elementary predications, with
relations between predications being expressed through coindexation.

3. Localization of Syntactic Dependencies
The LEXSYS grammar has been designed to localize syntactic dependencies, not only un­
bounded dependencies between filler and gap, but agreement relations, case and mode of the
clause, etc. (Carroll et al., 1999). One immediate advantage is that there is no need for feature
percolation during parsing: all syntactic features are grounded during anchoring. There are,
however, a few cases where all syntactic features cannot be localized in the same tree. This
happens when the values of syntactic features are determined by more than one consti tuent.
This is the case, for example, in raising constructions: the subject raising verb agrees with
its syntactic subject but the complement of the raising verb (adjective or verb) determines the
category of the subject. In such cases, feature percolation is needed, unless one define trees for
all the possible feature combinations. This is what we have done in the grammar, and 9 more
trees are needed to that effect.
In there-constructions, the NP following the verb (be) determines the agreement of the verb.
This does not represent a problem if the dependency is local. However, if a subject raising verb
comes in between there and the rest of the sentence, agreement cannot be determined locally
anymore. We need one more tree to cover both possible instantiations of agreement features.
Finally, PP phrases can involve a wh-NP or a rel-NP, t1'11~ !""'~~ !::;- ~p~~i~ec! :is such. Because the
head of PPs does not set that feature, feature percolation would be needed between the NP and
the root of the PP. In the grammar, we define three PP trees, one for each possible instantiation
of that feature. Thus, two more trees are needed than if we had feature percolation.
In all the above cases, the specification of all possible feature combinations does not involve the
creation of many more trees. However, from a Iinguistic point of view, we do miss generaliza­
tions.
With coordination, however, the problem is not the loss of linguistic generalizations, but the
substantial increase in the number of trees. Indeed, coordination3 trees are anchored by the
head of one of the coordinated constituents. The advantage of this is that constraints on the
coordination phrase are defined at anchoring. But the disadvantage is that this doubles the
number of trees in the grammar: every structure can occur in coordination.

4. Anchored Trees
The previous two sections discussed the coverage of the grammar, and how some decisions have
increased the number of unanchored trees. Another important property of the grammar is the
number of trees that result from anchoring with lexical items.
We find that some verbs induce a very !arge number of anchored trees: for example, get results
in 2847 trees, put 3465, come 2656, and turn 1425. To illustrate why, consider get. First,
get has 17 different subcategorization frames (it can be transitive, ditransitive, it can have a
prepositional complement, be followed by one or more particles, etc.). lt therefore belongs to
L 7 different families, and each family contains a number of trees (for example, the v _pp family,
>elected by get, has 33 trees, and the v ...NP J>Pto family contains 146 trees).
v.toreover, when a lexical item anchors a tree, features get grounded, and different feature in­
;tantiations characterize different trees. For example, get can be followed by one of 12 different
)ff positions which means that there are at least 12 x 33 trees for the single subcategorization

30nly samc constituent coordination has been implemented so far.

58
Carroll et al.

trees # sets # merged #minimized ratio merged I
in set states (mean) states (mean) minimized
1-10 112 17.9 6.9 2.6

1 I-20 83 53.9 13.I 4.1
21-50 69 133 18.1 7.4
51-100 47 364 28.l 13.0

101-200 68 687 33.0 20.8
201-500 56 1815 42.8 42.4
501-1000 23 3654 48.9 74.7

1001-5000 16 10912 60.1 181.5
Totals 474 927.7 23.5 39.4

Table l: Grammar compaction statistics

frame v _PP. Similarly, there are 16 different particles which can follow get, and this also mul­
tiplies the number of trees.
Finally, there are other features that get instantiated and are responsible for the creation of
new trees, such as agreement features of the anchor, verb form feature of the anchor and of
its verbal complement. Thus the different instantiations of features together with the various,
subcategorization frames that a word selects explain the very high number of trees anchored by
some individual words.

5. Encoding for Grammar Development
Following (Evans et al., 1995) and (Smets & Evans, 1998) the LEXSYS grammar is encoded
using DATR, a non-monotonic knowledge representation language.
In 1998, the grammar contained 620 trees organized into 44 tree families and produced using
35 rules. This grammar was encoded in 2200 DATR statements, giving an average of 3.55 DATR

statements per tree. The grammar currently contains around 4000 trees in 143 families produceci
with 88 rules. This grammar is encoded with around 53004 DATR statements, giving an average
of 1.325 statements per tree. Thus, as the grammar has grown the number of DATR statements
needed to encode it has grown, but not as rapidly.

6. Encoding for Parsing
Following (Evans & Weir, 1997) and (Evans & Weir, 1998) each elementary tree is encodec
as a finite state automaton that specifies an accepting traversal of the tree from anchor to root
For each input word, the set of all the alternative trees that can anchor an input word can bc
captured in just one such automaton, which can be minimized in the Standard way, and the1
used for parsing.
In order to assess the extent to which this technique alleviates the problem of grammar sizt'
we produced automata for the words appearing in the 1426 sentences (mean length 5. 70 word!
forming the Alvey NL Tools grammar development test suite. Bach sentence was processe
by a morphological analyser, and the result was then used in conjunction with the Jexicon 1

determine for each word in the sentence the complete set of anchored trees, feature valuc
being determined by the morphological analyser or lexicon as appropriate. 4 7 4 distinct sets 1

anchored trees ('tree sets') were produced in this way, ranging in size from 1 to 3465 tree
The total number of anchored trees was 24198, with a mean of 175.5 trees in each tree sc

4We have excluded from this figure around 700 DATR statements that specify the semantics associated w
elementary trees.

Engineering Lexicalized Grammar
59

sets # trees in # minimized states
occurrences sets (mean) in sets (mean)

1 98 256 25.8
2-5 178 205 26.6
6-10 68 182 23.0

11-20 56 83 19.6
21-50 48 64 16.7
51-100 12 84 21.2

101-200 9 54 11.2
201-500 3 21 13.0
501-1000 2 5 6.0

Table 2: Occurrences of tree sets in test sentences

Before parsing, the trees in each tree set are stripped of their anchor, merged into a single
automaton and minimized; at parse time the relevant automaton is retrieved and the appropriate
nchoring Jexical item inserted. Table 1 shows what happens when the tree sets are converted
nto automata and minimized, giving figures for the distribution of tree sets, mean numbers of
merged and minimized states in each tree set, and ratios of numbers of merged and minimized
states.
What is not clear from Table 1 is how often each of the 474 distmct tree sets occurred in the
test sentences. This is shown in Table 2 which gives the numbers and mean sizes of tree sets
(number of trees and minimized states) relative to the number of times they occurred in the test

suite sentences. This shows that the]arger tree sets tend to occur less often than small ones, and
that very few of those tree sets containing more than 100 trees anchored more than 10 of the
foore than 8100 word tokens in the test sentences.
The results we have presented in this section appear to show that by encoding the anchoring pos­
~ibilities for words with minimized automata we are able to alleviate the grammar size problem
fo a considerable extent.

·kef erences
CARROLL J., NICOLOV N„ SHAUMYAN 0„ SMETS M. & WEIR D. (1999). Parsing with an extended
Aomain of Jocality. In Proceedings of the Eighth Conference of the European Chapter of the Association
jor Computational Linguistics, p. 217-224.

PESTAKE A„ FLICKINGER D., SAG 1. & POLLARD c. (unpublished). Minima! recursion semantics:
An introduction.

ANS R. & GAZDAR G. (1996). DATR: A language for lexical knowledge representation. Computa­
tional linguistics, 22 (2 p.), 167-216.

kVANS R„ GAZDAR G. & WEIR D. (1995). Encoding lex:icalized Tree Adjoining Grammars with a
ponmonotonic inheritance hierarchy. In Proceedings of the 33rd Meeting of the Associationfor Compu-

<itional Linguistics, p. 77-84. ·

:~VANS R. & WEIR D. (1997). Automaton-based parsing for lexicalized grammars. In Proceedings of
(~e Fifth International Workshop on Parsing Technologies, p. 66-76.

gVANS R. & WEIR D. (1998). A structure-sharing parser for lex:ica!ized grammars. In Proceedings of
tke 36th Meeting of the Associationfor Computational Linguistics and the 17th International Coriference
91 Computational linguistics, p. 372-378.

OVER C„ CARROLL J. & BRISCOE E. (1993). The Alvey Natural Language Tools grammar (4th

60
Carroll et al.

release). Technical Report 284, Cambridge University, Computer Laboratory.

SMETS M. & EVANS R. (1998). A compact encoding of a DTG grammar. In Proceedings of the Fourth
fnternational Workshop on Tree Adjoining Grammars and Related Frameworks.

