
Workshop TAG+5, Paris, 25-27 May 2000

Adapting HPSG-to-TAG compilation to wide-coverage
grammars

Abstract

Tilman Becker and Patrice Lopez

DFIUGmbH
Stuhlsatzenhausweg 3

D-66123 Saarbrcken, Germany
{becker,lopez}@dfki.de

47

The HPSG-to-TAG compilation algorithm proposed in (Kasper et al., 1995) has been the basis
of !arge scale experiments in VerbMobil, a speech-to-speech dialouge translation system in
the scheduling and travel domain. The results here refer to the English HPSG grammar devel­
oped at CSLI. Several non-trivial theoretical problems have been discovered by the practical
application of this algorithm. This paper presents these experiments, the main shortcomings of
the initial algorithm and some of the solutions we have developed in order to use the resulting
compiled LTAG grammar in a real world system.

1. Introduction
The LTAG fonnalism is a mathematical tool that has proven to be attractive for the modeling
of natural language syntax. In parallel to pure-LTAG grammar developments, some researches
have addressed the relation between LTAG and existing fonnalisms both for theoretical and
practical reasons. In particular, compiling a LTAG grammar from a HPSG grammar has been
proposed by (Kasper, 1992). Such a compilation is interesting for several reasons:

• Sharing of resources between the two formalisms, in particular the syntactic lexicon.
For instance, since both fonnalisms are lexicalized, the syntactic Jexicon which gives all
possible predicative frames for each lemma is very costly to write.

• Speed efficiency: The precompilation process allows to identify substructures of the
HPSG grammar that are not context-dependent. The extracted partial backbones can be
tabulated (chart parsing, memoization) which results in more time efficient systems than
a direct HPSG parser/generator.

• Capturing dependencies: An LTAG elementary tree directly encodes a full syntactic
context by the way of an extended domain of Jocality. Elementary trees are combined
in order to realize dependency relations between the syntactic contexts they represent.
Thus the construction of a sentence can be obtained very easily just with a dependency
tree indicating the elementary trees that are involved and their mutual dependencies. This
infonnation is represented only indirectly in an HPSG derivation.

• Exploiting HPSG's expressivity as weil as utilizing existing HPSG grammars is inter­
esting for the LTAG community. HPSG grammars usually include the syntax-semantics
interface and a semantic level that is ignored in existing LTAG grammars. HPSG gram­
mars also define explicitely all dependency relations (Pollard & Sag, 1994) while LTAG

48
T. Becker and P. Ldpez

grammars are limited by a tree structure which is problematic for, e.g. coordination and
equi-verbs. Finally, there is a !arge amount of linguistic research which done in the HPSG
framework.

Moreover, studying how such a compilation can be performed is an opportunity to identify
the assets and the limits of the LTAG formalism. Which relations given in a HPSG grammar
should be localized in the LTAG elementary trees in order to obtain a grammar that is either
linguistically meaningful or computationally efficient?
We first recapture the basic principles of the compilation algorithm as described in (Kasper
et al., 1995). Then we present the various problems and limits of this initial algorithm and the
adaptations that have been necessary for the practical HPSG-to-TAG compilation of a wide­
coverage grammar.

2. The initial compilation algorithm

[[

HEAD OJ]] S L 1 C SUBJ <>
COMPS 0<>

D [HEAD-DTR [S 1 L J C [:;;
COMPS

COMP-DTR (S [Ij]
~, ll]

[

HEAD

SUBJ

COMPS

f HEAD

l SUtij

COMPS

/

~, l
OJ l
0<> J

"" [0]

Figure 1: HPSG Head-Subj Schema and its representation as a local tree.

We assume that the rule schemata in the HPSG grammar only correspond to binary or unary
rules. For instance, the Head-Subj-Schema given in figure 1 can be represented by a partial tree.
The algorithm presented in (Kasper et al„ 1995) is based on the following mechanisms:

• Selection/Reduction process: The features which constrain a possible argument are
called Selection Features (SF). Given a binary schema S, if some SF are expressed in
S, we say that the daughter which contains these features is the Selection Daughter (SO),
the other one is the non-SO. The single daughter of unary rules is the SO. Given the SF
of the SO, we say that a schema reduces the SF, if the value of at least one of the features
that select the non-SO for this schema is not contained in the feature value of the mother
node. In the example figure l, we see that the SF of attribute SUBJ is reduced.

• Tree production iteration: The basic algorithm starts with the creation of a node for the
lexical type. A root node n is first added to this initial node with a copy of all its features.
Theo we instantiate each schema S which actually reduces at least one SF of n when n is
unified as the SO of S. Finally, we add an additional root node dominating the instantiated
schema. This step is repeated until the termination condition is met (see below).

• Raising Features Across Domination Links: this principle determines which features
are raised (copied) into the additional root nodes. In the first phase of the algorithm, all
and only the SF are raised. In the additional phases, some SF are not raised (see below).

Adapting HPSG-to-TAG
49

• Detecting foot nodes: A tree is an auxiliary tree if the root node and one of the leaf
nodes (non-anchor) have some non-empty SF value in common. This leaf node becomes
the foot node of the auxi!iary tree.

• Termination: A SF is not reduced anymore if its value is an empty !ist or it shares its
value with a feature at a leaf node other than the foot node.

• Additional phases: Systematically raising all possible SF across domination links (i.e.,
considering only complete projections) results in redundant projections for multiple de­
pendency structures as raising verbs or equi-verbs and consequently corresponding trees
that can not be combined. In order to avoid these redundant projections, (Kasper et al.,
1995) propose additional phases in order to create new trees without redundant projec­
tions for double dependencies. Their decision is to keep the redundant dependencies in
the auxiliary trees and consequently re-compile all initial trees, ignoring the SF which are
responsible for the redundancy.

At the end of the process, the SF can be deleted from the resulting trees since they express
constraints that have been captured in the tree structure. The next section will show that this
initial algorithm raises both practical and theoretical problems.

3. Algorithmical problems
3.1. Clzoice of Selection Features

A given phrase structure (derived tree) can be obtained with different LTAG grammars, where
the derivation trees might differ. A lot of choices in the compilation process (SF & SD) depend
on the kind of derivation tree we want to obtain and its rote given a particular task (generation or
parsing). Moreover, the algorithm proposed in (Kasper et al„ 1995) aims to capture the phrase
structure of the HPSG grammar in the LTAG structure, which is only one choice among other
possibilities.
However, even the original algorithm leaves open the choice of SF. This choice, together with
the termination criteria inftuences the resulting elementary trees (and thus the dependency struc­
tures) while the derived trees are still isomorphic to the HPSG derivation. In theory, the SF must
be chosen such that at least one of them is reduced in every HPSG schema. In practice no such
set of SF can be determined and some schemata must be applied in the compilation algorithm
with less strict criteria such as a mere change (without reduction) of SF or even (non-recursive)
applications with both daughters as possible SD.
The interface between deep syntax and derivation trees highly depends on the LTAG grammar
resulting from the compilation algorithm and thus from the choice of SF and termination crite­
ria. Since HPSG is based on lexical projections as expressed, e.g„ in the headfeature principle,
there is a certain straightforward choice of SF. However, the HPSG schemata localize syntactic
dependencies· and not semantic dependencies as classically in LTAG grammars. Especially in
generation, when mapping from semantic dependencies, this mismatch becomes apparent, e.g.
in auxiliaries (see section 5), raising and equi-verbs, modifier extraction, etc.
As an example for how the choice of selector feature can change the selector daughter for
an HPSG schema and thus the resulting elementary TAG trees, we look at the Head-Specifier
schema in the HPSG grammar we use. Figure 2 shows how choosing either SPR or SPEC as a
SF results in an auxiliary tree anchored at DET (ß1) or an initial tree anchored at N (ß2) respec­
tively. The surprisingly different structures are possible due lo a case of double dependencies,
where the SPR and SPEC features mutually constrain each other.

50

N(P)

/\
DETO N*

SF: SPEC
SD: DET

T. Becker and P. Lopez

N(P)

/\
DET,I. NO

SP: SPR
SD: N

ßi' S.S-R.ADV.ADV-R.ADV-D.PP-N.PP-1.PP-S.N.NP.ADJ.VP.V.DET

/~
DETO S.S-R.ADV.ADV-R.ADV-D.PP-N.PP-1.PP-S.N.NP.ADJ. VP. V.DET *

Figure 2: Possible projections for the HPSG Head-Specifier Schema.

Whenever the selector daughter is not the head daughter, the property of HPSG that it is head
driven becomes important: because almost all information (i.e., features) that is raised comes
from the head (the non-selector daughter in this case), the root node is very much underspecified
in these cases. Thus, e.g. the category of root and foot node is highly underspecified. See the
example (31' in figure 2 (the dot in the node labels indicates a disjunction of categories).
Note however, that in the case of the Adjunct-Head schema, where the selector daughter is
clearly not the head daughter, the MOD feature supplies a Jot of constraints about the head.
Thus the MOD feature is used as a selector feature. However, the HPSG grammar often encodes
constraints in the semantics of the MOD feature which does not immediately constrain the
category.

3.2. Adequacy of HPSG and LTAG categories

The HPSG grammar does not defi.ne statically the syntactic categcr:e~ ,-.,f "":!e!; :.:; ;;: ~::.!
ementary trees of LTAG grammars. The original algorithm assumes that all possible values
of the SF appear during the compilation and thus can be mapped (collapsed) to a finite set of
not obviously meaningful categories. In the HPSG framework, syntactic categories are usually
computed only for complete derived trees and they are represented as (disjoint) underspecifi.ed
feature structures (typically with values only for the SF) such that in a derived tree only one
syntactic category (feature structure) unifies with a node. Using these HPSG categories, one
gets a set of meaningful categories.
But since elementary trees resulting from the compilation algorithm correspond to partial pars­
ing trees obtained by the application of several HPSG schema, it is not possible to determine a
unique syntactic category per node in the compiled LTAG elementary trees. As a consequence,
nodes of elementary trees must often be labeled with a disjunction of syntactic categories. Du­
plicate trees in order to avoid such disjunctions would result in a critical explosion of the number
of trees. Note that we can observe in our resulting compiled grammar disjunction of more than
twenty syntactic categories.

3.3. Raising of non-SF features

Following (Kasper et al. , 1995), only SFs are raised across dominance links. In practice, non­
SFs features are very important for the selection and the filtering of the HPSG schema that are
applicable in production of an elementary tree. Without raising them across dominance link, too
many HPSG schema would be applied, resulting in an dramatically overgenerating and much
!arger grammar. Naturally, raising non-SF features can result in an undergenerating grammar.
But in generation, this is often less of a problem than overgeneration. Also, by extending
(relaxing) the terrnination criteria, we can ensure the generation of all necessary elementary

Adapting HPSG-to-TAG 51

trees.

3.4. Anclwring the Projection

In HPSG as in LTAG, there is a separation between the grammar and the Jexicon such that a
Jexical entry specifies the word, its semantics and a lexical type or tree family. If this separation
is clean in the HPSG grammar, as it is in our case, the compilation process can start from the
Jexical types and becomes independent from the lexicon.
However, many lexical types only differ wrt. semantics and the compilation process only ex­
tracts the syntactic part, so either (i) for a set of lexical types that generate the same tree-families,
we must determine the most specific subsuming type in the type hierarchy or (ii) eliminate re­
dundancies in a post-process.
Note that since the HPSG grammar has the option to locate constraints either in syntax or
semantics, some of the syntactic features are highly underspecified. This leads to the above­
mentioned redundancies between the syntax of lexical-types and also to the underspecifications
in the syntactic categories.
We also have found another source of redundancy: a sizable number of trees appear in more
than one tree-family and a further reduction could be achieved by storing them only once an
introduce pointers to the tree-families.

Note that this kind of underspecification seems very undesirable but it is inherent in the spec­
ifications of the HPSG grammar and therefore cannot be avoided easily. The only principled
solution is a change of the HPSG grammar.

4. Specific linguistic phenomena
4.1. Coordination

Coordination is problematic in the LTAG formalism since the tree structures are not able to
Jocalize the multiple dependencies that this phenomena introduces. The HPSG analysis of this
phenomena exploits at the syntactic level the type hierarchy of features, particularly by intro­
ducing new morpho-syntactic ones. Feature coindexing at the level of the semantics are also
used for crossed-dependencies for instance. These techniques are really far from the existing
ones in the LTAG-world based on explicit structural dominance link (Sarkar & Joshi, 1996).
The processing solutions of this phenomena in the two respective fonnalisms are too specific to
expect the c~pture of the HPSG approach by TAG.

4.2. Double Dependencies

The double dependencies, where a given phrase structure is the argument oftwo different pred­
icates, are a prob lern in the LTAG formalism which can only capture one of these dependencies
in the structure of elementary tree. For equi-verbs for instance, as the verb want, the classi­
cal choice corresponds to the elementary trees given in figure 3. These trees are obtained by
the initial HPSG-to-TAG compilation algorithm (ß1 and ai) but the additional phases gener­
ate also some other trees ignoring some SF, i.e. some predicate-argument relations (ß2 and
a2). Considering that the elementary trees generated for the main verbs localize all possible set
of predicate-argument relations (see figure 3), we obtain redundant projections of substitution
nodes. One can see that we obtain the same derived tree by combining ß1 and a:2 or ß2 and a 1,

but in both cases only apart of the dependencies are captured.
Consequently we can question the relevance of the multiple phase part of the algorithm. Fully
executing the additional phases as described in the original algorithm is impractical since it gen­
erates far too many trees. Therefore, we have added by hand those extensions ofthe termination
and raising criteria that are needed to obtain the elementary trees needed in our domain.

Becker and P. Lopez

[SUBJ <0>) COMPS <>
SLASH IT] „

'
[SUBJ ~>] [SUBJ < { ...] >] COMPS > ill COMPS <>

SLASH 1 SLASH ITJ
< cqui-verb > *

ßi: Additional phase

[SUBJ < 0 >] COMPS <>
SLASH ITJ „

' SUBJ ~> [SUBJ < [...] >] COMPS > ITJ COMPS <>
SLASH 1 SLASH IT]

< cqui-verb > *

Figure 3: Elemenary trees for equi-verbs.

In general, the construction of elementary trees stops when SF are reduced to empty features
or lists. In practice however, SF often are never empty and only a detailed analysis of the
content (e.g„ the type) of the SF can determine whether the projection must stop, i.e„ that the
SF can/must not be reduced further. Also, in order to mimic the effect of the additional phases
(see paragraph below), we have to relax the termination criteria to apply even when some SF are
not reduced. E.g„ the projection of auxiliaries results in VP substitution nodes, thus adding VP
nodes (with a reduced COMP feature and an unreduced SUBJ feature) to the !ist of terminating
nodes.

0'1: Full projection of SF 0'2: Additional phase

[SUBJ <>] [SUBJ ITJ] COMPS <> COMPS <>
SLASH <> SLASH <>

/ \ /

""' <ITJ>]
[SUBJ <ffi>] [JJ [SUBJ COMPS < 2 > 0 COMPS <>

SLASH <> SLASH .j.

/

""'
< main verb >

[SUBJ <ffi>
COMPS < 2 > 0
SLASH <> i

< main verb >

Figure 4: Elemenary trees for main verbs.

 Adapting HPSG-to-TAG
53

4.3. Idioms

LTAG can represent idioms directly, including the fact that idioms have a single (non-compositional)
semantic representation. Since HPSG grammars cannot do this directly, this is also true for the
compiled TAG grammar. Even multiple anchors (like in particle verbs and the (semantically
empty) prepositions of prepositional arguments) are not incorporated into the resulting trees of
the compilation algorithm. One solution would be the extension of the compilation algorithm
to expand those Ieaf nodes (e.g„ prepositional complements) that include semantically empty,
syntactic arguments. I.e„ instead of a PP substitutionnode, expand it to its anchored P daughter
and its NP substitution daughter. Since this would add even more trees, we have instead chosen
to include these expansions either in the microplanning or the preprocessing (see section below)
phases.

4.4. Futher issues

The LTAG formalism can not capture all lang dependencies that can be represented easily in
HPSG with feature percolation. One way to capture these phenomena is to compile the HPSG
grammar into an extension of the LTAG formalism as the DTG formalism (Rambow et al.,
1995).
In the current version of the algorithm, semantics is not taken into account. We have conducted
some experiments by compiling the semantic level in a specific LTAG grammar that could be
synchronized to the classical compiled LTAG grammar. The interest of this approach highly
depends on the compositionality of the resulting semantic grammar which still needs some
futher investigations.1

One can also note that some Iinguistic constraints are not represented in the usual HPSG gram­
mars, such as modifier, e.g. adjective, ordering and topic/focus distinctions.

5. Interface to the non-syntactic level of HPSG
As discussed above, the dependency structure of the resulting TAG grammar depends mainly
on the dependencies that are specified in the HPSG grammar and the choice of selector features
only has a Iimited effect. This is especially important when generating with the resulting TAG
grammar. Typically, the input to a syntactic realizer that is based on TAG will be a dependency
structure that can be interpreted as the derivation structure. As an example from our system,
the HPSG grammar specifies auxiliaries as the lexical heads of sentences, taking a subject and
a VP as arguments. So the microplanning step in the generator that maps from the semantic
input to the syntactic dependencies must not only plan word choice and map the semantic rotes
to syntactic arguments (e.g„ the giver to a subject), it also must be prepared to insert an aux­
iliary (e.g., have) and rearrange syntactic arguments (e.g., ensure that the giver becomes the
subject of have and not give in We have given„). In order to keep a more general interface
between microplanner and syntactic realizer, we have chosen not to include the auxiliaries in
the microplanner but rather add a preprocessing module to the syntactic realizer which adapts
the dependency structure to the specifics of the HPSGfTAG grammar. Thus we can switch to
other syntactic realizers (based on other TAG grammars) more easily.
This touches on a more general point which is not really discussed in the original work: The
interface between the extracted subgrammar and the füll HPSG grammar. As proposed, the
compiled TAG grammar actually overgenerates since it represents all possible phrase structures

1Since the extraction of just a subset of the features of the HPSG grammar amounts to an (overgeneraling)
approximation, it is very important to include as many of the constraining features as possible. Many of them are
entangled into the semantics though, so a clearer separation in the HPSG grammar is needed. See also the work on
context-free approximation of HPSG in (Kiefer & Krieger, 2000).

54
T. Becker and P Lopez

but omits some of the constraints, especially those of semantics. Ideally, the semantics of the
HPSG grammar would be purely compositional, thus the compiled TAG language would be
identical. However, in practice there are non-compositional elements in the HPSG semantics
and it tumed out to be impractical to extract the semantics for every compiled elernentary tree
and use these partial semantic expressions for microplanning.2 Thus we have developed the
rnicroplanning rules only serni-automatically which also allowed the inclusion of a large subset
of planning rules that deal robustly with all kinds of problerns in our input (Becker et al., 2000).

6. Practical Results and Conclusion
In the context of the generation module of the Verbmobil project (Becker et al., 1998), we have
irnplemented our adaptation of the compilation algorithm in Common Lisp as an addition to
the PAGE system which is used to specify and parse the HPSG grammars. We currently cover
an English and a Japanese grammar; the English grammar has around 350 lexical types and 40
schemata and a lexicon with around 6,800 entries. The Japanese grammar has a similar size,
with a smaller lexicon. Compilation takes about 15 rninutes CPU time on a 400MHz Ultrasparc
resulting in around 2,500 elementary trees.
We found the adapted compilation process tobe useful in a real system, since we could influence
the design of the HPSG grammars, which is an important factor. Also, work on a German HPSG
grammar is under way. Given the growth in computational power, we hope tobe able to explore
a complete application of the original algorithm in the near future.

References
BECKER T., FINKLER W„ KILGER A. & POLLER P. (1998). An efficient kerne) for multilingual
generation in speech-to-speech dialogue translation. In Proceedings of COLTNGIACL-98, Montreal,
Quebec, Canada.

BECKER T„ KILGER A„ LOPEZ P. & POLLER P. {2000). An extended architecture for robust gene
tion. International Natural Language Generation Conference (INLG), Mitzpe Ramont Israel.

KASPER R. (1992). Compiling Head-Driven Phrase Structure Grammar into Lexicalized Tree Adjoining
Grammar. In Proceedings ofthe TAG+ workslwp 1992, University of Pennsylvania, Philadelphia.

KASPER R„ KIEFER B„ NETTER K. & V!JAY· SHANKER K. (1995). Compilation of HPSG to TAG.
In Proceedings of ACL'95, p. 92-99, Cambridge, Mass.

KIEFER B. & KRIEGER H.-U. (2000). A context-free approximation of head-driven phrase structure
grammar. In J. CARROLL, Ed„ Proceedings of the Sixth International Workshop on Parsing Technolo-
gies, IWPT2000, p. 135-146, Trento, Italy.

POLLARD C. & SAG 1. (1994). Head-driven phrase structure grammar. In CSU series. University of

Chicago Press.

RAMBOW 0„ SHANKER K. V. & WEIR D. (1995). D-Tree Grammars. In 33rd Conference of
Association of Computational Linguistics (ACL'95), p. 151-158.

SARKAR A. & JOSHI A. (1996). Coordination in tree adjoining grammars: Formalization an~
mentation. In COLlNG'96, Copenhagen, p. 61(µ)15.

2To make things worse, the HPSG grammar only includes an intermediate semantic representation (MRS)
its declaretive feature structures and the semantic representation that is actually used in our system is derived
procedural code.

