Diamod - a Tool for Modeling Dialogue Applications

Anke Kolzer

Speech Understanding Systems (FT3/AV)
DaimlerChrysler AG — Research and Technology
P.O.Box 2360
D-89013 Ulm (Germany)

e—mail: anke.koelzer@daimlerchrysler.com

Abstract

Speech dialogue systems are currently becom-
ing state—of-the-art for different kinds of ap-
plications, but they are still weak in the sup-
port of spontaneous speech and correct inter-
pretation of what was said. One reason for
the lack of good interactive dialogue systems is
their complexity. To develop a system which is
able to handle more than simple commands and
phrases requires a lot of experience and time.
To be able to accelerate and improve this pro-
cess we are currently working on methods and
tools which support this development. A new
method called Dialogue Statecharts was defined
for the graphical specification of complex dia-
logues. It is capable of representing parallel di-
alogue steps which is e.g. necessary for mixed—
initiative dialogues. Our tool system named
Diamod provides editors for different dialogue
concepts, such as dialogue structures, grammars
and parameters. The modeling is supported by
graphical editors for Dialogue Statecharts and
Task Hierarchies. Diamod is able to check
for the completeness and consistency of dia-
logue models. One goal when developing Di-
amod was to provide specification models which
are universal enough to be interpreted within
different dialogue systems, i.e. different imple-
mentations of generic conversational systems.
With the help of a uniform representation of
data a transformation between different mod-
els and different dialogue description languages
(DDL) such as VoiceXML (AT&T et al., 2000)
and some in—house-DDLs, such as Temic-DDL
and Dialogue-Prolog, will be possible.

!By this we mean systems which are implemented
application independently and are easily adapted to dif-
ferent applications.

1 Introduction

You find different dialogue system approaches
on the market place and in research. One has
been developed by the DaimlerChrysler research
and is able to understand spontaneous speech
speaker—independently and carry on dialogues
on special topics. The structure and algorithms
used are based on concepts developed in the
Sundial project (Peckham, 1993). Most applica-
tions are made for telephony domains. Thus, up
to now we gathered experience in applications
like train time-table information, call centers
for insurances and telematic systems for traf-
fic data (see (Brietzmann et al., 1994), (Heis-
terkamp and McGlashan, 1996), (Ehrlich et al.,
1997), (Boros et al., 1998) for further informa-
tion).

We made the experience that developing new
applications is very expensive concerning time
and staff and needed tools to accelerate the
process. Another goal was to make dialogue
application modeling possible even for non—
experts and help the expert to achieve consis-
tent reusable applications. As there are dif-
ferent dialogue systems all over the world and
many steps of application development are sim-
ilar or even the same for all of them we de-
cided to create tools which are system indepen-
dent resp. easily adaptable to different needs
and different dialogue systems. Our focus was
on modeling dialogue structure for information—
extracting resp. —processing systems of the slot—
filling kind (Bilange, 1991).

In order to find out what functionality a tool
must provide to be helpful we analyzed the way
we construct dialogue applications and the dif-
ferent knowledge bases that are needed. Similar
operation steps have to be executed for every
new application in order to obtain a structured
and maintainable dialogue. Typical tasks are:

— modeling of the dialogue structure: i.e. di-
vide the dialogue into subdialogues to han-
dle a special part of the interaction like the
identification of a caller

— definition of the application parameters,
i.e. the parameters necessary to give infor-
mation to the caller or access a database
like the name of the caller

— attachment of system prompts to dialogue
situations like what the system has to say
when asking the name of the caller

— definition of the appropriate vocabulary
(pronunciation) and training of the lan-
guage models

— definition of linguistic structures (lexicon,
grammar, semantics)

— definition of the interface to the application
system (e.g. an SQL-interface to a data
base)

Diamod supports the specification of all of
these dialogue application concepts (some are
still under construction) and generates code
which is interpreted by the target dialogue sys-
tem.

2 Requirements

Dialogue systems which allow for spontaneous
speech are much more difficult to handle than
those which are only capable of processing sin-
gle commands. Diamod has to support dif-
ferent ways of modeling dialogue structure and
to transform one into another regarding special
consistency requirements.

Thus the knowledge — i.e. the dialogue con-
cepts — has to be represented in a universal way
so that different aspects of dialogue can be mod-
eled and code for different dialogue systems can
be generated. A transformation from a sponta-
neous speech dialogue model to a rather restric-
tive command-and—control one and vice versa
should be possible or a transformation from a
state—based dialogue flow model to a rule-based
one which is organized in tasks (as will be de-
scribed in section 3.1). The approach must be
extensible with little effort for specifying the ad-
ditional knowledge bases, necessary for conver-
sational systems, such as grammar models.

All the concepts necessary for dialogue flow
modeling are to be integrated in the dialogue
flow tool. Thus the dialogue flow tool must pro-
vide concepts such as application parameters,
system prompts, state and task modeling. The
state logic has to be described in a rather ab-
stract way so that an automatic transformation
for different dialogue systems is possible. There-
fore it is not sufficient to use the widely em-
ployed state machines with which the specialties
of spontaneous speech cannot be described ade-
quately. Instead we use a design method based
on Harel’s statecharts (Harel, 1987) which are
capable of describing concurrency and provide
special event mechanisms and called it Dialogue
Statecharts.

2.1 Properties of Diamod

Diamod is a CASE-tool (Computer Aided Soft-
ware Engineering) specialized for language en-
gineering which provides the concepts necessary
for dialogue specification. To be able to develop
new and modify old knowledge bases easily, the
tool supports the language engineer with the
following functionality:

Graphical editors for visual languages such
as Dialogue Statecharts for the specifica-
tion of structured dialogue data. The
graphical interface shall enable the user to
specify his models in a rather easy and in-
tuitive way.

Data representation of all relevant informa-
tion and the dependences between them.

Consistency checking by a formalism for
defining constraints on the models and in-
forming the user of violations of these con-
straints.

Code—generation (Prolog, VoiceXML, stan-
dardized speech API-code, ...) that can
be interpreted by the currently preferred
generic dialogue system.

Reuse support of formerly developed appli-
cation models.

Two-phase modeling in order to be able to
specify generic data independently of ap-
plication specific data.

Easy adaptability to further dialogue sys-
tems and needs.

The principles of working with Diamod are
described in the following sections.

3 The Tool System Diamod

Figure 1 shows the workflow in Diamod. The
central unit is the tool system which provides
methods for specifying knowledge, keeps the
data and models, and does consistency checks.
The user modifies the models with the help of a
graphical user interface. A second possibility in
future editions will be a textual interface for off-
line specification where the user can model the
dialogue with the help of a dialogue description
language. The tool system represents data in
a uniform graph representation and is able to
generate code in different dialogue description
languages such as Prolog? or VoiceXML depen-
dent on the generic dialogue system currently
in use. This code output (commonly spoken
textual files) is read and interpreted by the cor-
responding generic dialogue system at runtime.

3.1 Dialogue flow models

With Diamod the application developer models
what the system has to do in a given situation.
As this must work for different generic dialogue
systems, Diamod must also consider the generic
features of the system (because they can be dif-
ferent for different dialogue systems). Therefore
a two—phase approach is supported where in the
first phase a dialogue expert (usually the devel-
oper of the generic dialogue system) models ap-
plication independent data. In a second phase
an application developer models application de-
pendent data using the data which was modeled
by the expert (Kolzer, 1999).

Another feature of Diamod is the support
of different dialogue structure models. Our re-
search system is a rule-based system (Ehrlich,
1999) which can be modeled in Diamod using
tasks and task—hierarchy—diagrams. A rather
state—based system can be modeled using the
Dialogue—Statecharts—editor.

The following listing sums up the most impor-
tant steps which have to be done by the appli-
cation developer in order to specify the dialogue
flow of a new application:

— definition of the components of the dia-
logue; e.g. a subdialogue for handling the

2A predefined sublanguage of Prolog is used to model
applications for the DaimlerChrysler research system.

identification of the caller and finding out
why he calls, a subdialogue for reservation
of a ticket, and one for callers who only
want information.

— definition of the dialogue structure i.e.
what the system has to handle first and
what comes next. This is done by defin-
ing a start dialogue and the successors of
each dialogue.

— attachment of application parameters to
the dialogues; e.g. in the identification dia-
logue the system must request the caller’s
name and password.

— attachment of system prompts to the states
where the system has to say something such
as confirm the parameter ”Source” in the
reservation dialogue.

The following sections describe how Diamod
supports the modeling for different approaches.
With Diamod the user can model every concept
by entering a name, a comment and information
on the specific structure of the concept.

3.1.1 Task—Based Approach

The DaimlerChrysler research system is orga-
nized in tasks. Every task represents a sub-
dialogue, e.g. a caller identification or a hotel
reservation. The task structure is organized in
a task hierarchy as shown in figure 2, which
can be modeled with Diamod using the task—
hierarchy—editor. At runtime the dialogue sys-
tem can only activate the direct daughter— or
mother—task of a currently active task in this
hierarchy. This is used to make dialogue han-
dling easier and more consistent. It is not nec-
essary to model exactly the system states and
their sequence as it often has to be done for
other dialogue systems. The dialogue system
uses a set of dialogue acts (Gazdar, 1981), (Heis-
terkamp et al., 1992) such as confirm, request
and inform in order to distinguish between dif-
ferent dialogue situations. Every task has differ-
ent application concepts attached to it. Among
others these are:

Task (application) parameters: These are
the concepts which model what values must
be found out in order to reach the goals
of the task, e.g. to be able to make a
database access. This is usually what you

User Interface Dialogue

Representation

Gul Tool System
|:| Uniform
graph
\ representation
Consistency
checks
Models
Textual /
oﬁ_line Methods
interface

Code Generic
Generation Dialogue
System
> Lang1uage
|,
> Langnuage

Figure 1: Specification of dialogues with Diamod. The central unit is the tool system which
provides methods for the dialogue specification, keeps the data and is capable of checking the
consistency. Data are modeled by the user on-line with the help of a graphical user interface or
offline with textual dialogue description languages. When the specification is complete, the tool
system generates the code necessary for the dialogue system in use.

Start

Task 1

Identify

Task 2

Topic

Task 3

Reservation Information

Task 4

Figure 2: Task hierarchy diagram. Each rectan-
gle models a task i.e. a subdialogue. The edges
between the tasks show how tasks can follow

each

other.

have to request from the user such as a
caller name or address. Task parameters
can have attributes such as if they are op-
tional or obligatory and if the system may
repeat them or not (like passwords). Di-
amod supports the specification of such
parameters with user definable types such

as records and lists. The user can enter de-
faults and set the mentioned task parame-
ter specific attributes using masks as shown
in figure 3.

Databases and database parameters: If
the dialogue system uses databases every
task can declare a set of databases and
database parameters that it wants to
access. Task parameters can be mapped
to database parameters. E.g. if the user
speaks of tomorrow, this must be mapped
to a concrete database date like 03.03.2000.
This is supported by Diamod with special
masks.

System prompts: Given a dialogue act and
an application parameter this concept
models what the system has to say in that
situation. With Diamod dialogue acts can
be modeled and combined with task pa-
rameters in order to model the appropriate
prompt. References to the values of task
parameters can be used in a prompt such as
in "*Your name is <value name>?"". This

prompt is an example for confirming (dia-
logue act confirm) a task parameter name.
Diamod is able to check if a used param-
eter value reference is feasible. This is the
case when the appropriate task parameter
was declared for this task. Prompts can be
entered for different languages and Diamod
can check if there is a prompt for every sit-
uation in every language. Figure 4 shows
the prompt table mask of Diamod.

The prompt table can be calculated auto-
matically. Le. all combinations of dialogue
acts and application parameter values are
generated in order to gain all those system
states, where a system prompt is needed.
The result of such a generation is shown in
figure 4. The user only has to fill in the
prompts or delete table entries which are
not needed.

Language models, grammars and lexicons:

They can be declared for a task in order to
switch between different ones and improve
speech recognition this way. This is still
under development (see section 4.1).

Actions: The application developer can model
typed actions which should be performed
on entering, resp. exiting the task. They
can be related to task parameters using Di-
amod-masks which offer the user a list of
accessable parameters and functions.

The transitions between tasks are realized us-
ing rules and conditions which are generic. This
means that they are implemented in the dia-
logue system and do not have to be modeled
by the application developer. Such a rule is
for example that a task can only be exited suc-
cessfully if all obligatory task parameters are
known. In order to determine the next task to
be activated the user’s utterance is interpreted,
like if he wants a hotel reservation. This to-
gether with preconditions for entering possible
successor tasks is considered to control the dia-
logue flow.

When the developer has finished the specifi-
cation he or she starts the code generation. The
code produced can then be interpreted by the
dialogue system. For our research system this
is Prolog—code specifying the application knowl-
edge bases.

— Edit Task e

. General dafta

Marne: |IdentiM

System D |ZD

Documentation:

Vislbility: Expert 4

— Task—specific data

Parameter|Opt\una\|Secret |\m’urm| Infer| ijH
Related task |Password Optional Mot secret Inform Infer
parameters; name Optianal Mot secret Inform Infer ﬂﬂﬂ

=) I =

Parameter

L 15|

Related steer E
parameters: jjﬂ

Generate Prompt Table | Edit Prompt Table |

OK I Apply

| Cancel |

Figure 3: A mask for the description of a di-
alogue for the DaimlerChrysler research sys-
tem. In some dialogue systems parameters can
have attributes like if they are obligatory or op-
tional. Therefore the masks have to be con-
figured for the dialogue system. Clicking the
button Generate Prompt Table will generate
the possible prompts. Clicking the button Edit
Prompt Table will open the mask shown in fig-
ure 4.

3.1.2 State—Based Approach

Many dialogue systems use a state based ap-
proach where dialogue flow is described in
detail using state—transition-models combined
with events (Failenschmid and Thornton, 1998),
(Cole, 1999). Simple state-transition-models
are adequate for very simple dialogue systems
such as command-and-control systems.® As
conversational systems have a high complexity
of states, the expressiveness of state—transition—
models is too small to be a good means for di-
alogue flow modeling. The number of states is
usually too big to be handled by a human.

A good alternative for complex state model-
ing are statecharts as described by Harel (1987).
They provide different means of abstraction
such as concurrent states, state refinement, spe-
cial event handling and action triggers.

3These are systems where a speaker may only say spe-
cial commands like ”"radio louder” and not speak spon-
taneously.

Thus modeling of complex dialogue flow can
be done in a rather intuitive way. Figure 6 is
an example of modeling the task data shown in
figure 2 in a state-based way. The dialogues
are represented as complex states that are re-
fined top—down to basic states where actions to
be triggered are defined. Thus the state DoDi-
alogue is represented as an XOR-State. This
indicates that the system can only be in one of
the states Identify, PossibleTopics or End at the
same time. In simple cases a dialogue is repre-
sented by a basic state (End) which need not be
refined any more. The Reservation—state must
be refined into substates, one for each dialogue
act. These are refined again as shown in fig-
ure 7. The developer defines entry and exit ac-
tions for basic states, i.e. actions to be triggered
when entering and when leaving the state. The
preconditions for changing the state taking an
outgoing transition are described by events and
conditions which have to occur. It is possible
to describe actions and conditions common for
several states or transitions by special means.
E.g. any exit from the states Reservation and
Information will lead to the state End.

There were already some state—based ap-

a %

Edit the prompt table by adding and/or deleting utterances.

\nstamcel Dialogue act | Parameters | Utterances 3

[]-h Bestaetigung

password: <V AR>
name: <V AR=
"Ihr Password ist $17

Bz Bestaetigung

B3 Bestaetigung

B4 Anfrage —'J :H ﬂ
E-5 Anfrage jJ ﬂ

] Anfrage

B-7 Fehlerfall

B3 Fehlerfall

B3 Fehlerfall —

B-10 Undefinierter Zustand

mL11 | Indnfininrtnr Tuictand il
] [|

QK I Cancel |
Figure 4: Defining the prompts for a dia-

logue. The application parameters that are
talked about in this dialogue have to be declared
for it before. For every dialogue act and every
application parameter there must be a system
prompt defined. The table here is calculated
automatically by Diamod using the generic pa-
rameters (in this case the dialogue acts) defined
by the expert and the application parameters
defined here. The application developer only
has to fill in the system prompts.

—- = Statecharleditor - Macro state: ApplMacroState117 SN

File Edit Layout Customize |

& % X X kgl

B e e
=+ "..'F‘\' T Tx wm

DoDialogue |

PossibleTopics

=] P
4|

Figure 5: The Dialogue-Statecharts—editor.

rDoDialogue)
i [not successful]
Identify
[continuation]
[successful]
y
(" Possible Topics)
[topic=reservation] [topic=information]
y A
Reservation Information
- J
v [no continuation]
End W
exit action: <
close_down
- J

Figure 6: Describing dialogue flow in a stat-
echart based manner. States are represented
by rectangles with rounded corners and can be
structured. Thus the state DoDialogue is an
XOR~State. This indicates that the system can
only be in one of the states lying graphically in-
side. The small rounded arrow at the state Iden-
tify means that this is the default entry state for
DoDialogue. The transitions are labeled with
conditions indicating when this transition is to
be taken.

proaches for graphical dialogue representation.
They were never used for complex systems such

4)
HandleDepart

RequestDepart

entry action:

prompt("Where do you

want to start?")

[no valid source found]) . lvalid source found]
exit action:
get_user_utterance()
y
HandleProblem ConfirmDepart
entry action:
prompt("You want to
start from <source_par>?")
X
exit action:
get_user_utterance()
[confirmation negative]
[confirmation positive]
g J
\

Figure 7: Refining states: the confirmation sub-
dialogue in the reservation dialogue. The dia-
logue developer can add to the basic states ac-
tions to be triggered. Entry actions are exe-
cuted when entering the state, exit actions when
leaving the state.

as mixed— and user—initiative dialogues because
there expressiveness was too small. With Di-
alogue Statecharts we think that we found a
way to handle even such complex structures us-
ing the concurrency concepts of Harel’s state-
charts. Figure 8 shows an example for the rep-
resentation of a mixed initiative dialogue. All
the topics that a speaker may talk about in one
sentence are represented as parallel slots of a
concurrent dialogue state. All the slots repre-
sent parallel* substates of the dialogue system.
If the speaker can tell the departure city, the
destination city and the departure time in one
sentence in a train time table information, there
will be one slot for every parameter. The ac-
tion which the dialogue system has to perform
are described inside these slots. E.g. if the utter-

“This does not mean, that they really have to be pro-
cessed in parallel, but that they are independent of one
another.

HandleParams
[contains(Utter,l

T T
1 1
DepartCity)] ' DestCity)] | DepartTime)]
1 1
1 1
HandleDepart X HandleDest X HandleTime
1 1
1 1
1 1

Figure 8: Concurrent states: dialogue param-
eters which the speaker can talk about in one
sentence are handled in parallel. The picture
represents e.g. for a train time table informa-
tion that the speaker can tell the departure city,
the destination city and the departure time at
one time. The statechart in figure 7 is a possible
refinement of the state HandleDepart.

[contains(Utter,} [contains(Utter,)

ance contains a value for the departure time the
value of a dialogue parameter concerned with
the departure time must be set and analogous
for the other parameters.

Diamod supports the state—based modeling
with graphical editors which can check con-
sistency concerning the depth of the state—
hierarchy, unwanted cycles, completeness of the
system prompts etc. The rules which indicate
when the model is consistent must be entered
for every dialogue system, as they can be differ-
ent according to the given system. States can
be described in detail using masks similar to the
ones used for task modeling (see figure 3). Here
also prompts, conditions, actions and so on can
be related to the state.

This is only a short description of what can
be done with statecharts. The figures are sim-
plified for reasons of clarity. Statecharts offer
many features of abstraction which makes them
capable of complex state modeling.

The models specified by the user of Diamod
are internally represented as graphs which are
also used as the basis for the model transfor-
mation. In order to do this, rules have to be
specified how one graph can be automatically
transformed into another. As different dialogue
systems work with different concepts this trans-
formation cannot be completely automatic. The
approach here is to use defaults where possible
and ask the user to make some additional edit-
ing, where needed. Some information can be
lost by such a transformation. Diamod must
warn the user about this.

3.1.3 Rule-based approach

Advanced dialogue systems are often not mod-
eled using states and transitions but rules and
conditions. Diamod can support this, too, as
states can be used as abstract dialogue units.
Thus states can represent subdialogues and di-
alogue steps. Every state can be modeled by
a set of preconditions which indicate when the
state may be entered and postconditions which
represent when the state can be exited success-
fully. Rules can be specified to model how the
next state to be activated has to be selected.
There is a default order on the states which sup-
ports this selection. Some of these concepts are
used for the application modeling of the Daim-
lerChrysler research dialogue system.

The benefits of Diamod in this context has
not been investigated yet as one needs a well de-
fined dialogue description language as interface
to such a rule-based dialogue system.® Thus
this is work for the future.

3.1.4 Concistency checking

An important point is that the tool is capable
of checking the completeness of the models and
their consistency. This is done using an object—
oriented graph structure which represents all re-
quired concepts and the dependences between
them. Cousistency checks can be executed by
formulating constraints on the graph using path
expressions and having them examined by a spe-
cial path interpreter (Ebert et al., 1996). Thus,
it is possible to guarantee that for example

— there are no problematic cycles in the
model

— there is a system prompt defined for every
system initiative state (i.e. states where
the system has to speak an utterance) and
every parameter, so that the system never
runs in a situation where it is ’speechless’.

— domains are defined properly for all param-
eters

— there is a following state in every situation
(or the end of the dialogue)

4 Summary

The paper introduces the tool system Diamod
which implements a universal approach for the

5This would be a quite interesting project and we
would be grateful for suggestions of collaboration here.

specification of dialogue applications with a fo-
cus on task-oriented dialogue systems of the
slot—filling kind. The tool system supports dia-
logue flow modeling in terms of tasks and states
which can be specified in detail by describing
parameters, actions, prompts and other typical
concepts of dialogue models. The most impor-
tant features of Diamod are

— a uniform knowledge representation which
allows for automatic transformation of data
for different generic dialogue systems

— the possibility of modeling different aspects
of dialogue with different views on the data

— the capability of checking the consistency
of the models automatically

— the support of the reuse of models

— the easy adaptability to additional knowl-
edge bases and different dialogue systems.

4.1 State of work — technical realization

The task and statechart modeling are com-
pletely implemented as described in section 3.
The following summary gives an overview over
what Diamod contains up to now:

— task structure modeling as shown in figure
2

— Dialogue Statecharts modeling as shown
in figure 5; this includes relating prompts,
conditions, actions and events etc. to the
dialogues. These are described in masks as
shown in figure 3

— automatic prompt table generation

— system parameters and application depen-
dent application parameters which repre-
sent the dialogue state

— mapping from application parameters to
data base parameters; e.g. if the caller talks
about ”tomorrow” this has to be mapped
into the actual date in a form that can be
handled by the database such as 03.02.99

— attaching multilingual system prompts to
the modeled dialogues.

The system is implemented in C++ using
graphs and one set of constraints per dialogue

system, which represents the consistency rules
for this system.

We are currently working on adapting the
system to the needs of Temic-DDL (a dialogue
description language developed by Temic) and
VoiceXML (AT&T et al., 2000) and on the au-
tomatic transformation of models. The inte-
gration of a grammar specification tool (work
in progress) is planned for the end of the year.
This module will provide different grammar for-
malisms such as UCG (Zeevat, 1988), PSG
(Boros, 1997) and Java Speech API (Sun mi-
crosystems, 2000). The conversion between
these grammar types will be supported.

The implementation of the system has just
been finished so far that it can be used by appli-
cation developers. But as it is completely new
and the graphical user interface is still being
improved in order to make it more intuitive, we
have not made any experience yet how much the
win of using Diamod will be for realistic dia-
logues. We are currently starting the evaluation
and we are optimistic after the first tests.

4.2 Outlook

The dialogue systems we aimed at when we de-
veloped Diamod were mainly task—oriented sys-
tems, i.e. systems giving information on special
topics or modifying databases. The benefits of
Diamod in another context like translation sys-
tems (e.g. Verbmobil (Wahlster et al., 2000))
has not been investigated so far, but this is one
of our goals in the future.

Another interesting topic would be the adap-
tation of Diamod to dialogue systems using
dialogue grammars (Reichman, 1981) or plan-
based systems (Cohen and Levesque, 1980).

Further plans include the integration of a pro-
totyper into the tool system to be able to im-
mediately check the consequences of the mod-
ifications made. With these different means it
will be possible even for an untrained user to
specify new applications for his or her own re-
quirements.

References

AT&T et al. 2000. VoiceXML. World Wide
Web, http://www.voicexml.org/.

Eric Bilange. 1991. A task independent oral
dialogue model. In Proceedings of the Fifth
Conference of the European Chapter of the
Association for Computational Linguistics,

pages 83-88, Congress Hall, Alexanderplatz,
Berlin, Germany.

Manuela Boros, Ute Ehrlich, Paul Heisterkamp,
and Heinrich Niemann. 1998. An evaluation
framework for spoken language processing.
In Proceedings of the International Work-
shop Speech and Computer 1998, Russian
Academy of Sciences, St.Petersburg, Russia,
October.

Manuela Boros. 1997. Gepard - dokumenta-
tion des parsers f’ur phrasenstrukturgram-
matiken. Projektbericht, FORWISS, Juni.

Astrid Brietzmann, Fritz Class, Ute Ehrlich,
Paul Heisterkamp, Alfred Kaltenmeier, Klaus
Mecklenburg, Peter Regel-Brietzmann, Ger-
hard Hanrieder, and Waltraud Hiltl. 1994.
Robust speech understanding. In Interna-
tional Conference on Spoken Language Pro-
cessing, pages 967-970, Yokohama.

Philip R. Cohen and Hector J. Levesque. 1980.
Speech acts and the recognition of shared
plans. In Proceedings of the Third Biennial
Conference of the Canadian Society for Com-
putational Studies of Intelligence, pages 263—
271.

Ron Cole. 1999. Tools for research and edu-
cation in speech science. In Proceedings of
the International Conference of Phonetic Sci-
ences, San Francisco, USA, August.

Jirgen Ebert, Angelika Franzke, Peter Dahm,
Andreas Winter, and Roger Sttenbach. 1996.
Graph based modeling and implementation
with eer/gral. In B. Thalheim, editor,
15th International Conference on Conceptual
Modeling (ER’96), Proceedings, number 1157
in LNCS, pages 163-178, Berlin. Springer.

Ute Ehrlich, Gerhard Hanrieder, Ludwig
Hitzenberger, Paul Heisterkamp, Klaus
Mecklenburg, and Peter Regel-Brietzmann.
1997. ACCeSS - automated call center
through speech understanding system. In
Proc. FEurospeech 97, pages 1819-1822,
Rhodes, Greece, September.

Ute Ehrlich. 1999. Task hierarchies - represent-
ing sub-dialogs in speech dialog systems. In
6th European Conference on Speech Commu-
nication and Technology (EUROSPEECH),
Budapest, Hungary, September.

Klaus Failenschmid and J.H. Simon Thornton.
1998. End-user driven dialogue system de-
sign: The reward experience. In Proceedings

of the International Conference on Spoken
Language Processing (ICSLP) 1998, Sydney,
Australia, November.

Gerald Gazdar. 1981. Speech act assignment.
In Aravind K. Joshi, Bonnie Lynn Webber,
and Ivan Sag, editors, Elements of Discourse
Understanding, pages 63—-83. Cambridge Uni-
versity Press, Cambridge.

David Harel. 1987. Statecharts: A visual for-
malism for complex systems. Science of Com-
puter Programming, 8:231-274.

Paul Heisterkamp and Scott McGlashan. 1996.
Units of dialogue management: An example.
In Proc. ICSLP ’96, volume 1, pages 200-203,
Philadelphia, PA, October.

Paul Heisterkamp, Scott McGlashan, and
N. Youd. 1992. Dialogue semantics for an
oral dialogue system. In International Con-
ference on Spoken Language Processing (IC-
SLP), Volumel, pages 643-646, Banff, Al-
berta, Canada.

Anke Kolzer. 1999. Universal dialogue specifi-
cation for conversational systems. In Proceed-
ings of the International Workshop: Knowl-
edge and Reasoning in Practical Dialogue
Systems, IJCAI 1999, pages 65-72, Stock-
holm, Sweden, August.

Jeremy Peckham. 1993. A new generation
of spoken dialogue systems: Results and
lessons from the sundial project. In 3rd Fu-
ropean Conference on Speech Communication
and Technology (EUROSPEECH’93); Vol.1,
pages 33—40, Berlin, September.

Rachel Reichman. 1981. Plain-speaking: A the-
ory and grammar of spontaneous discourse.
Ph.D. thesis, Department of Computer Sci-
ence, Harvard University, Cambridge, Mas-
sachusetts.

Sun microsystems. 2000. Java
Speech APL World Wide Web,
http://java.sun.com/products/java-
media/speech/index.html.

Wahlster et al. 2000. Project Verbmo-
bil. World Wide Web, http://www.coli.uni-
sb.de/~vm/.

Henk Zeevat. 1988. Combining categorial
grammar and unification. In Reyle, Rohrer:
Natural Language Parsing and Linguistic
Theories, pages 202-229, Dordrecht. D. Rei-
del Publishing Company.

