Using Toolsets and
Architectures To Build NLP
Systems

Proceedings of the COLING-2000 Workshop on
Using Toolsets and Architectures To Build NLP Systems

Centre Universitaire, Luxembourg
5 August 2000

Using Toolsets and Architectures To Build NL P Systems

Centre Universitaire, Luxembourg

5 August 2000

Table of Content

Introduction L L
Rémi Zajac . |
Experienceusing GATEfor NCPR&D .~ o T
Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Yorick Witks __________________ :
‘Composing a General-Purpose Toolbox for Swedish. 0 9,
'Fredrik Olsson, Bjorn Gambéck .

An Experiment in Unifying” Audio-Visual ‘and Textual Infrastructures for Language Processing” Research and-

DBV 0PN . . . ottt 19 :
Kalina Bontcheva, Hennie Brugman, Hamish Cunningham, Albert Russel and Peter Wittenburg______________ :
/A Modular Toolkit for Machine Translation Based on Layered Charts. 0L 26]
Jan W, Amtrup and REéMi ZajaC X
Finite Sate Tools for Nafural Language Processing....................... 0. . 34
JanDaciuk . :
The XML Framework and its implications for the Development of Natural Language Processing Tools.~ . 38,
NaNCYIde. | | . I
‘Benefits of Modularity in an Automated Essay Scoring System................. 0 .0 L 44!
Jill Burstein, Daniel Marcu _ .. :
,Nq'l ntegrated Devel opment Environment for Spoken Dialogue Systems.o v BL

ARational Agent for the Modellingof aSemanticModel i 61!
VineentPautret . .
Dl'a'rrb'd' “a Tool for Modeling Dialogue Applications.~ 0 6o

Jan W. Amtrup
Kalina Bontcheva
Hennie Brugman
Jill Burstein
Hamish Cunningham
Jan Daciuk
Matthias Denecke
Bjorn Gambéck
Nancy Ide

Anke Kolzer
Daniel Marcu
Diana Maynard
Fredrik Olsson
Vincent Pautret
Albert Russel
Valentin Tablan
Yorick Wilks
Peter Wittenburg
Rémi Zajac

26
1,19
19

1,19

61
19

19
26

Author Index

Program Committee

Rémi Zajac (Chair), CRL, New-Mexico State University, USA: zajac@crl.nmsu.edu.

Jan Amtrup, CRL, New-Mexico State University, USA: jamtrup@crl.nmsu.edu.

Stephan Busemann, DFKI, Saarbriicken: busemann@dfki.de.

Hamish Cunningham, University of Sheffield: hamish@dcs.shef.ac.uk.

Guenther Goerz, IMMD V11, University of Erlangen: goerz@immd8.informatik.uni-erlangen.de.
Gertjan van Noord, University of Groningen: vannoord@let.rug.nl.

Fabio Pianesi, IRST, Trento: pianesi @irst.itc.it.

Using Toolsets and Architectures To Build NLP Systems

Centre Universitaire, Luxembourg
5 August 2000

Many toolsets have been developed to support the implementation of single NLP components (taggers, parsers,
generators, dictionaries) or complete Natural Language Processing applications (Information Extraction systems,
Machine Translation systems). A source for available toolkits isthe Natural Language Software Registry, aninitiative
of the Association for Computational Linguistics hosted by DFKI at http://registry.dfki.de. Thesetoolsam
at facilitating and lowering the cost of building NLP systems. Since the tools themselves are often complex pieces of
software, they require a significant amount of effort to be developed and maintained in the first place. Is this effort
worth the trouble? It is to be noted that NL P tool sets have often been originally developed for implementing asingle
component or application. In this case, why not build the NLP system using a general programming language such as
Lisp or Prolog? There can be at least two answers. First, for pure efficiency issues (speed and space), it is often
preferable to build a parameterized algorithm operating on a uniform data structure (e.g., a phrase-structure parser).
Second, it is harder, and often impossible, to develop, debug and maintain a large NLP system directly written in a
general programming language.

It has been the experience of many users that a given toolset is quite often unusable outside its environment: the
toolset can be too restricted in its purpose (e.g. an MT toolset that cannot be used for building a grammar checker),
too complex to use, or even too difficult to install. There have been, in particular in the US under the Tipster program,
efforts to promote instead common architectures for a given set of applications (primarily IR and |E in Tipster; see
also the Galaxy architecture of the DARPA Communicator project). Several software environments have been built
around this flexible concept, which is closer to current trends in main stream software engineering.

The workshop aims at providing a picture of the current problems faced by developers and users of toolsets, and
future directions for the development and use of NLP toolsets. It includes reports of actual experiences in the use of
toolsets as well as presentation of toolsets and application devel opment.

Rémi Zajac, Computing Research Laboratory, New Mexico State University
zajac@crl.nmsu.edu

Experience of using GATE for NLP R&D.

Hamish Cunningham, Diana Maynard,
Kalina Bontcheva, Valentin Tablan and Yorick Wilks
Department of Computer Science and
Institute for LAnguage, Speech and Hearing,

University of Sheffield, UK
{hamish,diana,kalina,valyt,yorick}@dcs.shef.ac.uk

Abstract

GATE, a General Architecture for Text Engi-
neering, aims to provide a software infrastruc-
ture for researchers and developers working in
NLP. GATE has now been widely available for
four years. In this paper we review the ob-
jectives which motivated the creation of GATE
and the functionality and design of the current
system. We discuss the strengths and weak-
nesses of the current system, identify areas for
improvement.

1 Introduction

This paper relates experiences in projects that
have used GATE (General Architecture for Text
Engineering) over the four years since its initial
release in 1996.

We begin in section 2 with some of the moti-
vation behind this type of system, and go on to
give a definition of architecture in this context
(section 3). Section 4 briefly describes GATE;
section b covers a range of projects that have
used the system. These experiences form the
input to section 6 which discusses the system’s
strengths and weaknesses.

2 Motivation

If you’re researching human language processing
you should probably not be writing code to:

e store data on disk;

e display data;

e load processor modules and data storesinto
processes;

e initiate and administer processes;

e divide computation between client and
server;

e pass data between processes and machines.

A Software Architecture for language process-
ing should do all this for you. You will have
to parameterise it, and sometimes deployment
of your work into applications software will re-
quire some low-level fiddling for optimisation
purposes, but in the main these activities should
be carried out by infrastructure for the language
sciences, not by each researcher in the field.

We can go further and say that you shouldn’t
have to reinvent components and resources out-
side of your specialism if there is already some-
thing that could do the job. A statistician
doesn’t need to know the details of the IEEE
Floating Point computation standard; a dis-
course processing specialist doesn’t need to un-
derstand all the ins and outs of part-of-speech
tagging (or worse still how to install a particular
POS tagger on a particular machine).

If you’re a professional mathematician, you
probably regard a tool like SPSS or Mathemat-
ica as necessary infrastructure for your work. If
you're a computational linguist or a language
engineer, the chances are that large parts of
your work have no such infrastructural support.
Where there is infrastructure, it tends to be spe-
cific to restricted areas. GATE, a General Ar-
chitecture for Text Engineering (Cunningham
et al., 1997), represents an attempt to fill this
gap, and is a software architecture for language
processing R&D.

We now have four years of experience with
GATE, work on which began in 1995, with a
first widespread release late in 1996. The sys-
tem is currently at a pivotal point in its devel-
opment, with a new version in development.

3 Infrastructure for Language
Processing R&D

What does infrastructure mean for Natural Lan-
guage Processing (NLP)? What sorts of tasks

should be delegated to a general tool, and which
should be left to individual projects? The posi-
tion we took in designing GATE is to focus on
the common elements of NLP systems.

There are many useful tools around for per-
forming specific tasks such as developing feature
structure grammars for evaluation under unifi-
cation, or collecting statistical measures across
corpora. To varying extents, they entail the
adoption of particular theories. The only com-
mon factor of NLP systems, alas, seems to be
that they very often create information about
text. Developers of such systems create modules
and data resources that handle text, and they
store this data, exchange it between various
modules, compare results of test runs, and gen-
erally spend inordinate amounts of time pouring
over samples of it when they really should be
enjoying a slurp of something relaxing instead.

The types of data structure typically involved
are large and complex, and without good tools
to manage and allow succinct viewing of the
data we work below our potential. At this stage
in the progress of our field, no one should really
have to write a tree viewing program for the out-
put of a syntax analyser, for example, or even
have to do significant work to get an existing
viewing tool to process their data.

In addition, many common language process-
ing tasks have been solved to an acceptable de-
gree by previous work and should be reused.
Instead of writing a new part of speech tagger,
or sentence splitter, or list of common nomi-
nal compounds, we should have available a store
of reusable tools and data that can be plugged
into our new systems with minimal effort. Such
reuse is much less common than it should be, of-
ten because of installation and integration prob-
lems that have to be solved afresh in each case
(Cunningham et al., 1994).

In sum, we defined our infrastructure as an
architecture, framework and development envi-
ronment, where an architecture is a macro-level
organisational pattern for the components and
data resources that make up a language pro-
cessing system; a framework is a class library
implementing the architecture; a development
environment adds graphical tools to access the
services provided by the architecture.

4 GATE
GATE version 1.n does three things:

e manages textual data storage and ex-
change;

e supports visual assembly and execution
of modular NLP systems plus visualisa-
tion of data structures associated with
text;

e provides plug-in modularity of text pro-
cessing components.

The architecture does this using three sub-
systems:

o GDM, the GATE Document Manager;
o GGI, the GATE Graphical Interface;
e CREOLE, a Collection of REusable Ob-

jects for Language Engineering.

GDM manages the information about
texts produced and consumed by NLP pro-
cesses; GGI provides visual access to this
data and manages control flow; CREOLE is
the set of resources so far integrated. De-
velopers working with GATE begin with a
subset of CREOLE that does some basic
tasks, perhaps tokenisation, sentence and
paragraph identification and part-of-speech
tagging. They then add or modify modules
for their specific tasks. They use a single
API for accessing the data and for storing
their data back into the central database.
With a few lines of configuration information
they allow the system to display their data
in friendly graphical form, including tree dia-
grams where appropriate. The system takes
care of data storage and module loading, and
can be used to deliver embeddable subsys-
tems by stripping the graphical interface. It
supports modules in any language including

Prolog, Lisp, Perl, Java, C++ and Tcl.

5 Projects that used GATE
5.1 ECRAN
Goal: ECRAN (Extraction of Content:

Research at Near-market) (Basili et al.,
1997) was a 3-year EU funded research

TALLd femarwienan | mes (AR

WERlAchkzawle Ise. B sERIE]
T wawary ada oo Rk i o e Wle Tk Py 15
o, FEE

[BT TE) [F—- WNET

fawdmd L raTh T .

LIKET

CREOLE

g
T Fuu

e LT

L LIt i nrr

GGl

Figure 1: Gate Architecture

project with the main aim of carrying
out information extraction using adapted
lexicons.

Participants: Thomson-CSE (Paris)
(project co-ordinators), SIS (Smart Infor-
mation Systems, Germany), University of
Sheffield, University of Rome La Sapienza,
University of Geneva, NCSR “Demokritos”
(Athens)

Description: GATE was mainly used in
this project to implement a general word
sense disambiguation engine based on a
combination of classifiers.

Benefits: The modular architecture of
GATE allowed this to be carried out very
rapidly.

Drawbacks: Two main disadvantages were
found with GATE. (1) The architecture was
under development at the same time as the
word sense disambiguation engine. (2) The
speed of database access for the Tipster
database was found to be slow for large
amounts of lexical data. The solution used
was to store large amounts of lexical data

separately from GATE as gdbm hash tables.

5.2 Cass-SWE

Goal: The aim of the Cass-SWE project
(A Cascaded Finite-State Parser for Syn-
tactic Analysis of Swedish) (Kokkinakis
and Johansson-Kokkinakis, 1999) was to
create a parsing system for fast and accurate
analysis of large volumes of written Swedish.

Participants: Sprakdata/Goteborg Uni-
versity, Sweden.

Description: Cass-SWE implements the
grammar as a modular set of 6 small

grammars. GATE is used to integrate all
the required software components into one
system prior to parsing, and to enable the
results to be visualised in a user-friendly
environment.

Benefits: GATE allows the tagging process
to be carried out sequentially, and enables
modification of individual elements without
disruption to others. Using GATE as a
visualisation environment also enables the
results of Cass-SWE to be further used in
applications such as information extraction
tasks and additional semantic processing.
Drawbacks: There were a few initial
difficulties understanding the workings of
the GATE system, but problems originally
thought to be caused by GATE were later
traced to the CASS parser.

5.3 GIE
Goal: The aim of the GIE (Greek Infor-

mation Extraction) project (Petasis et al.,
1999) was to develop a prototype named
entity recognition model for Greek.
Participants: NCSR “Demokritos”
(Athens), University of Sheffield
Description: The GIE system is based
on the VIE system provided with GATE,
but requires different language-specific
resources such as gazetteers and grammars.
Using GATE enables non-language specific
resources to be reused from the English
version, thereby saving time and effort.
Benefits: GATE facilitated significantly
the integration of existing and new modules
in GIE, as well as the validation of the final
demonstrator. It was generally found to be
fast, easy to use and powerful.

Drawbacks: GATE’s demand for system
resources as document size increases can
become a serious limitation. Complex
compilation processes made the embedding
of static modules difficult. GATE also
has some difficulties supporting non-Latin
languages. mostly relating to the GUIL
Many minor possible improvements to the
GUI and to GATE in general (such as the
addition of new features) were identified
during this project.

5.4 LaSIE
Goal: LaSIE (Wilks and Gaizauskas,

1999)is an advanced large-scale IE system,
performing named entity recognition, coref-
erence resolution, template element filling
and scenario template filling.

Participants: University of Sheffield
Description: LaSIE was designed specifi-
cally to work within the GATE architecture,
and led to the free distribution of its coun-
terpart, VIE, a base-line IE system. LaSIE
modules within GATE have also formed
part of other customised projects within the
EC Fourth Framework (AVENTINUS and
ECRAN).

5.5 EMPathlE
Goal: EMPathlE (Enzyme and Metabolic

Path Information Extraction) was an 18-
month research project aimed at applying
Information Extraction technology to bioin-
formatics tasks.

Participants: Dept. of Information Studies
& Dept. of Computer Science (University
of Sheffield), Glaxo Wellcome ple., Elsevier
Science.

Description: EMPathlE aims to extract
details of enzyme reactions from articles
in biomedical journals. The IE system is
derived from LaSIE and was developed
within the GATE architecture.

Benefits: The embedding of EMPathlE
within the GATE environment means that
many modules can be reused. EMPathlE
thus makes use of many of the LaSIE
modules, and itself produces modules which
have been used for other related projects.
Using GATE therefore enables much of
the low-level work in moving IE systems
to new domains to be carried out effortlessly.

5.6 SVENSK

Goal: SVENSK (Olsson, 1997; Olsson et
al., 1998; Gambéck and Olsson, 2000) was a
4-year project aimed at developing an inte-
grated toolbox of language processing com-
ponents and resources for Swedish.
Participants: SICS (Swedish Institute
of Computer Science), NUTEK, Uppsala
University, Goteborg University, PipeBeach
AB., Telia Research AB, IBM Svenska AB
Description: The toolbox is based on the
GATE language engineering platform and
incorporates language processing tools de-
veloped at SICS or contributed by external
sources.

Benefits: Each component has a standard-
ised interface, so users have the choice of
working within GATE or selecting and com-
bining supplied components for integration
into a user application. GATE is useful in
that it is not committed to any particular
type of data or task. The emphasis on mod-
ularity was also found to be particularly ap-
pealing.

Drawbacks: GATE was at the time still in
its early phases and had some problems with
very large-scale resources. Specification of
byte offset and 1/O requirements for differ-
ent modules was also difficult.

5.7 LOTTIE
Goal: LOTTIE (Low Overhead Triage

from Text using Information Extraction)
was a demonstrator project for the GATE
infrastructure. It aimed to provide proof-
of-concept by implementing demonstration
software dealing with the major technologi-
cal problems involved in computer-assisted
triage.

Participants: University of Sheffield
Description: LOTTIE did not itself use
GATE, but formed a basis on which to build
it. Parts of it were real, based on a project
in a different domain, and parts of it served
as a test case for GATE development and
as a demonstration of future possibilities.

5.8 AVENTINUS
Goal: AVENTINUS (Advanced Infor-

mation System for Multinational Drug
Enforcement) is an EU funded research and
development programme set up to build an
information system for multinational drug
enforcement.

Participants: SIETEC (Germany), ADB
(France), Amt flir Auslandsfragen (Ger-
many), Bundeskriminalamt (Germany),
Sprakdata Gothenburg (Sweden), Insti-
tute for Language and Speech Processing
(Greece), INCYTA (Spain), University of
Sheffield.

Description: AVENTINUS aims to collect
information from distributed international
sources, using advanced linguistic tech-
niques to improve IE, involving multimedia
resources and supporting multilinguality.

5.9 TRESTLE
Goal: TRESTLE (Text Reuse, Extraction

and Summarisation for Large Enterprises)
(TRESTLE, 2000) is a 2-year project involv-
ing I from electronic alerting bulletins dis-
tributed daily throughout the pharmaceuti-

cal industry.

Participants: Glaxo-Wellcome plc, Univer-
sity of Sheffield Dept. of Computer Science
and Dept. of Information Studies.
Description: TRESTLE is based on the
LaSIE IE system, but requires different
domain-specific resources, such as gazetteers
and ontology, and substantial modification
of the discourse interpreter and template
writer.

Benefits: GATE provides domain indepen-
dent linguistic components for TRESTLE,
the most important of which is the seman-
tic parser. Named Entity recognition re-
quires only the installation of domain spe-
cific gazetteers.

Drawbacks: It is very difficult to make even
minor modifications to existing components
of GATE. Current documentation is inade-
quate, and very strong computing skills are
necessary in order to make the most of it.

5.10 PASTA

Goal: PASTA (Protein Active Site Tem-
plate Acquisition) (K. Humphreys and
Gaizauskas, 2000) extracts information
about protein structures directly from
scientific journal papers, and stores them in
a template.

Participants: Depts. of Computer Science,
Molecular Biology & Biotechnology, and In-
formation Studies (University of Sheffield).
Description:The system has been adapted
to the molecular biology domain from pre-
existing IF technology such as LaSIE. The
progress so far demonstrates the feasibility
of developing intelligent systems for IE
from text-based sources in the pursuit of
knowledge in the biological domain.
Benefits: The use of a common database
for storing intermediate results offers several
advantages. GATE allows simple integra-
tion of heterogeneous system components
and algorithms. The user interface is also
attractive.

Drawbacks: GATE is slow and memory
hungry, even for medium-sized documents,
and is not very robust, particularly when
upgrading is carried out.

5.11 EUDICO

Goal: The aim of Fudico was a distributed
multimedia infrastructure supporting an-
notation of speech and video corpora
(Brughman et al., 1998).

Participants: Max Planck Institute for
Psycholinguistics (Nijmegen, Netherlands),
University of Sheffield

Description: Eudico enables transcriptions
of utterances to be time-aligned with speech
and video data, so that dynamic and si-
multaneous viewing and editing is possible.
Integration with GATE was carried out in
order to benefit from GATE’s ability to
represent, store and visualise linguistic data.
Benefits: The flexibility of GATE’s data
model enabled the seamless integration
between EUDICO’s time-based data and
GATE’s offset-based annotations. This
enabled the representation, manipulation
and display of time-aligned transcriptions
into GATE’s viewers, allowing the user
to manipulate the different types of data
simultaneously in a uniform environment.
Drawbacks: There is a certain lack of
support for distributed/remote access to
the document manager. Therefore in a
client-server environment, the entire data
has to be sent over the network instead of
just the parts that are needed.

5.12 German Named Entity
Recognition

Goal: German Named Entity Recognition
(Mitchell, 1997) was an MSc project to
adapt part of the LaSIE system to deal
with German, and to test whether the
architecture was suitable for processing a
language other than English.

Participants: Dept. of Computer Science,
Sheffield University

Description: The system followed the
same general architecture as LaSIE, but
with modifications to various modules such
as the grammar and tokeniser.

Benefits: Using the GATE architecture
meant that only fairly minor modifications
to individual modules were necessary, and
rule adaptation was easy. The evaluation

of LaSIE as a tool for processing other
languages was very positive (as borne out
by the later development of M-LaSIE (a
multilingual IE system).

Drawbacks: The GATE API was large,
complex and difficult to understand and
modify, The ability to group modules into
blocks for processing would be a useful
addition, as would an easier method of
inserting new modules in the correct place.

6 Strengths and Weaknesses

GATE has proved successful in a number of
contexts, with users reporting a variety of
work with the system, for example:

o Teaching undergraduates and postgrad-
uates. Our colleagues at UMIST and
the Universities of Edinburgh, and Sus-
sex have reported using the system for
teaching, as have the Universities of
Stuttgart and Saarburcken.

o Information Extraction in English,
Swedish, French, Spanish and Greek.
Our colleagues in Fribourg University
collaborated with us on a French IE sys-
tem; both ILSP and NKSR Demokritus
in Athens are developing a Greek IE
system; the University of Gothenburg
has a Swedish system; the University of
Catalonia in Barcelona are working on
Spanish.

o Integrating information extraction with
Information Retrieval. The Naval Office
of R&D (NRaD) in San Diego is using
GATE for research on text summarisa-
tion and IE/IR integration.

o Integrating a national collection of NLP
tools for Swedish. See

http://www.sics.se/humle/projects/svensk/

o ESTEAM Inc., of Gothenburg and
Athens are using the system for adding
name recognition to their MT systems
(for 26 language pairs) to improve per-
formance on unknowns.

e The Speech and Hearing group
at Sheffield are modelling out-of-

vocabulary language using VIE and
GATE (Gotoh et al., 1998).

e Numerous postgraduates in locations as
diverse as Israel, Copenhagen and Sur-
rey are using the system to avoid hav-
ing to write simple things like sentence
splitters from scratch, and to enable vi-
sualisation and management of data.

Abstracting from their experiences and
that of users at Sheffield, GATE’s strengths

can be summarised as:

o facilitating reuse of NLP components by
reducing the overheads of integration,
documentation and data visualisation;

o facilitating multi-site collaboration on
IE research by providing a modular
base-line system (VIE) with which oth-
ers can experiment;

o facilitating comparative evaluation of
different methods by making it easy to
interchange modules;

o facilitating task-based evaluation, both
of “internal” components such as tag-
gers and parsers, and of whole systems,
e.g. by using materials from the ARPA
MUC programme (Grishman and Sund-
heim, 1996) (whose scoring software is
available in GATE, as is the Parseval
tree scoring tool (Harrison, 1991), and
a generic annotation scoring tool);

e contributing to the portability of NLP
systems across problem domains by pro-
viding a markup tool for generating
training data for example-based learning
(it can also take input from the Alembic
tool (Day et al., 1997) for this purpose,
using FEdinburgh’s SGML processing li-
brary (McKelvie et al., 1997)).

There several weaknesses in the system,
and some areas that are underdeveloped or
lacking polish. In rough order of severity:

1. Version 1 is biased towards algorith-
mic components for language process-
ing, and neglects resource components.

2. Version 1 is biased towards text analy-
sis components, and neglects text gener-
ation components.

3. The visual interface is complex and
somewhat non-standard.

4. Installing and supporting the system is
a skilled job, and it runs better on
some platforms than on others (UNIX
vs. Windows).

5. Sharing of modules depends on sharing
of annotation definitions (but isomor-
phic transformations are relatively easy
to implement).

6. It only caters for textual documents, not
for multi-media documents.

7. 1t only supports 8-bit character sets.

Points 1 and 2 compromise the general-
ity of the system, and have limited take-up,
as well as the number of CREOLE modules
integrated with the system. For modules
like taggers, parsers, discourse analysers (i.e.
just about anything that performs an anal-
ysis task) the GATE integration model pro-
vides a convenient and powerful abstraction
layer based on storing information in asso-
ciation with the text under analysis. For
resources like lexicons or corpora, no such
layer exists. Similarly, for modules that do
generation-side tasks, since there is no text
under analysis, the utility of a text-based
model is limited.

For details of the means by which we in-
tend to combat these problems and extend
the range of the system, see (Cunningham,
2000). More details of requirements for this
type of system, and how to evaluate them,
are available in (Cunningham et al., 2000).

7 Conclusion

Based on the collective experiences of a size-
able user base across the EU and elsewhere,
the system can claim to be a viable in-
frastructure for certain sections of the field.
Given further development, we hope that it
can take on this role for a wider variety of
tasks.

8 Acknowledgements

This work was supported by EPSRC grants
GR/K25267 and GR/M31699.

References

R. Basili, M. Pazienza, P. Velardi, R. Xatizone,
R. COllier, M. Stevenson, Y. Wilks, O. Amsaldi,
A. Luk, B. Vauthey, and J. Grandchamp. 1997.
Extracting case relations from corpora. ECRAN
Deliverable 2.4 version 1.

H. Brughman, A. Russel, P. Wittenburg, and
R. Piepenbrock. 1998. Corpus-based research
using the Internet. In First International Con-
ference on Language Resources and FEvaluation
(LREC) Workshop on Distributing and Accessing
Linguistic Reseources, Granada, Spain.

H. Cunningham, M. Freeman, and W.J. Black.
1994. Software Reuse, Object-Oriented Frame-
works and Natural Language Processing. In New
Methods in Language Processing (NeMLaP-1),
September 1994, Manchester. (Re-published in
book form 1997 by UCL Press).

H. Cunningham, K. Humphreys, R. Gaizauskas,
and Y. Wilks. 1997. Software Infrastructure
for Natural Language Processing. In Proceed-
wings of the Fifth Conference on Applied Nat-
ural Language Processing (ANLP-97), March.
http://xxx.lanl.gov/abs/cs.CL/9702005.

H. Cunningham, K. Bontcheva, V. Tablan, and
Y. Wilks. 2000. Software Infrastructure for Lan-
guage Resources: a Taxonomy of Previous Work
and a Requirements Analysis. In Proceedings of
the 2nd International Conference on Language
Resources and Evaluation (LREC-2), Athens.
http://gate.ac.uk/.

Hamish Cunningham. 2000. Software Architecture
for Language Engineering. Forthcoming.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok,
P. Robinson, and M. Vilain. 1997. Mixed-
Initiative Development of Language Processing
Systems. In Proceedings of the 5th Conference on
Applied NLP Systems (ANLP-97).

B. Gamback and F. Olsson. 2000. Experiences of
Language Engineering Algorithm Reuse. In Sec-
ond International Conference on Language Re-
sources and Evaluation (LREC), pages 155-160,
Athens; Greece.

Y. Gotoh, S. Renals, R. Gaizauskas, G. Williams,
and H. Cunningham. 1998. Named entity tagged
language models for lvesr. Technical Report CS-
98-05, Department of Computer Science, Univer-
sity of Sheffield.

R. Grishman and B. Sundheim. 1996. Message un-
derstanding conference - 6: A brief history. In
Proceedings of the 16th International Conference
on Computational Linguistics, Copenhagen, June.

P. Harrison. 1991. Evaluating Syntax Performance
of Parsers/Grammars of English. In Proceedings
of the Workshop on Evaluating Natural Language
Processing Systems, ACL.

G. Demetriou K. Humphreys and R. Gaizauskas.
2000. Two applications of information extrac-
tion to biological science journal articles: Enzyme
interactions and protein structures. In Proc. of
Pacific Symposium on Biocomputing (PSB-2000),
Honolulu, Hawaii.

D. Kokkinakis and S. Johansson-Kokkinakis.
1999. Cascaded finite-state parser for syn-
tactic analysis of swedish. Technical Report
GU-I155-99-2, Dept. of Swedish, Goteborg
University. http://svenska.gu.se/ svedk/-
publications.html.

D. McKelvie, C. Brew, and H. Thompson. 1997.
Using SGML as a Basis for Data-Intensive NLP.
In Proceedings of the fifth Conference on Applied
Natural Language Processing (ANLP-97), Wash-
ington, DC.

B. Mitchell. 1997. Named Entity Recogni-
tion in German: the identification and clas-
sification of certain proper names. Master’s
thesis, Dept. of Computer Science, Univer-
sity of Sheffield. http://www.dcs.shef.ac.uk/-
campus/dcscd/projects/bm.pdf.

F. Olsson, B. Gamback, and M. Eriksson. 1998.
Reusing Swedish Language Processing Resources
in SVENSK. In Workshop on Minimising the Ef-
forts for LR Acquisition, Granada.

F. Olsson. 1997. Tagging and morpho-
logical processing in the svensk system.
Master’s thesis, University of Uppsala.

http://http://stp.ling.uu.se/ fredriko/-
exjobb.ps.

G. Petasis, G. Paliouras, V. Karkaletsis, C.D. Spy-
ropoulos, and I. Androutsopoulos. 1999. Resolv-
ing part-of-speech ambiguity in the greek lan-
guage using learning techniques. In Proc. of the
ECCAI Advanced Course on Artificial Intelli-
gence (ACAI), Chania, Greece.

TRESTLE. 2000. The TRESTLE project.
http:/www.dcs.shef.ac.uk/research/-
groups/nlp/trestle.

Y. Wilks and R. Gaizauskas. 1999. Report on ep-
src research grant on the large scale informa-
tion extraction research project. Technical Re-

port GR/K25267, University of Sheffield.

Composing a General-Purpose Toolbox for Swedish

Fredrik Olsson and Bjorn Gambéck

{fredriko,gamback}@sics.se

Information and Language Engineering Group
Swedish Institute of Computer Science
Box 1263, S-164 29 Kista, Sweden
http://www.sics.se/humle/ile

Abstract

The paper discusses the lessons we have learned
from the work on building a reusable toolset
for Swedish within the framework of GATE, the
General Architecture for Text Engineering, from
the University of Sheffield, UK.

We describe our toolbox SVENSK and the rea-
sons behind the choices made in the design, as
well as the overall conclusions for language pro-
cessing toolbox design which can be drawn.

1 Introduction

Why is it desirable to have a general-purpose
toolset for Language Engineering? In general,
it is likely that the following items hold:

language diversity

Research in Language Engineering tends to
be expensive since the results may not al-
ways be shared across languages, e.g., a tag-
ger or parser for German is not applicable
to Swedish. This implies that much of the
work carried out in one language has to be
carried out in other languages as well.

evaluation
Evaluation of language processing software
is a cumbersome task, and it would ease up
things if researchers could cooperate in con-
structing test-suits and measures that ap-
ply to those and then share data and meth-
ods within a common framework.

commercialisation
If you want to go commercial, it is im-
portant that the prototyping and testing
phases can be carried out without the over-
head of having to construct a new frame-
work each time a new kind of system is to
be developed.

In addition, for small languages like Swedish
(with about 9 million speakers), there are not
that many researchers in Computational Lin-
guistics, and thus not many at all in the various
sub-fields of the area. To be able to share re-
sults between groups in the same research area
is crucial for every-day research. Both to show
off results and for teaching purposes.

In order to encompass this, a general frame-
work for Language Engineering could, or should,
be expected to:

e cut development time and cost by reusing
what has been done before;

e ensure that systems are scalable to pre-
vent unexpected draw-backs due to the “toy
problem syndrome”;

e provide, in the long run, a good setting for
evaluation of language engineering tasks.

In this paper we will discuss the lessons we
have learned from the work on building such a
toolbox for Swedish; however, we set out by de-
scribing some of the reasons for why our project
from the start was laid out as it was.

In particular, the section following concen-
trates on our own project and toolbox architec-
ture together with University of Sheffield’s un-
derlying GATE system, while Section 3 draws
on the experiences from some other, previous
and current, work on designing large language
processing systems. Section 4 then moves on to
the central purpose of the paper, discussing the
main insights gained during the course of the
project. Finally, Section 5 supplies a short bul-
let list with some of the overall conclusions we
have drawn.

2 A toolbox for Swedish: SVENSK

The sVENSK project (Eriksson and Gambéck,
1997; Olsson et al., 1998; Gambéck and Olsson,
2000) is a national effort funded by the Swedish
National Board for Industrial and Technical De-
velopment (NUTEK) to encompass some of the
difficulties outlined above. The aim of SVENSK
has been to develop a multi-purpose language
processing system for Swedish based, where pos-
sible, on existing components, and targeted at
research and teaching. The SVENSK system as
such is thus mainly the sum of a fairly large set
of different reusable language resources.

2.1 Choice of platform

In 1995 when the SVENSK project started to take
shape, there was a need for a platform flexible
enough to act as a framework for the language
processing programs intended to constitute the
toolbox. At the end of the selection process,
there were two platforms remaining; the Eu-
ropean Commission initiative ALEP, Advanced
Language Engineering Platform (Simpkins and
Groenendijk, 1994) and GATE, General Archi-
tecture for Text Engineering, from the Univer-
sity of Sheffield, UK (Cunningham et al., 1996).

GATE was chosen since it was, among other
things, freely available and did not impose its
own linguistic theories on the modules to be
integrated. Even though ALEP, at the time,
turned out to be too slow to fit as a software
framework for SVENSK, it was considered feasi-
ble to integrate external modules in it (Eriksson
and Gamback, 1997).

More general points about both these projects
will be discussed below, ALEP in Section 3.3
and GATE in Section 3.5. We will right away de-
scribe the GATE system as such, though, from
our perspective within the SVENSK project.

2.2 GATE

GATE consists of three different parts; a docu-
ment manager, a graphical interface, and a set
of language engineering objects. This section
gives an overview of each one of them.

2.2.1 GATE Document Manager, GDM

The GDM, which is based on the TIPSTER
database architecture (Grishman and others,
1997), serves as a communication center for the
components in GATE. It stores all information
about texts that language processing systems re-

quire to run, as well as the information they pro-
duce. The GDM stores annotations associated
to sequences of byte offsets in the original text.
Each annotation may have several attributes,
which in turn may have zero or more values. The
byte offsets are used as pointers into the original
text in order to enable separate storage of the
source text and the database holding informa-
tion associated to it. Also, the GDM provides a
well-defined application programming interface
(API) for handling the data it stores.

2.2.2 GATE Graphical Interface, GGI

The GGI is a graphical launch-pad which en-
ables interactive testing and building of langu-
age processing systems within GATE. Various
tasks are supported, such as integrating new
language processing modules, building systems,
launching them, and viewing the results. The
philosophy of the interface is to provide the user
woth a rich set of tools. There are, for example,
several generic viewers for displaying module re-
sults, ranging from raw annotations to complex
parse trees via output from part-of-speech tag-
gers.

2.2.3 Language engineering objects

At the very heart of building a GATE-based
system system we find the so-called Collection
of REusable Objects for Language Engineering,
CREOLE. The CREOLE modules/objects in
the GATE system should be thought of as in-
terfaces to resources; data, algorithmical or a
mixture of both. A CREOLE module may be
a “wrapper” around an already existing piece of
software or it may be an entire program devel-
oped explicitly for GATE compliance. It is the
CREOLE modules that perform the real work
of analysing texts in a GATE-based system.

The tasks for a CREOLE module involve set-
ting up the environment for the language pro-
cessing program it implements, or “wraps” (e.g.,
processing arguments given by the user via the
GGI), as well as retrieving information from the
GDM, invoking the program, and taking care
of the output produced, that is, format it and
record it in the GDM.

2.3 CREOLE modules in SVENSK

From GATE’s point of view, SVENSK is a set
of CREOLE objects. The language processing
software wrapped by the CREOLE objects are
in-house modules, commercially available mod-

FreeI text

Y

GATE | TextCat

Y
Y

Text preprocessor |

Tokeniser |

SWECG: Swedish
Constraint Grammar

I.
Constravlnt tags

[
Tokeniled text

| Sentence splitter |

SWECG2SLE
(format converter)

ucp: Uppsala
Chart Processor

I
Sente ces ﬁ

. |
Lexical templates
Y Y

DSP: Domain DUP: Deep-level
Specific Processor Unification Processor

ParserBox
(educational tool):
Top-Down, BUP, wfst,
Brill Tagger HeadParse, LinkParse,
for Swedlsh ChartParse, LR-Parse

Dependechy graphs

Y
Quasi—Log*lcal Forms Morphological structures POS-tagged text Attribute—val*ue structures

Figure 1: How the modules in SVENSK are interconnected to form different processing chains.

ules, and modules from Swedish academia. The
modules integrated so far are shown in Figure 1.

As indicated in the figure, there are dif-
ferent ways the input texts can take through
the system. At the top end of the picture,
van Noord’s freely available! language identi-
fier TextCat constitutes the starting point for
all processing chains in SVENSK. Here, it allows
the user to restrain the input to the system to
be in Swedish.

We then have two main options, either to pass
the input through SWECG, the Swedish ver-
sion of LingSoft oy’s and Helsinki University’s
Constraint Grammar (Karlsson et al., 1995), or
through a parallel sequence of tokenisation and
sentence segmentation developed specifically for
the SVENSK project (Olsson, 1998).

The processing chains then split further, and
— from left to right in Figure 1 — end in the
following modules;

e DSP, the Domain Specific Processor (Sun-
nehall, 1996) produces shallow dependency
graphs intended for use in applications re-
quiring a robust interface for a specific ap-
plication, such as the Olga dialogue system
(Beskow et al., 1997);

e DUP, the Deep-level Unification-based Pro-
cessor, a component made up of a
large-scale unification-based grammar for

! At www.let.rug.nl/"vannoord/TextCat

Swedish (Gambéck, 1997) and an LR-
parser (Samuelsson, 1994). It yields a rel-
atively 'deep’ level of analysis but at the
cost of robustness, and has previously been
used for machine translation and database
interfacing projects, including the SICS-
SRI-Telia “Spoken Language Translator”
(Rayner et al., 1993).

e the Uppsala Chart Processor (Sagvall-Hein,
1981) produces morphological analyses;

e a Swedish version (Priitz, 1997) of the Brill
Tagger (Brill, 1992);

e the ParserBox, an educational tool consist-
ing of seven parsers operating on a small
grammar. At this end the different ways
the parsers process the input is of main in-
terest, rather than the output produced.

Each of the components has a standardised in-
put/output interface, users will have the choice
of working with the supplied development sys-
tem — as may be appropriate for academic re-
search on particular aspects of language use —
or selecting and combining modules for integra-
tion into a user application. Since the I/O in-
terfaces conform to the annotation model of the
TIPSTER architecture (Grishman, 1995) devel-
opers (and users) can easily add components to
the platform, and then link them together to
form an application.

File View Layout Options Utilities | MODULE Help
A
uppbnll
svensk svensk Parserbox:
TextCat token lextoken split Head
Parserhox:
SWecq dsp Chart
=~ [0

Collection: lmome/fgamback/Collections/coling_coll

Document: {all} |

Figure 2: An example of a system built by some of the SVENSK modules.

Alternatively, two components with the same
interfaces and functionality can be defined for
the platform, and then evaluated in the same
application. This allows students to experi-
ment with different approaches to a linguis-
tic problem (such as parsing, using the algo-
rithms supplied on the ParserBox), or research
experiments to use the most appropriate compo-
nent for their purposes and performance criteria
(such as speed, robustness, etc).

Figure 2 shows how some of the SVENSK mod-
ules can be linked within GATE to form four
different processing chains, in this case with
three possible output levels: dependency-based
semantics (from DSP), POS-tagged text (from
Brill), or syntactic analyses obtained from either
a chart parser or a head-based parsing strategy.

3 Related work

Over the years there have been many efforts in
the direction of creating large toolsets for langu-
age processing. Some have been built with one
particular application — or class of applications
— in mind, but mostly the more or less explicit
aim has been to create reusable toolsets for a
wide range of tasks. In this section we will look
at some of the major stepping stones.

3.1 Setback 1: Eurotra

Back in 1977, the first steps were taken towards
what would become the most ambitious effort
in the field seen so far. The goal of the Eurotra
Programme was to develop a machine transla-
tion system collaboratively in all the member-
states of the (then) European Community. A
working group tried to establish linguistic and
software standards as the basis for the project,
but the amount of work done in this group was
intended to be small, while the main efforts were
to be localised to centra in the different states,
working on some of the (at the end) nine langu-
ages and 72 language pairs (King and Perschke,
1987; Bech and Nygaard, 1988).

After the project, “Eurotra bashing” has de-
veloped into something of a sport for Euro-
pean computational linguists, resulting in that
the reasons for why the project failed (at least
partially?) have in themselves not been dis-

*Failure’ is a relative notion, since it was not orig-
inally a goal of the Eurotra Programme to build one
production-quality system. The degrees of freedom left
for the different groups had the positive effect of building
up language processing competence and infrastructure in
the EC countries and of producing some working, full-
scale “spin-off” systems, such as PaTrans (Hansen, 1994).

cussed enough. Certainly, the lack of over-
all coordination soon became a liability. In-
herent short-comings of the formalisms, and
inefficiency of the implementation related to
fundamental problems with the formalisms are
another reason which have been pointed out
(Crookston, 1990; Pulman et al., 1991).

However, the main problem with the frame-
work was probably that it never in itself moved
towards one system; indeed, Johnson and Ros-
ner (1987) discussed a software environment for
Eurotra building on tools for rapid implementa-
tion and evaluation of a variety of experimen-
tal theories. In the spirit of that several paral-
lel systems and formalisms were used, and the
formalisms changed rapidly over time. Still,
no framework was developed which could ac-
commodate these different types of modules, no
clear interfaces were designed, no central in-
stance under-took the integration task.

3.2 Success Story 1: CLE

In contrast to the multi-site Eurotra effort, SRI
International’s Cambridge Research Centre and
Cambridge University’s Computer Laboratory
in 1985 suggested a UK-internal project devel-
oping a Core Language Engine (CLE), a domain
independent system for translating English sen-
tences into formal representations (Alshawi et
al., 1992). SRI's CLE built on a modular-staged
design in which explicit intermediate levels of
linguistic representation were used as an inter-
face between successive phases of analysis.

The CLE has been applied to a range of tasks,
including machine translation and interfacing to
a reasoning engine. The modular design also
proved well suited for porting to other langu-
ages and the implementation was quite efficient.
Thus, the project proved its purpose. However,
even though the CLE system received consider-
able attention, it failed to spread in the commu-
nity, the main reason being that it simply was
too expensive to obtain it.?

3.3 Setback 2: ALEP

Following the Eurotra tradition, ALEP, the Ad-
vanced Language Engineering Platform (Simp-
kins and Groenendijk, 1994; Bredenkamp et

3«You don’t give away a one million pound program”
(SRI research manager). Contrast this with the strategy
of, e.g., John McAfee to give away his antivirus software
for free — and making millions on selling the updates!

al., 1997), introduced in Section 2.1, was an-
other European Commission initiative to pro-
vide the European language research and engi-
neering community with a general purpose re-
search and development environment.

The ALEP platform supplied a range of pro-
cessing resources and was particularly targeted
at supporting multilinguality. However, it im-
posed its own formalisms (for grammars, etc.)
on the developers and users. In addition, the
initial implementations were as inefficient as Eu-
rotra’s and ALEP never became widely spread.

3.4 Success Story 2: Verbmobil

The real contrast to Eurotra came with Verb-
mobil, a multi-site German government effort
which started in the early 90’s (Kay et al., 1994).
The main processing stream of the project was
clearly defined (even though parallel and com-
plementary modules were allowed) and the in-
terfaces between different groups and modules
were developed during the project in intense
inter-group discussions.

A major reason why the project succeeded in
producing an overall joint system was a con-
centrated effort by a central system administra-
tion group which incorporated components de-
veloped at several different sites and in many
different programming paradigms into one plat-
form (Bub and Schwinn, 1996). The Verbmo-
bil architecture employs ICE, Intarc Communi-
cation Environment (Amtrup, 1997), a general
communication package, but which of course has
been primarily developed for the specific needs
of the Verbmobil task, non-incremental multi-
lingual spoken dialogue translation.

3.5 Success Story 3: GATE

In the mid 90’s, the UK Engineering and Physi-
cal Sciences Research Council (EPSRC) started
to fund a project at the University of Sheffield
aimed at building a General Architecture for
Text Engineering, GATE (Cunningham et al.,
1996; Gaizauskas et al., 1996; Cunningham et
al., 1997; Cunningham et al., 1999).

As described in Section 2.2, GATE does not
adhere to a particular linguistic theory, but is
rather an architecture and a development envi-
ronment designed to fit the needs of researchers
and application developers. It presents users
with an environment in which it is easy to use
and integrate tools and databases, all accessi-

Table 1: Language processing resources in SVENSK

Processing resource Main task

Author(s)

TextCat Language identification
Tokeniser Tokenisation
LexToken Lexicalised phrase tokenisation

Sentence splitter

Swedish Brill Tagger

Segmentation

Uppsala Chart Processor
LP-Detect

Morphology

Swedish Constraint Grammar
SWECG2CLE Format converter

Deep-level Unification-based
Processor

Swedish grammar
& LR-parser

Domain-specific Processor

ParserBox Educational tool

Part-of-speech tagging

Lexicalised phrase recognition

Morphosyntactic analysis

Dependency structure semantics

[van Noord; U Groningen]

[Olsson; SICS & Uppsala U]

[Hassel, Johansson; SICS & Sthlm U]
[Olsson; SICS & Uppsala U]

[Priitz; Uppsala U]

[Sagvall-Hein; Uppsala U]

[J. Lindberg; Stockholm U]

[LingSoft oy & Helsinki U]

[Eriksson; SICS]

|Gambéck; SICS],
[Samuelsson; SICS]

[Sunnehall; SICS]
[Eineborg, Olsson et al; SICS]

ble through a friendly user interface. The plat-
form is free for non-commercial and research
purposes, and has so far been distributed to
more than 250 different sites around the world.4

3.6 Meanwhile in the US... Galaxy

In the US, there have also been some efforts in
the direction of open architectures that incor-
porates language processing resources, in par-
ticular within the research programmes spon-
sored by DARPA, the Defense Advanced Re-
search Projects Agency. With TIPSTER (Gr-
ishman, 1995), the design of a general architec-
ture was agreed upon; however, the full TIP-
STER annotation scheme (Grishman and oth-
ers, 1997) has not been implemented as such.
Instead, the MITRE Cooperation is currently
(under DARPA funding) developing Communi-
cator, a testbed similar to the Verbmobil one.
The initial DARPA Communicator architec-
ture builds on MIT’s Galaxy system (Seneff et
al., 1998). A central process, the Hub, is con-
nected with a variety of server processes and
governs the control flow between them. A wide
range of component types are supported: langu-
age understanding and generation, speech recog-

*In June 2000, according to the “incomplete” list of
licensees given on the GATE web pages:
www.dcs.shef.ac.uk/research/groups/nlp/gate

nition and synthesis, dialogue management, and
context tracking (Goldschen and Loehr, 1999).

The goal of the Communicator — to provide
an architecture used by everyone, easing the
work of porting modules and system evaluation
— seems decent in itself; however, the system
has not been that well received within the US
research community. (“We’ve spent most of our
time the last year trying to make our stuff follow
Communicator standards, rather than on doing
research,” anonymous US researcher, personal
communication 2000).

4 Issues in composing a toolset

A result of the integration in SVENSK is that
programs from many different sources and back-
grounds, which originally were not built to com-
municate which each other are doing this now.
Table 1 shows the main tasks of all the SVENSK
modules, as well as the author(s) and sources
behind the different units.

Collecting and distributing algorithmic re-
sources and making different programs interop-
erate present a wide range of challenges, along
several different dimensions; we will denote the
key dimensions ‘diplomatic’, technical, and lin-
guistic. In the rest of this section we will discuss
some of the experiences we have drawn from the
project with regards to these dimensions.

4.1 Diplomatic challenges

With ‘diplomatic’, we mean some of the conclu-
sions which can be drawn from the examples of
other systems in Section 3. Eurotra and ALEP
both had the problem of linguists not wanting to
agree on formalism standards while a framework
supporting diversity was lacking. The CLE was
successful as a system, but commercial short-
sightedness destroyed its chances of more wide-
spread popularity.

Commercial interests have also been a prob-
lem within SVENSK, but we have also seen that
it is hard to get access to academic LE resources.
The need for component reuse is often appreci-
ated by everybody in the field. However, to put
action behind words is not as easy. In particu-
lar, researches need to be convinced to invest the
extra time and resources to package their com-
ponents in an exportable and reusable form.

Table 2: Resource availability

Availability Resource(s)

In-house and free DSP, DUP, Tokeniser,
LexToken, ParserBox,

Sentence splitter

External and free TextCat, GATE,

LP-Detect
External, restricted UCP, Swedish Brill
Commercial, closed SWECG

A key aim of the project has been that the
resources included in SVENSK should be freely
available for non-commercial use, at least for
Swedish institutions. As can been seen in Ta-
ble 2 all current components except for SWECG
meet this requirement.® Of course, process-
ing resources included in the system in the fu-
ture should preferably also match this free-for-
all strategy.

Still, making language processing resources
freely available and, in particular, reusability
of resources is really a very uncommon con-
cept in the computational linguistic community.
Possibly this also reflects another uncommon
concept, that of experiment reproducibility; in

SSWECG, the Swedish Constraint Grammar, is avail-
able from LingSoft oy, Helsinki, unfortunately for a cur-
rently discouragingly high license fee, albeit reduced for
academic SVENSK users.

most research areas the possibility for other re-
searchers to reproduce an experiment is taken
for granted. Yes, this is the very core of what
is accepted as good research at all. Strangely
enough, this is rarely the case in Computer Sci-
ence in general and definitely not within Com-
putational Linguistics.

We believe that this will change and that re-
producibility will be generally accepted as a cri-
teria of good research even in Computational
Linguistics. And to give other researchers the
option of reproducing an experiment means giv-
ing them access to the language engineering re-
sources used in the experiment. Convincing the
members of the CL research community to both
make their own processing resources freely avail-
able to the rest of the community and actually
even to try to reuse somebody else’s resources is
indeed a tough ‘diplomatic’ challenge.

4.2 Technical/software challenges

From the technical point of view, one major
conclusion is that the difficulties of integrating
language processing software never can be over-
estimated. Even when using a liberal frame-
work like GATE it is hard work making differ-
ent pieces of software from different sources and
built according to different programming tradi-
tions meet any kind of interface standard.

To give the flavour of the problem, Table 3
singles out the underlying implementation lan-
guages of some of the SVENSK components,
while diversity in software authors and sources
was shown already in Table 1.

Table 3: Implementation languages

Language Resource(s)

Prolog DSP, DUP, ParserBox

C/C++ SWECG, Brill,
Tokeniser, GATE (part)

Tcl/Tk GATE

Perl TextCat, Brill (part),
LexToken, LP-Detect,
Sentence splitter

LISP UCP

The application programming interface thus
moves to the centre of attention: No matter how

linguistically adequate a piece of language pro-
cessing software is, without a proper API it can-
not be used in conjunction with other programs.

In a way, it is understandable that academia
does not always put much effort in packag-
ing and documenting their software, since their
main purpose is not to sell and widely distribute
it. The trouble is that some of the actors on the
commercial scene do not document their sys-
tems in a proper manner, either. Far too of-
ten this has resulted in inconsistencies with the
input and output of other modules. This prob-
ably reflects a certain level of immaturity in the
field when it comes to software development; the
problem might solve itself when the level of com-
petition between different companies increases.

Software portability is another issue: The
components available often rely on a particular
operating system or a particular software envi-
ronment to work, something which may cause
problems in settings when you wish to distribute
your collected efforts to other parties, or when
you wish to add a new component to your col-
lection. If you are not careful when integrating
components that are not first and foremost in-
tended to function together, it is not likely that
their combined performance will even level with
the performance of the individual programs re-
garding, e.g., time and memory requirements.

In software industry in general, it is hard to
recreate the situations where bugs occur, and it
is even harder to correct them once you have
found them. When collecting and integrating a
set of heterogenous language processing compo-
nents, the problem of localising a bug is even
harder. As long as the source code of the soft-
ware under consideration is available, you might
be able to correct the bugs yourself; however,
software delivered as a “black-box” (that is, if it
is impossible to access the code inside, which is
common for commercial software), allow no one
to remedy even the smallest flaw.

4.3 Linguistic challenges

Of course, LE components differ with respect to
such things as language coverage, processing ac-
curacy and the types of tasks addressed. It is
also the case that tasks can be done at various
levels of proficiency. The trouble is that there
is no quality control available to either the tool-
box developer nor to the end-user. If a large

number of LE components are to be integrated,
they should first be categorised so that compo-
nents with a great difference in, say, lexical cov-
erage are not combined.

A familiar problem for all builders of language
processing systems relates to the adaptation to
new domains. When reusing resources built by
others this becomes even more accentuated, es-
pecially if an LE resource is available only in the
“black box” form (and thus relates to the issues
of the previous subsection).

In general, the power required of a language
processing system is affected by three main fac-
tors: the type of task involved, the needs of the
specific application, and the application domain,
including the vocabulary and the register (sub-
language) complexity. It seems impossible — or
at least very hard! — to compose a really gen-
eral toolkit. Toolkits will always have to focus
on some classes of tasks and applications and /or
on some language and operation domains.

A classification of the SVENSK components ac-
cording to three different limitation dimensions
is given in Table 4.

Table 4: Linguistic limitations

Limitations Resource(s)

All except TextCat and
Sentence splitter (some)

DSP
(most others more or less)

DSP, DUP, ParserBox

Language dependent

Domain dependent

Sentence-based

5 Conclusions

e A toolset should not be too general. There
has to be some focus on its end-usage, at
least to some manageable set of classes of
tasks and applications.

e The portability issues across operating sys-
tems as well as institutional borders de-
pends on technical issues such as licenses
and availability. The “a chain is never
stronger than its weakest link’-metaphor is
certainly applicable!

e The domain and coverage of language pro-
cessing software is an additional obstacle;
it is important to match pieces of software
accordingly!

Acknowledgements

The SVENSK project has been funded by SICS
and NUTEK under grants P5475 and P13338-1.

Several persons have been involved in the
project since its start in 1995, in particular
Mikael Eriksson who did the first work on the
GATE interfacing. Mats Wirén and Barbro
Atlestam were the key persons behind ensur-
ing the project’s funding. Scott McGlashan,
Charlotta Berglund, Victoria Johansson and
Kristina Hassel all worked directly on SVENSK
at SICS, while Christer Samuelsson, Jussi Karl-
gren, Nikolaj Lindberg, Lena Santamarta and
Ivan Bretan worked on other SICS projects
which contributed indirectly to the system.

Klas Priitz, Anna Sagvall-Hein and Jan “Beb”
Lindberg donated language processing resources
to the project. Gertjan van Noord sat an ex-
ample for all researchers by making his software
freely available, as did Hamish Cunningham and
the rest of the Sheffield GATE group. Thanks
also to the members of SVENSK’s scientific ad-
visory board which have greatly influenced the
project: Barbro, Anna, Mats, Robin Cooper,
Lars Ahrenberg, and Calle Welin.

References

Hiyan Alshawi, editor, David Carter, Jan van
Eijck, Bjorn Gambick, Robert C. Moore,
Douglas B. Moran, Fernando C. N. Pereira,
Stephen G. Pulman, Manny Rayner, and
Arnold G. Smith. 1992. The Core Language
Engine. MIT Press, Cambridge, Mass.

Jan W. Amtrup. 1997. ICE: A communica-
tion environment for Natural Language Pro-
cessing. In Proc. International Conference
on Parallel and Distributed Processing Tech-
niques and Applications, Las Vegas, Nevada.

Annelise Bech and Anders Nygaard. 1988. The
E-framework: A formalism for Natural Lan-
guage Processing. In Proc. 12th Interna-
tional Conference on Computational Linguis-
tics, volume 1, pages 36-45, Budapest, Hun-
gary. ACL.

Jonas Beskow, Kjell Elenius, and Scott Mac-
Glashan. 1997. Olga — a dialogue system
with an animated talking agent. In G. Kokki-
nakis, N. Fakotakis, and E. Dermatas, editors,
Proc. 5th European Conference on Speech
Communication and Technology, volume 3,
pages 1651-1654, Rhodes, Greece. ESCA.

Andrew Bredenkamp, Thierry Declerck, Fred-
erik Fouvry, Bradley Music, and Axel The-
ofilidis. 1997. Linguistic engineering using
ALEP. In (Mitkov and Nicolov, 1997), pages
92-97.

Eric Brill. 1992. A simple rule-based part of
speech tagger. In Proc. 3rd Conference on
Applied Natural Language Processing, pages
152-155, Trento, Italy. ACL.

Thomas Bub and Johannes Schwinn. 1996.
Verbmobil: The evolution of a complex large
speech-to-speech translation system. In Proc.
4th International Conference on Spoken Lan-
guage Processing, Philadelphia, Pennsylvania.

lan Crookston. 1990. The E-framework:
Emerging problems. In H. Karlgren, editor,
Proc. 13th International Conference on Com-
putational Linguistics, volume 2, pages 66-71,
Helsinki, Finland. ACL.

Hamish Cunningham, Yorick Wilks, and
Robert J. Gaizauskas. 1996. GATE — a Gen-
eral Architecture for Text Engineering. In
Proc. 16th International Conference on Com-
putational Linguistics, volume 2, pages 1057—
1060, Kgbenhavn, Denmark. ACL.

Hamish Cunningham, Kevin Humphreys,
Robert J. Gaizauskas, and Yorick Wilks.
1997. Software infrastructure for Natural
Language Processing. In Proc. 5th Confer-
ence on Applied Natural Language Processing,
Washington, DC. ACL.

Hamish Cunningham, Robert J. Gaizauskas,
Kevin Humphreys, and Yorick Wilks. 1999.
Experience with a Language Engineering ar-
chitecture: Three years of GATE. In Proc.
Workshop on Reference Architectures and
Data Standards for NLP, Edinburgh, Scot-
land. AISB.

Mikael Eriksson and Bjorn Gambéck. 1997.
SVENSK: A toolbox of Swedish language pro-
cessing resources. In (Mitkov and Nicolov,
1997), pages 336-341.

Robert Gaizauskas, Hamish Cunningham,
Yorick Wilks, Peter Rodgers, and Kevin
Humphreys. 1996. GATE: An environment
to support research and development in
Natural Language Engineering. In Proc. 8th
International Conference on Tools with Al
Toulouse, France. IEEE.

Bjorn Gambéck. 1997. Processing Swedish Sen-
tences: A Unification-Based Grammar and

some Applications. PhD Thesis, The Royal
Institute of Technology, Dept. of Computer
and Systems Sciences, Stockholm, Sweden.

Bjorn Gambéck and Fredrik Olsson. 2000. Ex-
periences of Language Engineering algorithm
reuse. In Proc. 2nd International Confer-
ence on Language Resources and Evaluation,
volume 1, pages 161-166, Athens, Greece.
ELRA.

Alan Goldschen and Dan Loehr. 1999. The role
of the DARPA Communicator architecture as
a human computer interface for distributed
simulations. In Spring Simulation Interoper-
ability Workshop, Orlando, Florida. SISO.

Ralph Grishman et al., 1997. TIPSTER Text
Phase II Architecture Design. Version 2.3.
New York, NY.

Ralph Grishman, 1995. TIPSTER Phase II Ar-
chitecture Design Document (Tinman Archi-
tecture) Version 1.52. New York, NY.

Viggo Hansen. 1994. PaTrans — a MT-system:
Development and implementation of and ex-
periences from a MT-system. In Proc. Ist
Conference of the Association for Machine
Translation in the Americas, pages 114-121,
Columbia, Maryland. AMTA.

Rod Johnson and Mike Rosner. 1987. Machine
translation and software tools. In (King,
1987), chapter 11, pages 154-167.

Fred Karlsson, Atro Voutilainen, Juha Heikkila,
and Arto Anttila, editors. 1995. Constraint
Grammar: A Language-Independent System
for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin, Germany.

Martin Kay, Jean Mark Gawron, and Peter
Norvig. 1994. Verbmobil: A Translation Sys-
tem for Face-to-Face Dialog. Number 33 in
Lecture Notes. CSLI, Stanford, California.

Maggie King, editor. 1987. Machine Transla-
tion Today: the State of the Art. Edinburgh
University Press, Edinburgh, Scotland.

Maggie King and Sergei Perschke. 1987. EU-
ROTRA. In (King, 1987), chapter 19, pages
373-391.

Ruslan Mitkov and Nicolas Nicolov, editors.
1997. Proc. 2nd International Conference on
Recent Advances in Natural Language Pro-
cessing, Tzigov Chark, Bulgaria.

Fredrik Olsson. 1998. Tagging and morpholog-
ical processing in the SVENSK system. MA
Thesis, Uppsala University, Sweden.

Fredrik Olsson, Bjorn Gambéck, and Mikael
Eriksson. 1998. Reusing Swedish language
processing resources in SVENSK. In Proc.
Workshop on Minimizing the Effort for Lan-
guage Resource Acquisition (LREC98), pages
27-33, Granada, Spain. ELRA.

Klas Priitz. 1997. Preparing a training corpus
in Swedish for training an automatic part of
speech tagging system. In H. Kalverkdmper
and B. Svane, editors, Ubersetzen und Dol-
metschen. Forschungsstand und Perspektive.
Translation and Interpreting. State and Per-
spectives. Proc. Humboldt-Stockholm Sympo-
stum, Stockholm University, Sweden.

S. G. Pulman, editor, H. Alshawi, D. J. Arnold,
D. M. Carter, J. Lindop, K. Netter, J. Tsu-
jii, and H. Uszkoreit. 1991. Eurotra ET6/1:
Rule Formalism and Virtual Machine Design
Study. CEC, Luxembourg.

Manny Rayner, Ivan Bretan, David Carter,
Michael Collins, Vassilios Digalakis, Bjorn
Gambéck, Jaan Kaja, Jussi Karlgren, Bertil
Lyberg, Steve Pulman, Patti Price, and
Christer Samuelsson. 1993. Spoken language
translation with mid-90’s technology: A case
study. In Proc. 3rd Furopean Conference on
Speech Communication and Technology, vol-
ume 2, pages 1299-1302, Berlin, Germany.
ESCA.

Anna Sagvall-Hein. 1981. An overview of the
Uppsala Chart Parser version 1 (UCP-1).
Technical report, Center for Computational
Linguistics, Uppsala University, Sweden.

Christer Samuelsson. 1994. Fast Natural-
Language Parsing Using Ezplanation-Based
Learning. PhD Thesis, The Royal Institute of
Technology, Dept. of Computer and Systems
Sciences, Stockholm, Sweden.

Stephanieo Seneff, Ed Hurley, Raymond Lau,
Christine Pao, Philipp Schmid, and Victor
Zue. 1998. Galaxy-II: A reference architec-
ture for conversational system development.
In Proc. 5th International Conference on Spo-
ken Language Processing, volume 3, pages
931-934, Sydney, Australia.

Neil Simpkins and Marius Groenendijk. 1994.
The ALEP project. Technical report, Cray
(now Anite) Systems / CEC, Luxembourg.

Joel Sunnehall. 1996. Robust parsing using
dependency with constraints and preference.
MA Thesis, Uppsala University, Sweden.

An Experiment in Unifying Audio-Visual and Textual
Infrastructures for Language Processing Research and
Development

Kalina Bontcheva', Hennie Brugman?*, Albert Russel*,
Peter Wittenburg*, Hamish Cunningham
T Department of Computer Science, University of Sheffield, Sheffield, UK
<kalina,hamish>@dcs.shef.ac.uk
t Max-Plank Institute for Psycholinguistics, Nijmegen, The Netherlands
<firstname.lastname>@mpi.nl

Abstract

This paper describes an experimental integration of
two infrastructures (Eudico and GATE) which were
developed independently of each other; for different
media (video/speech vs. text) and applications. The
integration resulted into gaining an in-depth under-
standing of the functionality and operation of each
of the two systems in isolation, and the benefits of
their combined use. It also highlighted some issues
(e.g., distributed access) which need to be addressed
in future work. The experiment also showed clearly
the advantages of modularity and generality adopted
in both systems.

1 Introduction

This paper describes the integration of two infras-
tructures (Eudico and GATE) which were developed
independently of each other; and for different me-
dia (video/speech vs. text) and applications. Such
integration was needed in order to have an appli-
cation where the end users (linguists and language
engineers) who annotate video and speech corpora
with textual transcriptions in Eudico, can also ben-
efit from language processing tools and viewers from
GATE.

Eudico (European Distributed Corpora) is a dis-
tributed multimedia infrastructure supporting cre-
ation, presentation and analysis of annotations of
speech and video corpora (Brugman et al., 1998).
Annotations of all kinds of user-definable types can
be time-aligned with the speech/video data so that
dynamic and simultaneous viewing is possible. For
example, when the user sets a new media time this
time is reflected in all annotation viewers, and, vice
versa, when the user selects an annotation this time
selection is shown 1n all viewers, including the media
player: viewing of media and transcription data is
synchronised.

GATE (General Architecture for Text Engineer-
ing) (Cunningham et al., 1997; Cunningham et
al., 1999) is an architecture, framework, and devel-
opment environment, providing representation and
storage of language data together with infrastruc-
tural support for building and deploying language

engineering applications. Its plug-and-play support
for processing modules and data viewers lowers the
overhead of building such applications and facilitates
code-reuse.

The 1dea behind this experiment is to combine
and build on the strengths of these two architec-
tures, thus bridging the gap between transcriptions
of speech and video, and language engineering tools.
From the user’s perspective, this entails simultane-
ous manipulation of media, transcriptions and lin-
guistic data in a uniform and synchronised way. The
integration with GATE provides Eudico applications
with ways to represent, display and manipulate lin-
guistic data and, more importantly, to run GATE
language processing modules on the text transcrip-
tions (e.g., part-of-speech tagger, name-entity recog-
niser). In this way, linguists and language engineers
developing speech/video corpora are assisted in the
corpus annotation task by language processing tools
and viewers.

The main question that had to be answered 1s
whether it is possible to integrate into one appli-
cation two separate architectures. The major differ-
ence between the two comes from the media struc-
turing: speech/video annotation in Eudico is time-
based while text annotation in GATE is offset-based.
Therefore, we had to find a way of storing and ac-
cessing time information for offset-based linguistic
objects. From an implementational viewpoint, this
entailed:

1. Mapping objects from the GATE world to ob-
jects in the Eudico world in such a way that Eu-
dico’s views give a meaningful representation of
GATE data, while keeping their dynamic and
synchronised nature.

2. Embedding GATE viewers in Eudico viewers
and making them time aware with minimal
rewriting of existing code.

The next three sections are devoted to discussing
the design and implementational aspects of these
two problems. Section 2 describes how the ac-
tual mapping of objects between the architectures is
done. Section 3 describes the synchronisation mech-

anism allowing GATE and Eudico viewers to operate
and update in parallel with the media being played.
Section 4 describes the specific GATE viewers used
in this project. The pilot application is described in
section 5. Section 6 concludes this report by sum-
marising the outcome of this work and pointing to a
set of open issues.

2 Integrating the Two Data Models
2.1 Eudico Data Model

The key concepts underlying Eudico’s data model
are:

Corpus - a collection of Transcriptions (or of sub-
corpora).

Transcription - all annotations that refer to
one media file, or that describe one uninterrupted
recorded event.

Tier - a collection of Tags that are strictly con-
secutive in time and that annotate one specific phe-
nomenon. Tiers can also have meta information (e.g.
name, transcriber).

Tag - a typed set of values applying to a time
interval. A Tag is part of exactly one Tier. Tags
on the same Tier may not overlap in time. Tags are
either explicitly linked to media time or ordered in
time.

These concepts are part of Eudico’s Abstract Cor-
pus Model (ACM). The ACM was designed to ab-
stract the specifics of corpus annotation formats
from the tools that work on the annotation data,
thus making Eudico corpus format independent.

2.2 GATE Data Model
GATE’s data model 1s based on the TIPSTER ar-

chitecture (Grishman, 1996). The main classes are:

Collection - a set of Documents which can be
loaded, stored, and processed together.

Document - consists of a document content (e.g.
text) and a set of Annotation objects associated to
the document content by means of spans (objects
specifying the begin and end offset of the annota-
tion).

Annotation - has a set of spans (specify the text
parts covered by this annotation), type (e.g. part-of-
speech (POS)), and a set of Attribute objects which
hold further information about the annotation (e.g.
time=12345, category="Noun”).

Attribute - a feature-value pair which can hold any
type of data as a value. Attributes can be associated
to any of the above classes - collection (e.g., creator),
document (e.g., language, media type), and annota-
tion (see above).

2.3 Mapping between the two worlds

There is a two-way mapping between FEudico
and GATE objects since GATE objects are con-
structed from Eudico ones (with a special ‘Eudico-

to-Gate’tool) that were initialised from another ex-
isting corpus, and, vice versa, Eudico objects are
created from GATE ones when a stored Gate col-
lection is loaded in Eudico for further processing.
This mapping is realised by implementing the proper
parts of the Eudico’s ACM using GATE’s API and
data structures. We chose to specify the mapping
only for a set of data that can be treated in a mean-
ingful way in both environments, namely transcribed
speech utterances.

Eudico corpora are mapped to GATE collections.
All transcribed utterances on a given media file are
ordered according to their place in the original file
and form a Document. All the information in the
document is accessed through time attributes and
annotation spans. In this way, only the relevant doc-
ument part(s) are manipulated at each given time
point. All Tags from the Tiers will are added as
Annotations of type utterance. Tier information
is encoded as an Attribute on the utterance anno-
tations created for the Tags. Tier objects can be
re-created by selecting all utterance annotations
which have the same value for the attribute tier
(see the example below). In order to provide a two
way link between Tags and utterance annotations,
all Tags have associated span information and all
utterances have associated time information.

Based on the utterance annotations, which pro-
vide a link to Eudico’s time-based world, new lin-
guistic data in the form of other annotations can be
added now to the media corpus.

We experimented with two types of such data:

e POS - part of speech annotations which are cur-
rently obtained from hand-annotation.

e syntaxTree - syntax trees obtained by manual
annotation.

2.4 Example

The following example of the mapping is based on
an example of a time-aligned file from the CHILDES
Corpus (MacWhinney, 1999).

©GBegin
OFilename: boys73.cha
OParticipants

ROS Ross Child, MAR Mark Child,
FAT Brian Father, MOT Mary Mother

*R0OS: yahoo.
%snd: "boys73a.aiff" 7349 8338
*FAT: you got a lot more to do # don’t you?
%snd: "boys73a.aiff" 8607 9999
*MAR: yeah.
%snd: "boys73a.aiff'" 10482 10839
*MAR : because I’m not ready to
go to <the bathroom>[>] +/.
%snd: "boys73a.aiff'" 11621 13784

This file is first parsed and Eudico Tiers and Tags
are created as follows:

Tiers: ROS, MAR, FAT, MOT.
Tags for ROS: {(7349, 8338, "yahoo")}
Tags for FAT: {(8607, 9999,
"you got a lot more to do# don’t you?"}
Tags for MAR: {(10482, 10839, "yeah"),

e Associate the span of this annotation with a
time interval that is taken from a time selection
set with the Eudico media player.

3.2 Using Time Information to Synchronise
GATE Viewers

Eudico has a time-handling mechanism where, at the
time of creation of a new viewer, all relevant time

(11621, 13784, "because..+/.")}points are registered with the media player. These

Speech utterances are combined into a GATE doc-
ument:

yahoo. You got a lot more to do# don’t you?
0...15...110..115..120..125..130..135..140..

yeah. because I’m not ready to go to...
45..150..155..160..165..]70..175..180..

Utterance annotations are created for each Tag:

Id | Type Span | Span | Attribute
start | end

1 utterance | O 5 Tier=ROS,
Time=(7349,8338)

2 utterance | 7 43 Tier=FAT,
Time=(8607,9999)

3 utterance | 45 49 Tier=MAR,
Time=(10482,10839)

4 utterance | 51 102 Tier=MAR,
Time=(11621,13784)

3 Time-based Synchronisation

3.1 Encoding Time Information for
Linguistic Objects

Eudico objects can be time-aligned which provides
a way of synchronising all Eudico viewers by al-
ways showing the information relevant to the current
point of time in the media. Therefore it 1s desirable
for GATE linguistic objects to be time-aligned as
well when such information is available.

This is achieved by encoding the time in millisec-
onds as a value of an Attribute object, which is then
associated with linguistic Annotation objects (e.g.
POS annotations). In this way, annotations with such
an attribute are linked to the media time and can
be manipulated and displayed in the same way as
Eudico objects.

For example, given a transcription tier for one
speaker, POS annotations are added using GATE.
Each P0OS annotation has to be associated with both
a time interval and a text span.

The procedure is as follows:

e Use GATE to add POS Annotations
e Display the POS annotations in a GATE viewer

e Select an Annotation in this viewer (for multi-
span annotations, select one of the spans)

time points are derived from the time information
of the annotation objects that are to be displayed
in the viewer. During media playback an event is
generated for each timepoint and based on these
events, the viewers update themselves to reflect the
current time in their own specific way. This mech-
anism was extended to the domain of GATE view-
ers in a non-trivial way. Extra timepoints are taken
from the attributes of time-aligned annotations and
also registered with the media player. Additional
events are generated at play back time and passed
on by the Eudico viewer to the proper embedded
GATE viewer. These events can then be used by the
GATE viewer to show/highlight annotations at the
appropriate time, resulting in time synchronisation
between all Eudico and GATE viewers. Examples
are given below.

4 Re-using GATE Viewers inside
the Eudico Interface

4.1 Disguising GATE Viewers as ”"Native”
Eudico GUI classes

In order to provide creation, editing, and visuali-
sation of linguistic data, we embedded GATE GUI
modules into classes implementing Eudico’s inter-
face for a panel displaying a single Tag. In this way,
the various Eudico viewers can manipulate them in
the same way as the ”native” Eudico ones. The
wrapper classes also provide the time synchronisa-
tion functionality described in the previous section.
We experimented with two GATE viewers - POS
and SyntaxTree viewers - corresponding to the cho-
sen linguistic annotations.

The POS viewer works at the level of orthographic
transcription because that is a type of text that can
be handled meaningfully in both the GATE and Eu-
dico domains. Utterances at this level are almost
all already time-aligned which means that the POS
viewer can operate sensibly even if no finer time
alignment exists. Words in the utterances can be
selected for manual annotation with part of speech
data (the annotation dialog is shown in Figure 1).
These annotations are then visualised by textually
aligning them with the proper span of the speech
utterance.

The TreeViewer displays an utterance together
with one or more (partial) syntax trees of sentences
within this utterance (see Figure 2). The annota-

Eﬁinnnutatiun Yiewer o] x|
yes and the pictures zhow (Zome E%%PDS Entry Dialog

e ! type : | pog (Part OF Speech)

Conj

test

] I S0Me

Span : I 385 :3584

pas:

tirne : |

S
VP
NP
e
Pron ' DET N N Pron
I | |
This is a test sentence. This

Ad) N
| NP
is another PropH
YTRANS
PP

Conj
AdjP

ADY
apd
PREP
DET

Figure 2: The TreeViewer

tion process starts from the words and proceeds up-
wards. The appropriate category can be selected
from a menu of availabe categories which is con-
structed from the corresponding stereotype (see fol-
lowing section). Non-terminal nodes can be com-
bined into higher-level non-terminals (e.g. V and

NP into a VP) by selecting all relevant nodes for the
new category and selecting the category itself from
the menu. Deletion of selected nodes 1s avaialble too.

Similar to all GATE viewers, both the POS
and Syntax Tree viewers are implemented as Java
Beans which enables their easy reuse and config-

uration. On-line demonstrations of GATE appli-
cations embedding these viewers are available at
http://www.gate.ac.ukl.

4.2 Configuring Viewers for Types of
Annotations

Annotations in GATE are flexible and unconstrained
data structures. This has the advantage that the
architecture is theory-neutral, and can represent a
wide range of data. The disadvantage 1s that the ap-
plication using them needs meta-information about
annotations in order to allow proper creation, edit-
ing, and visualisation. Therefore, annotation stereo-
types are used for encoding this information, which
is then used for configuring the behaviour of the
GATE viewers and editors.

These stereotypes (AnnotationStereotype class)
have

e annotation type (e.g. POS, SyntTree)

e annotation structure type (single span, multiple
span, tree or graph)

e a set of attribute stereotypes specifying the
name of the attribute feature, the type of per-
missible values (e.g., String), and a list of per-
missible values where applicable.

For example, the stereotype of POS annotations
is given in Table 4.1.

Viewers use stereotypes to define what annota-
tion types they can visualise. For example, the syn-
tax tree viewer can register itself as supporting an-
notations with structure type tree, or even more
specifically, annotations of type SyntaxTree. Cre-
ation/editing of annotations also uses stereotypes to
control what attributes and values can be entered.
For instance, in the POSEntryDialog in Figure 1 the
list of permissible categories is taken from the per-
missible values for the attribute cat as defined in
the POS stereotype (see Table 4.1 for some example
values)?.

5 The Showcase Application

The publicly-available showcase application® cur-
rently demonstrates the time syncronisation and
viewing of linguistic data provided by the integration
of the two architectures. The application uses sound
media annotated with utterances for each speaker?.
The data is taken from the ESF corpus® and im-

'The demos require a browser (e.g., Netscape, Internet
Explorer) with enabled Java and Java applets.

2Eudico’s Abstract Corpus Model includes comparable
concepts, but no effort to integrate at this level was made
in the scope of the pilot project.

3 Available for download
http://www.gate.ac.uk.

4Video data could have been used just as easily, but at
the cost of having the user install the Java Media Framework
(JMF) on her system

Shttp:/ /www.mpi.nl/world/tg/lapp/esf/esf.html

under demos at

ported via Eudico into a GATE document with an-
notations. Afterwards some utterances were manu-
ally annotated with part-of-speech information using
the GATE POS Viewer (see the figure above). The
result is stored using GATE’s persistence mechanism
and is read every time the application runs.

The showcase application allows playback and
viewing of media and associated linguistic data. It
demonstrates the synchronysed operation of GATE’s
linguistic viewers embedded into Eudico’s media and
annotation viewers. The screen shot below shows
two types of Eudico viewers used - subtitle and tag
list viewer®. The subtitle viewer (the window with
lielallp.wav caption) shows the current utterance
for each speaker (in this case, INN and SLA) and
controls the media playback. The other two Eudico
viewers (the windows with GATE List View cap-
tions) are tag list viewers, one for each speaker, and
integrate many instances of the GATE’s POS viewer.
Each instance displays a particular utterance and all
POS annotations related to it.

The embedding Eudico viewers take care of layout,
scrolling, update and time synchronisation of the
embedded GATE components. They obtain the rel-
evant time data from each GATE POS viewer’s an-
notation data and register it with Eudico’s time syn-
chronisation mechanism. They also receive all time
events and direct them to the appropriate GATE
viewer which then highlights the word which is cur-
rently played as a sound by the media player.

In the example screen shot in Figure 3, the cur-
rent word is day. A few milliseconds later, another
time event would cause the highlight to be moved
to the word and, which is the next word to be spo-
ken. When no POS data is available (as for the
word this), the last word remains highlighted until
the next time-aligned annotation becomes current
or the end of the utterance is reached. The Eudico
viewers also take care of displaying a moving red bar
in front of the currently playing utterance.

In addition to this synchronous playing behaviour,
time synchronisation is exploited in some other
ways: it is possible to select an utterance in one
of the tag list viewers. This (time) selection is then
reflected in each of the other viewers (by means of
a blue bar in front of the overlapping utterances).
The media time is automatically reset to the begin
time of the selection. Manipulating the media time
by dragging the media player’s slider is reflected by
the red bar and text highlight in the other viewers.

6 Conclusion

This paper described the integration of two infras-
tructures (Eudico and GATE) which were devel-
oped independently of each other; for different me-

SFor examples and a discussion of all Eudico viewers see
http://www.mpi.nl/world/tg/lapp/eudico/eudico.html

ouwIap 97} JO 10US U99I0S Y ¢ 9.11'181&‘[

Eilielal1p wav
rINN

[l E3

and i would like you this is what he does every day # and i would |
00:00:07.930 - 00:00:19.438

(SLA

‘ SLA

[oo:00:10.800 b

_'E

] 00:00-10.99 / 00:00-40.80 |— —— ' — —
FEAINN - GATE List View - [O] %]
F s

utterance VeSS,
pos AD
]
utterance VEE.
pos ADY
utterance excuse me i dont understand.
pos W Fran PFron Aux W
utterance okay [=1].
pos
utterance VBS yesS,
pos ADn ADY

utterance erm this is an indian man yes?

pos Pron W DET ADJ I+ ADw ‘

utterance and i wolld like wou this is what he does every day # and | would like ibvou # 0 would like wou to tell me.
I pos Conj Pron Auu W Pran Pron % Wh* Pron W ADJ M Conj Pron Auy W Pran Fran Al Fran Y Pran

utterance what he is daoing.

pos Pron Pron % N

utterance this [=1] i an indian man.

pos Pran Vo DET ADJ WM

utterance yes and the pictures show some of the things he does ewery da\,r.-

EE3SLA - GATE List View =1

ao:00:07 420 -
00:00:19.527 -
ao:00:21.072 -
00:00:23 169 -

oo:00:20.014 -

000007 4528 ||

00:00:19.917

00:00:22 238

00:00:24 556

00:00:20.215

annotationType POS

AnnotationStructureType | Single span

cat String

det, n, adj, v, prep, conj, aux

AttributeStereotypes

Time | Long

Table 1: Stereotype for POS annotations

dia (video/speech vs. text) and applications. Such
integration was needed in order to have an appli-
cation where the end users (linguists and language
engineers) who annotate video and speech corpora
with textual transcriptions in Eudico, can also ben-
efit from language processing tools and viewers from
GATE.

The experiment lead to gaining an in-depth under-
standing of the functionality and operation of each
of the two frameworks in 1solation, and the benefits
of their combined use. The showcase application ex-
emplifies how the strengths of each framework have
been combined to achieve seamless integration be-
tween speech, transcribed utterances; and linguistic
data. The novel aspect of this integration is the
resulting close inter-operation of the two infrastruc-
tures, which allows bi-directional data exchange and
embedding of GUI components. Technically this is
much more difficult to achieve than the usual case
where one system uses the other through wrapper
code. The application also proved the feasibility of
the data- and GUI-reuse emphasis in GATE, as well
as the extendibility of Eudico’s dynamic viewers.

The inter-operation was made possible by the
openness and flexibility of the underlying data mod-
els. Eudico’s abstract corpus model showed its
generality by the straightforward implementation of
GATE/TIPSTER support. In turn, the generality
of the GATE/TIPSTER model allowed efficient en-
coding and manipulation of transcribed speech data
and the associated media time information.

From end-user perspective, the Eudico/GATE in-
tegrated application has introduced language en-
gineering to the domain of spoken language re-
search. In this way, linguists collecting and annotat-
ing speech/video corpora can also encode, manipu-
late and view linguistic data. From GATE program-
ming perspective, the application highlighted the
need for supporting different media and distributed
processing. GATE version 2 which is currently un-
der development, is aiming to address these issues.

References

H. Brugman, A. Russel, P. Wittenburg, and
R. Piepenbrock. 1998. Corpus-based Research
using the Internet. In Workshop on Distribul-
ing and Accessing Linguistic Resources, pages
8-15, Granada. http://www.dcs.shef.ac.uk/-
“hamish/dalr/.

H. Cunningham, K. Humphreys, R. Gaizauskas,

and Y. Wilks. 1997. Software Infrastructure
for Natural Language Processing. In Proceed-
wngs of the Fifth Conference on Applied Nat-
ural Language Processing (ANLP-97), March.
http://xxx.lanl.gov/abs/cs.CL/9702005.

H. Cunningham, R.G. Gaizauskas, K. Humphreys,
and Y. Wilks. 1999. Experience with a Language
Engineering Architecture: Three Years of GATE.
In Proceedings of the AISB’99 Workshop on Ref-
erence Architectures and Data Standards for NLP,
Edinburgh, U.K., April. The Society for the Study
of Artificial Intelligence and Simulation of Be-
haviour.

R. Grishman. 1996. The TIPSTER Text Phase
IT Architecture Design. Document Version 2.2.
Technical report, Department of Computer
Science, New York University, September.
http://wuw.cs.nyu.edu/pub/nlp/tipster/152.ps .

B. MacWhinney. 1999. The CHILDES Project:
Tools for Analysing Talk (second ed.). Lawrence
Arlbaum, Hillsdale, N.J.

A Modular Toolkit for Machine Translation Based on Layered
Charts

Jan W. Amtrup and Rémi Zajac
Computing Research Lab, New Mexico State University
{jamtrup,zajac}@crl.nmsu.edu

Abstract

We present a freely available toolkit for building ma-
chine translation systems for a large variety of lan-
guages. The toolkit uses standard linguistic data
representation based on charts and typed feature
structures; A modular open architecture based on
standardized interfaces and processing architecture,
enabling the addition of external language process-
ing components and the configuration of new ap-
plications (plug-and-play); An open library of basic
parameterizable language processing components in-
cluding a morphological finite-state processor, dic-
tionary components, an island chart parser, chart
generator, and chart-based transfer engine (for MT
systems). It is open-source: the C++ source code is
available, and portable: targeted systems are Unix
and Windows systems.

1 Introduction

The MEAT! machine translation toolkit was devel-
oped in order to significantly shorten the develop-
ment cycle for machine translation prototypes. In
addition, systems developed using the toolkit should
be robust and their performance (both qualitative
and quantitative) should be predictable. Finally,
basic components should be easily reconfigured or
modified to adapt to new applications or languages.

The toolkit is geared towards multilingual pro-
cessing and offers a well-founded uniform represen-
tation of all processing steps. Based on modern com-
putational linguistic concepts, the aim is to incorpo-
rate best practice in language engineering.

The toolkit uses throughout a standard linguistic
data representation based on charts to represent pro-
cessing results and typed feature structures to rep-
resent linguistic structures. The toolkit is based on
a modular open architecture that uses standardized
interfaces for processing components and a single
simple processing architecture. The architecture en-
ables the addition of external NLP processing com-
ponents and the configuration of new applications

(plug-and-play).

1Multilingual Architecture for Advanced Translation

The system includes an open library of basic pa-
rameterizable NLP components that include a mor-
phological finite-state processor, dictionary compo-
nents, an island chart parser, a generator, and a
transfer component. Complex components such as
the parser or the morphological analyzer are param-
eterized by using high-level declarative languages for
the linguist. The system has been implemented in
C++ and the source code is available. The system is
portable and currently exists in a Unix version and
a Windows version.

2 Representation

The architecture is derived from previous work on
NLP architectures within the Tipster framework
(Zajac et al., 1997; Zajac, 1998; Steven Bird, 1999)
and combines ideas from early modular NLP sys-
tems such as Q-systems (Colmerauer, 1971) and
tree-transducers such as GRADE (Nakamura, 1984)
or ROBRA (Vauquois and Boitet, 1985), which pro-
vide the linguist which very flexible ways of decom-
posing a complex system into small building blocks
which can be developed, tested and executed one
by one. It uses a uniform central data structure
which is shared by all components of the system,
much like in blackboard systems (Boitet and Selig-
man, 1994), and incorporating ideas on chart-based
NLP (Kay, 1973; Kay, 1996; Amtrup, 1995; Amtrup,
1997; Amtrup and Weber, 1998; Amtrup, 1999; Za-
jac et al., 1999). All linguistic structures are en-
coded as Typed Features Structure and the associa-
tion of linguistic structures to the text is maintained
through the use of a Chart. The Chart itself is the
main processing data structure.

2.1 Typed Feature Structures

A declarative, efficient and theoretically well-
founded formalism to describe linguistic objects is an
essential ingredient in any natural language process-
ing system. A uniform data structure that is used by
all components of a system offers several advantages
over the use of multiple description systems. In par-
ticular, it simplifies enormously communication be-
tween NLP modules. All linguistic information in
the system is encoded using Typed Feature Struc-

tures which is a versatile standard for representing
linguistic structures. Typed Feature Structures are
an extension of the traditional notion of linguistic
features (Kay, 1979; Ait-Kaci, 1986; Pollard and
Sag, 1987) and are used in all modern computational
linguistic frameworks (LFG, HPSG, etc.). The TFS
formalism also unifies object-oriented concepts and
theorem proving techniques. TFSs are declarative
with a sound logical semantics; they are associated
to a small set of logical operators and can benefit of
efficient implementations.

In the toolkit, the Typed Feature Structure sys-
tem uses a version where types define their appro-
priate features (and type of their values), see e.g.
Carpenter (1992). To improve the runtime behavior
of the system, no complex constraints are associated
to types as for example in the formalism presented
in Zajac (1992). Feature structures provide a sim-
ple, versatile and uniform way of describing linguis-
tic objects while a type system with appropriateness
ensures the validity of feature descriptions and in-
creases efficiency. Descriptions of words, syntactic
structures, as well as rules for the various compo-
nents can uniformly be coded as feature structures.
The use of types enforces a type discipline for linguis-
tic data: all legal linguistic structures are specified
as a set of type definitions. Therefore, one of the ini-
tial task of the linguist building a system using the
toolkit is to build and inventory of kinds of linguis-
tic structures built during processing and formalize
this inventory as a set of types and type definitions.
The type definitions will then be used (1) by vari-
ous compilers to compile (and type-check) linguistic
resources such as dictionaries or grammar rules, and
(2) at run-time by the various components accessing
and manipulating feature structures to ensure that
all feature structures created in the system are le-
gal (i.e., conform to the type definitions). The type
definitions themselves are compiled and the binary
file is used as a runtime parameter by the TFS C++
library.

The formalism we developed uses a consecutive
memory model for feature structures. Feature struc-
tures are stored as arrays of memory words rather
than having a representation relying on the use of
pointers. This is mainly done to reduce the pro-
cessing needed for input/output operations and also
targets at the distributed employment of a formal-
ism. Similar representations are used for implemen-
tations of formalisms oriented towards abstract ma-
chine operations (Carpenter and Qu, 1995; Wintner
and Francez, 1995). The formalism itself is imple-
mented as a set of C++ classes representing types
and feature structures. Apart from the usual opera-
tions for feature structures (subsumption and unifi-
cation), the system also provides an API to destruc-
tively manipulate feature structures, a property that

has to be used with care, but is extremely useful at
times. The efficiency of the implementation is satis-
factory and currently, we reach 4500 unifications per
second in a translation application.

MainVerb[
exp : '"sufrir",
infl : InflMorph[
number : Singular,
tense : Past,

gender :Masculine,

mood : Participle],
lex : LexMorphl[
subcat : Transitivel],
trans : <:
LSign[exp : "suffer",
lex : LexMorph[
regular : Truel]:>]
2.2 Charts

Charts are a standard for representing sets of em-
bedded linguistic structures (Hockett, 1958; Kay,
1973). They are also a versatile computational data
structure for parsing (text and speech), generation
and transfer (MT). A chart represents partial results
independently of processing strategies and process-
ing peculiarities (Kay, 1973; Sheil, 1976; Haruno et
al., 1993; Kay, 1999). Formally a directed, acyclic,
rooted graph, a chart can be viewed as a general-
ization of a well-formed substring table, capable not
only of representing complete constituents (’inac-
tive edges’), but also storing partial results (’active
edges’) (Sheil, 1976). The basic functions that op-
erate on a chart are very simple. Since chart-based
algorithms are almost always designed to be mono-
tonic?, a chart parser for example uses two main
rules to add edges to the chart:

e The Hypothesize rule takes an edge of the chart
and consults a grammar to propose new promis-
ing hypotheses that should be pursued;

o The Combination rule takes two edges, one of
them active, the other inactive, and tries to
combine them. If this combination succeeds,
a new edge is created and eventually inserted
into the chart.

The main advantage of formulating a natural lan-
guage processing task as a chart-based process is the
division of describing what has to be computed from
how the individual operations have to be carried out.
Kay (1980) calls the specification of a task that does
not specify search and processing strategies an al-
gorithm schema. In practice, one can experiment
with various dimensions of strategies, e.g. top down
vs. bottom up, left-to-right vs. right-to-left vs.

2See Wirén (1992) for a notable exception.

Edge

Chart Structure

Figure 1: A layered chart.

mixed strategies or depth first search vs. breadth
first search.

In our system, charts are layered. A layered chart
is modular and declarative representation of the data
manipulated by multiple processes. The traditional
chart structure, which stores linguistic information
on edges and where nodes represent a time-point in
the input stream, are augmented, following Tipster
ideas on ’annotations’, with tags which define the
kind of content an edge bears, and with spans (pairs
of integers) pointing to a segment of the input stream
covered by the edge. Spans are used for example in
debugging and displaying a chart with edges posi-
tioned relative to the input text they cover. Tags
identify for example edges built by a tokenizer, mor-
phological analyzer, or a syntactic parser, and define
sub-graphs of the whole chart that are input to some
component. The chart is implemented as a C++
class which provides a set of methods to traverse
the graph and manipulate edges and their content.

By attaching tags to edges that define what kind of
content an edge bears, charts can be used to store in-
formation for more than one component. In this lay-
ered chart® each component sees only the fraction of
information that it needs to operate on. Therefore,
the content of the chart gives a precise view of the
current state of operations within the system, and
interfaces between two modules become extremely
easy to implement, as the exchange of information
rests on a common concept, that of a chart edge.

At runtime, the chart is kept in memory and the
various components of an application work on the
same chart. Each component processes only a subset
of layers, typically only two: the input layer and
the output layer. For example, a parser will look at
morphological edges and produce syntactic edges.

3The type of chart we use here is a weaker version of the
layered charts defined in Amtrup and Weber (1998), as we do
not distribute the chart, and we don’t use parallel processing
on the component side.

The chart is actually implemented as a lattice (di-
rected rooted acyclic graph) where nodes can be
time-aligned but where two time-aligned nodes are
not necessarily identical. In the general case, nodes
are partially ordered (with respect to time), and not
completely ordered as in the traditional chart. This
enables, the implementation of processes that create
a sequence of edges covering a single input edge:*

e Normalization of contraction and elision phe-
nomena: English contraction don’t expanded as
do not, or French elision du expanded as de le
for example.

e POS disambiguation: sequences such as
French la porte are ambiguous between de-
terminer/pronoun and noun/verb. A dis-
ambiguation process would eliminate the in-
correct sequences determiner+verb and pro-
noun-+noun, leaving only two valid sequences
determiner+noun and pronoun-+verb, creating
2 additional distinct intermediary nodes in be-
tween the two words la porte.

e Chart generation, where an input edge results
in a sequence of sub-edges covered by the input
edge, but unrelated to other edges in the graph.

3 Architecture
The toolkit is architectured around the following
three notions:
1. A module performs a complete elementary pro-
cessing step.

2. An application is defined as a sequence of mod-
ules.

3. A module is an instance of a component from
the component library.

4This also allows to represent directly the output of a
speech recognizer, a word lattice.

= Lagered Chart Viewer

File Tags
Quit. |
Vertices
60
Edges
1612
Start pos
1t}
Set. |
byk|ry Iz sh mjh py°s Ifzly*s “sdydy y|fth Ist v
63 66 69 73 7 a4 0 96 100 102 7
= =
Edge: |SVNTAX(63736): BEg: @0 U @Rl 1R @ migl @kl @ el gl U
Content: Sentence[X
e aTree : “[[[[Preposition [[[[[Mumeral]Num’ |NunP]Spec [Noun]W’]NPa [[[Noun]N'|NPo|NPINP]BER]X]XE [[[[N
1:per.Rule.Sentence | ', oun [[Adjective]A’ JAP|N’ JNPo]NE Verb]V¥R]s",
2:per.Rule.Sentence head : ¥erbPhrase|
3:per.Rule.Sentence ha?ﬂ E“EEYY[[
h orm : Form
AR LR LD morph : VerbMorphology[
S:per.Rule.Sentence lex : VerbalLexical]
6:per.Rule.Sentence pos : Verh,
7:per.Rule.Sentence presentSten : *y|b"
reqular : True],
B:per.Rule.3entence infl : ¥erhalTnflection|
9:per.Rule.Sentence voice : Undefined,
- clitic : Clitic|[
1I]:per.RuIe.Sentence Function . Null],
11:per.Rule. Sentence tense . Participial,
12:per.Rule. Sentence causative : False,
13:per.Rule.Sentence person : Undefined,
i mood : Undefined,
14:per.Rule.Sentence rumberhgreenent. © Undefined,
15:per.Rule. Sentence participle : Pst,
negation : False]].
orth : Orthography [
exp o 'y|fent]L
key : "y|ftn",
trans : EnoTranslationl /
- = |

Figure 2: Viewing a complex analysis with the Chart Viewer.

3.1 Applications

An application is basically a sequence of modules.
The standard I/O for a module is a layered chart,
which is a global parameter for an application (spe-
cial modules can also deal with files). Another global
parameter for an application is the set of type defini-
tions specifying the set of legal linguistic structures
that can be stored on chart edges.

A working system (an application) can easily be
assembled from a set of components by writing a
resource file, called an application definition file.
This file uses a simple scripting language to de-
scribe instantiations of components, the calling se-
quence of components and various global variables
and parameters. Assembling components together
is done using a composition operator which behaves
much like the Unix pipe. When, in a Unix com-
mand, data between programs is transmitted using
files (stdin/stdout) and programs are combined us-
ing the pipe ’|’ command, in M, the data transmit-
ted between components is a chart, and syntactically
the sequence of component is combined using the ’’
composition operator. In effect, the MEAT system
is a specialized shell for building NLP systems. The
implementation language is C++, but external com-
ponents can be integrated in the system by writing
wrappers (as done for several morphological analyz-

ers previously built or used at CRL).

An application definition file consists of three sec-
tions. (1) variable definitions reduce typing and en-
hance the transparency of application definition files.
(2) Application definitions specify the sequence of
modules that compose a given application. (3) Mod-
ule definitions define named building blocks for ap-
plications and the parameters that they receive dur-
ing a system run.

Variables provide symbolic names for long path
names and make it easy to switch configuration val-
ues that pertain to several modules. Once defined,
the variable name can be used instead of its value
throughout the application definition file. We sup-
port both variables defined in the application def-
inition as well as environment variables. Variable
definitions in an application definition file can refer
to other variables for their values. Typically, this is
used in contexts like this:

$RO0T = /home/user/M
$SYNGRAM = $RO0T/per/SynGram.cbolero
$MORPHGRAM = $RO0T/per/Morph.samba

Aside from variables that are defined inside an
application definition file and environment variables,
we also support command line variables which are
passed to the application.

Applications are defined as sequences of Modules
that have to be executed to achieve a certain task.
Each application is defined by its name together with
the names of modules that have to be processed in
turn:

application lookup =
Tok($ifile=$1) :Morph:Dictionary:ChartSaver

This application would first perform tokenization.
The variable equation in the definition for the tok-
enizer specifies that the variable $ifile is set to the
value of the first command line parameter. Any ref-
erence to that variable for this particular execution
of the Tokenizer module would use the value given
by the user on the command line. This binding is
strictly local to the module for which it is defined.
After Tokenization, a number of other modules are
executed, including the morphological analyzer that
we described earlier.

Currently, we restrict the model of operation to
a sequence of modules without alternatives. We do
not support graphs of modules as a model for an ap-
plication. Thus, we do not support multi-threading
or otherwise concurrently executed modules. Appli-
cations can be executed using a shell command or
through a graphical interface (see below).

3.2 Modules

Conceptually, a module performs a single linguis-
tic task on the data currently present in the chart.
Thus, a module would take some edges of the chart
as input data and provide new edges as output. In
some cases, however, a module may be executed for
its side effects. For instance, an input component
might read a file and produce edges.

A sample module definition (performing morpho-
logical analysis of Persian text) looks like this:

module MorphAnalyzer {
class = MorphAnalyzer
grammar = $RES/morph.samba
rule = Morphology
type = chart
sourceTag = TOKEN
targetTag = MATOKEN

X

A module is an instance of a component from the
MEAT component library (a set of C++ classes).
Every module definition must specify at least one pa-
rameter, the name of the component (C++ class) of
which the module is an instance (parameter class).
By parameterizing the class representing the module
within the main program, the same component can
be used several times within one application. For
instance, there could be several parsers within one
application.

Additional parameters can be provided according
to the specifications of the module in question. In
the example above, the morphological grammar and
initial rule need to be specified, as well as the tags
that define the input and output sub-graphs of the
chart.

Parameters can also be defined as global and used
outside the scope of a module definition. In this
case, they are global and inherited by all modules
of an application. However, the local definition of
a parameter overrides the global behavior. Thus,
if one would define verbose = false on the global
level, and define it as being true for only a subset of
the components, then only those components would
issue logging messages.

In the current implementation, all modules are
linked in the main executable at compile time and
the model does not support distributed processing.
Although we have experimented with distributed ar-
chitectures (Zajac et al., 1997) in the past, the over-
head can be significant and the architecture must
be carefully designed to support the needs for dis-
tributed components while minimizing overhead. In
particular, a distributed architecture can be de-
signed to support either collaborative research (with
remote execution of components) or parallel process-
ing on the same text. The requirements are fairly
different and could be difficult to reconciliate within
a single model.

3.3 Library

The toolkit includes libraries of approximately 30
processing components. Most of these components
perform simple tasks and are parameterized directly
in the application file. Some more complex compo-
nent have external parameters such as a unification-
based grammar or a dictionary file. The core library
include components that have a general use:

o Utilities: Unicode tokenizer; Store/Load charts
(for debugging)

e Dictionary: compiler; indexer; lookup (single
words, compounds).

e Morphology: wrappers; parameterized ana-

lyzer/generator.
e Parsing: modular bi-directional island parser.
e Generation: linearizer.

e Transfer: lexical transfer; morphological feature
transfer.

Each component is a C++ class that implements
a pre-defined interface. The core library can easily
be extended by creating a new class in the user li-
brary and linking to the other libraries at compile
time. User-defined components can be used in ap-
plications as if there were native components. At

runtime, the MEAT interpreter instantiates modules
defined in the application file by creating an instance
of the corresponding C++ class with the appropri-
ate parameters as specified in the module definition
(in particular, an obligatory parameter is the set of
types definitions defining legal feature structures).
The module is executed by calling the run() method
(which is implemented as part of the component in-
terface).

3.4 External Components

It is possible to integrate external software modules
via special components that act as wrappers. For ex-
ample, the current implementation includes a mor-
phological wrapper component that reads a file of
tokens in a standard format to build a chart which is
then used for further processing. This wrapper has
been used to integrate several morphological ana-
lyzers (Prolog for a Spanish morphological analyzer,
Lisp for a Russian one, Java for a Serbo-Croatian,
and C for a Japanese and Korean).

We are currently working on extending this mech-
anism to provide a more general wrapping mecha-
nism that can work on any kind of input chart, and
not only a linear sequence of (possibly ambiguous)
tokens. Note that it is also relatively easy to develop
C++ components that implement wrappers commu-
nicating with some software module with its API if
available.

4 Linguistic Knowledge

All linguistic knowledge used by the components of
the core library (morphological analyzer and gener-
ator, parser, generator, dictionary lookup, transfer)
is defined in external resource files that parameterize
the runtime components. For example, a unification
grammar used by the parser component is stored
in a text file that contains the set of rules for that
grammar. During the initialization phase at run-
time, an instance of the parser component reads the
file containing the rules that will drive the parsing
algorithm. Since both input and output of the parser
are charts, it is possible to to create several parser
instances with different grammars and apply them
in sequence on a chart (Zajac and Amtrup, 2000).

A rule is specified in the feature structure nota-
tion and each syntactic element follows the general
feature structure syntax. Although this makes it
sometimes a little bit awkward, it allows to compile
rules as feature structures which are themselves com-
piled as compact arrays of integers® and enable very
fast access of the rule at runtime (see for example
(Wintner, 1997)).

5The unification algorithm operates on this data structure.
Arrays of integers can also be written or loaded from a file
very efficiently.

NounBarNoEzafe = per.Rule[
lhs: per.NounBar[
head: #head,
boundary: per.NPtruel,

rhs: <:
#head=per . NounOrNounCompound [
infl:
[ezafe: per.EzFalse,
indefEncl: False,
clitic.function: per.Nulll]
1>
island: #head
1;

Most of the language resource files are compiled
before runtime and components load compact binary
files instead of text source files. The toolkit provides
compilers for the various formalisms and for dictio-
naries; dictionaries are compiled as one data file and
one or more index files (tries). Since all resources
files use typed feature structures as the basic repre-
sentation formalism, all resource files include a set
of type definitions which is used by the compilers
to create binary instances of feature structures (lin-
ear arrays of integers), and by runtime components
to create in memory instances (using the same array
layout) or to print feature structure in a text format.
The type definitions themselves are stored in a sep-
arate text file which must be itself compiled before
compilation of any other resource file. The type def-
inition file specifies the set of types used in a given
application (type definitions are global to an appli-
cation and are an obligory parameter to each of the
components). A type definition defines super-types
or sub-types (inheritance hierarchy), and the set of
appropriate features for that type (and the types of
their values), not but complex type constraints as in
(Zajac, 1992) for example.

5 Development Environment

The development environment consist currently of
two tools: the Chart Viewer and the application
Runner. The chart built by some application can
be saved in a file at any point during processing for
further inspection. The chart can then be displayed
using the Chart Viewer which allows the selective
display of chart layers (by tags), and the selective
display of feature structures.

The MEAT Application Runner can be run from
the command line by passing to the MEAT inter-
preter the application file, the name of the applica-
tion to be executed and the application parameters:

% meat -v app lookup test/docl.txt

There is also a graphical tool that allows to exe-
cute applications defined in an application file using
a graphical interface. This tool basically provides a

= Meat e
File Language
Recompile Source: homefjamtrupimemssrc/CRLAang turf..f._flangfturicorpusiftx1-01.txt
_ ABD Irak'y hombalarsa Tirkiye’ve maliyeti en az hirincisi kad x
Everything | ar afiyr olacak: Kriz ekonomiyi wurdu J
Tango module | £
I
Dictionary | H
Translation
Grammars | If USA bombs Irag to Turkey cost at least as fs first will be |[[§
heawy: Crisis struck economy J
Run (Turkish} 7
Translate |
= I
Viewer I System messages
SynBen: Size=ThBE, resident=360K, total=7eB, CPU=0 0&0s
Sentences Select Execubing Module ChartSaver
ChartSawer: Size=8K, resident=8K, total=8, CPU=0.010s
E Executing Module Surfeen
surfaceGenerator: Starking.
surfaceGenerator: Finished.]
surfGen: Size=0K, resident=0K, total=0, CPU=0 000s
Total: Size=52M, resident=48M, botal=89800, CPU=2 380s {cumul |
= I

Figure 3: Executing applications from the Runner.

graphical view of the application file and allows ex-
ecution of applications. (NB: this tool is still under
development).

6 Conclusion

This toolkit has been used to develop a Persian-
English MT system; to port previously devel-
oped glossary-based MT systems and to develop
a Turkish-English MT system; and as the Ma-
chine Translation infrastructure of an elicitation-
based MT system. The architecture and the
core library is also used in new projects on
multilingual information extraction and multi-
lingual question-answering systems. Documenta-
tion, sources and binaries (Unix and Windows) avail-
able at http://crl.nmsu.edu/meat.

The toolkit is still under development as new com-
ponents are added to the core library and previous
components are enhanced or corrected. In the near
future, we plan to enhance the library with new
components for machine translation, including bet-
ter transfer and generation components.

Acknowledgments

The MEAT system has been implemented by Jan
Amtrup and Mike Freider with contributions from
many other people at CRL.

This research has been funded in part by DoD,
Maryland Procurement Office, MDA904-96-C-1040.

References

Hassan Ait-Kaci. 1986. An Algebraic Semantics Ap-
proach to the Effective Resolution of Type Equa-
tions. Theoretical Computer Science, 54:293-351.

Jan W. Amtrup and Volker Weber. 1998. Time
Mapping with Hypergraphs. In Proc. of the 17 t"
COLING, Montreal, Canada.

Jan W. Amtrup. 1995. Chart-based Incremental
Transfer in Machine Translation. In Proceedings

of the Sixth International Conference on Theoret-
ical and Methodological Issues in Machine Trans-
lation, TMI ’95, pages 188-195, Leuven, Belgium,
July.

Jan W. Amtrup. 1997. Layered Charts for Speech
Translation. In Proceedings of the Seventh Inter-
national Conference on Theoretical and Method-
ological Issues in Machine Translation, TMI 97,
Santa Fe, NM, July.

Jan W. Amtrup. 1999. Incremental Speech Transla-
tion. Number 1735 in Lecture Notes in Artificial
Intelligence. Springer Verlag, Berlin, Heidelberg,
New York.

Christian Boitet and Mark Seligman. 1994. The
“Whiteboard” Architecture: A Way to Integrate
Heterogeneous Components of NLP systems. In
COLING-94: The 15th International Conference
on Computational Linguistics, Kyoto, Japan.

Bob Carpenter and Yan Qu. 1995. An Abstract
Machine for Attribute-Value Logics. In Proceed-
ings of the 4" International Workshop on Pars-
ing Technologies (IWPT95), pages 59-70, Prague.
Charles University.

Bob Carpenter. 1992. The Logic of Typed Feature
Structures. Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge.

Alain Colmerauer. 1971. Les systemes-q: un for-
malisme pour analyser et synthetiser des phrases
sur ordinateur. Technical report, Groupe TAUM,
Universite de Montreal.

Masahiko Haruno, Yasuharu Den, Yuji Mastumoto,
and Makato Nagao. 1993. Bidirectional chart gen-
eration of natural language texts. In Proc. of
AAAI-93, pages 350-356.

C. F. Hockett. 1958. A course in modern linguistics.
Macmillan, New-York.

Martin Kay. 1973. The MIND System. In
R. Rustin, editor, Natural Language Processing,
pages 155-188. Algorithmic Press, New York.

Martin Kay. 1979. Functional grammar. In
C. Chiarelloet et al., editor, Proc. 5th Annual
Meeting of the Berekeley Linguistic Society, pages
142-158, Berkeley, CA.

Martin Kay. 1980. Algorithmic Schemata and Data
Structures in Syntactic Processing. Technical Re-
port CSL-80-12, Xerox Palo Alto Research Center,
Palo Alto, CA.

Martin Kay. 1996. Chart generation. In Proc. of
the 34 " ACL, pages 200-204, Santa Cruz, CA,
June.

Martin Kay. 1999. Chart Translation. In Machine
Translation Summit VII, pages 9-14, Singapore.

Makoto Nagao Nakamura, J. Juni-Ichi Tsujii. 1984.
Grammar Writing System (GRADE) of Mu-
Machine Translation Projects and its Character-
istics. In Proc. of the 10t COLING, Stanford,
CA.

Carl Pollard and Ivan A. Sag. 1987. Information-
based Syntar and Semantics. Vol 1: Fundamen-
tals. CSLI Lecture Notes 13, Stanford, CA.

B. A. Sheil. 1976. Observations on Context-Free
Parsing. Statistical Methods in Linguistics, 6:71—
109.

Mark Liberman Steven Bird. 1999. A Formal
Framework for Linguistic Annotation. Technical
Report MS-CIS-99-01, Dept of Computer and In-
formation Science, University of Pennsylvania.

Bernard Vauquois and Christian Boitet. 1985. Au-
tomated Translation at Grenoble University .
Computational Linguistics, 11(1):28-36.

Shuly Wintner and Nissim Francez. 1995. Abstract
Machine for Typed Feature Structures. In Pro-
ceedings of the 5th Workshop on Natural Language
Understanding and Logic Programming, Lisbon,
Spain.

Shuly Wintner. 1997. An Abstract Machine for Uni-
fication Grammars. Ph.D. thesis, Technion - Is-
rael Institute of Technology, Haifa, Israel, Jan-
uary.

Mats Wirén. 1992. Studies in Incremental Natural-
Language Analysis. Ph.D. thesis, Linkoping Uni-
versity, LinkOping, Sweden.

Rémi Zajac and Jan W. Amtrup. 2000. Modular
Unification-Based Parsers. In Proc. Sizth Interna-
tional Workshop on Parsing Technologies, trento,
Italy, February.

Rémi Zajac, Marc Casper, and Nigel Sharples. 1997.
An Open Distributed Architecture for Reuse and
Integration of Heterogeneous NLP Components.
In Proc. of the 5 " Conference on Applied Natural
Language Processing, Washington, D.C.

Rémi Zajac, Malek Boualem, and Jan W. Amtrup.
1999. Specification and Implementation of In-
put Methods Using Finite-State Transducers.
In Fourteenth International Unicode Conference,
Boston, MA, March.

Rémi Zajac. 1992. Inheritance and Constraint-
Based Grammar Formalisms. Computational Lin-
guistics, 18(2):159-182.

Rémi Zajac. 1998. Annotation Management for
Large-Scale NLP. In ESSLLI-98 Workshop on
Recent Advances in Corpus Annotation, Saar-
bruken, Germany.

Finite State Tools for Natural Language Processing

Jan Daciuk
Alfa Informatica, Rijksuniversiteit Groningen
Oude Kijk in 't Jatstraat 26, Postbus 716
9700 AS Groningen, the Netherlands
e-mail: j.daciuk@let.rug.nl

Abstract

We describe a set of tools using deterministic,
acyclic, finite-state automata for natural language
processing applications. The core of the tool set
consists of two programs constructing finite-state au-
tomata (using two different, but related algorithms).
Other programs from the set interpret the contents
of those automata. Preprocessing scripts and user
interfaces complete the set. The tools are available
for research purposes in source form in the Internet.

1 Introduction

Finite-state automata (both acceptors and transduc-
ers) play increasingly important role in natural lan-
guage processing. Their main advantages are their
small size as compared with the data they hold (see
e.g. (Kowaltowski et al., 1993)), and the very fast
lookup of strings in an automaton — proportional to
the length of the string.

Deterministic, acyclic, finite-state automata
(DAFSA) are used in a variety of applications, in-
cluding DNA sequencing, computer virus detection,
and VLSA design. In natural language process-
ing, they are used for tasks like spelling correction,
restoration of diacritics, morphological analysis, per-
fect hashing, and acquisition of morphological de-
scriptions for morphological dictionaries. DAFSA
hold a finite set of strings of finite length, so they
can be perceived as a kind of dictionaries. Depend-
ing on the application, the contents of an automaton
may differ considerably, and so do programs that in-
terpret it. However, the basic data structure remains
the same. And so do the programs that produce au-
tomata. It is relatively easy to import data from
other systems, as the basic unit in the system is just
a string.

2 System Architecture

The architecture of the system is shown on figure 1.
The key data structure in the system is a string of
characters. The core of the system consists of two
programs for construction of DAFSA. They both
produce the same results, but they have different
memory requirements and run at different speeds.

The algorithms are taken from (Daciuk et al., 1998)
(newer version has just appeared in (Daciuk et al.,
2000)). The input data for both of them is a set
of strings. It may be prepared using a variety of
preprocessing scripts. The output of the programs
is a DAFSA interpreted by other application pro-
grams. The first construction program — fsa build
— constructs an automaton from a lexicographically
sorted list of strings. It is very fast, and it needs very
little memory (see (Daciuk et al., 2000)). The other
construction program — fsa_ubuild — constructs an
automaton from a set of strings in arbitrary order.
Its speed is much lower, and it may need much
more memory (depending on the order of strings).
It can be used in situations where we are short of
disk space for sorting, and we have much core mem-
ory. Both programs accept various run-time options.
They can also use two modules: one for adding in-
formation necessary for perfect hashing, the other
one for producing guessing automata. The modules
are switched on by run-time options.

Different kinds of applications require different in-
formation to be stored in automata. The following
sections describe that in detail.

The application programs use a command line in-
terface, but an emacs interface for GNU emacs 19
is also available for tasks like spelling correction or
restoration of diacritics. Recently, a Tcl/Tk inter-
face has been added for a task of acquisition of de-
scriptions for a morphological dictionary.

The automata are represented as vectors of tran-
sitions. States are represented only implicitly. Var-
ious compression methods are provided as compile
time options. Their influence on the speed of in-
terpretation is small. However, some of them may
significantly lengthen the construction time. By us-
ing combinations of compile options one can obtain
automata that differ in size by about 40%. It is also
possible to use language-specific features, like coding
of prefixes and infixes, to get more compression.

A software package containing the system consists
of 9 programs, 3 shell scripts, 11 awk scripts, 12 perl
scripts, one emacs lisp module, and one Tcl script.
The documentation consists of 11 man pages, on-

Preprocessing Automata construction

scripts

Numbering

Pruning

Spelling correction Emacs

interface

Restoration
= of diacritics ||

Perfect hashing

Morphological
= analysis

GUI

Morphological
L acquisition

Figure 1: System architecture

line help file for a Tcl/Tk interface for morphological
data acquisition, and 3 additional text files.

3 Spelling Correction and
Restoration of Diacritics

Crude spelling correction requires only a word list.
Such a list can be obtained from various sources.
The system does not provide any scripts for that, as
the sources may differ widely, and so do the methods
of getting the words. However, a conversion from
mmorph format to a 3-column format used by tools
from the University of Aix-en-Provence is provided.
The first column in that format is the inflected word
form. Mmorph (see (Petitpierre and Russell, 1995))
is Multext morphology tool from ISSCO, Geneva.

The spelling correction tool uses an algorithm by
Kemal Oflazer ((Oflazer and Giizey, 1994), (Oflazer,
1996)). Restoration of diacritics is implemented as a
simple search with relaxed comparison. An emacs 19
interface can be used to correct words from within
that editor. The interface is based on ispell.el and
offers similar options. It is relatively easy to de-
velop interface for other programs, as the program
reads standard input and produces results on stan-
dard output.

4 Perfect Hashing

Perfect hashing (see (Lucchiesi and Kowaltowski,
1993), (Roche, 1995)), like spelling correction, also
requires a list of words. However, the words in the
automaton must be numbered. This is done by a
special module in the programs that construct au-
tomata. The module stores additional information

in the automaton structure. For each state, the num-
ber of different strings (including the empty string
€) recognized by a part of the automaton beginning
in that state is stored. The order of words in the au-
tomaton (and thus the mapping between the words
and their numbers) depends on various factors, e.g.
various compression methods in use. Therefore, a
program that lists the words in the dictionary in the
order they are stored is provided.

The program that converts numbers to words and
vice versa is a stand-alone tool, not a library. How-
ever, since it reads the standard input and produces
results on the standard output, it can be used by
other programs.

5 Morphological Analysis

Two kinds of morphological analysis are possible us-
ing the tool set. The first one is lexicon-based. The
outcome is the canonical form, or the categories (fea-
tures), or both of them. The strings stored in the
automaton consist of two parts. One is the inflected
word form to be analyzed, the other - the outcome
of the analysis. They are separated with a spe-
cial character — an annotation separator. This can
be seen as an implementation of a p-subsequential
transducer. The outcome of the analysis must be
coded (see e.g. (Kowaltowski et al., 1998)), because
otherwise the automaton would grow to enormous
size. Basically, the coding is used to avoid storing
the stem more than once in the same string. To
help in constructing the automaton, several scripts
are provided. There is one script for languages that
have no flectional prefixes or infixes, a different one

for those that have only flectional prefixes and no in-
fixes, and another one for languages that have both
inflectional prefixes and infixes. The user must know
which script to choose. It is also up to the user to
choose appropriate run-time options of fsa morph —
the program that performs morphological analysis.
However, the user does not need to separate the pre-
fixes or infixes from the stems in the entries. It is
done automatically by the scripts.

The morphological analysis program fsa morph
searches for the inflected form in the automaton,
and then decodes and outputs the annotation, i.e.
the outcome of the analysis. In the basic case, the
canonical form is coded so that one letter says how
many characters to strip from the end of the inflected
form, and it is followed by the ending of the canon-
ical form. In case of flectional prefixes, the code is
supplemented by an additional letter that says how
many characters are to be deleted from the begin-
ning of the inflected form before turning it into the
canonical form. The version that handles infixes as
well has one more letter that says how far from the
beginning of the word the characters to be deleted
are.

It is also possible to analyze words not present in
the dictionary. This is done by analyzing the end-
ings, and sometimes the prefixes and infixes (e.g. in
case of German). An automaton for approximate
morphological analysis (a guessing automaton) as-
sociates endings, and sometimes prefixes and infixes
as well, with appropriate outcomes of the analysis.
But first, those associations need to be created. The
system contains several scripts to aid in that process.
They invert the inflected form, look for endings, pre-
fixes and infixes, and code them appropriately. The
association between an ending and the correspond-
ing analysis is created by inverting the inflected form
and appending the analysis as an annotation (similar
to the lexicon-based analysis). If prefixes and infixes
are present, they are moved from the inflected form
to annotations. The coding of prefixes and infixes is
very similar to that used by fsamorph. However,
the prefixes, and infixes when needed, must be speci-
fied in the string, so that not only the beginning, but
also the end of the analyzed word can be compared
to the strings stored in a guessing automaton. The
resulting strings are data for a guessing automaton.

Automata are created in the usual way, and then
a specialized module in automata creation programs
prunes the structure. If from a given state all paths
lead to the same set of annotations, then all states
between that state and the annotations can be re-
moved with all their transitions. This significantly
reduces the size of the automaton. Further heuris-
tics can be used to improve either recall or preci-
sion of the predictions made with such tool. During
the analysis, the analyzed word is inverted, and the

consecutive letters are looked up in the automaton.
When no more letters can be recognized, all annota-
tions reachable from the state where the recognition
process stopped are decoded as the result of the anal-
ysis. The program that performs the approximative
morphological analysis — fsa guess — has options
that turn on recognition of prefixes and infixes.

6 Acquisition of Data for
Morphological Dictionary

Morphological dictionaries are usually constructed
using morphology tools, e.g. two-level morphology.
In many advanced tools, a lexeme description is a
line containing the base form, categories (or fea-
tures) including the flectional paradigm, and often
the canonical form. It is possible to associate end-
ings, prefixes and infixes with that sort of informa-
tion in a similar manner to that used in approxi-
mate morphological analysis. So the same program
— fsa_guess — that performs the approximate mor-
phological analysis is also used (with an appropriate
option) for guessing the morphological description of
an inflected form. A user runs the program on a list
of new words, and the results can be processed using
a graphical user interface, where the user can select
descriptions, compare them, and see what they pro-
duce.

This part of the system is still under development.
The version available in the Internet does not con-
tain the Tcl/Tk interface, and it has no scripts to
help building data for guessing automata for mor-
phological data acquisition. Although the system
works well for French, efforts are under way to make
it work for German. The main problem is the use
of archiphonemes. If not treated properly, they can
inflate the automaton, and in the process some gen-
eralizations might be lost as well.

7 Auxiliary Programs

In the system, there are two additional programs
that perform auxiliary tasks. The first one —
fsa prefix — was briefly mention is section 4,
page 2. It can be used for listing the contents of a
dictionary (an automaton). However, this is a spe-
cific instance of a more general task, i.e. listing all
words (or strings) in the automaton that have a spec-
ified prefix. In order to get the whole contents of the
automaton one simply specifies a null string.

Another program — fsa_visual — produces data
for a graph visualization software vcg. It can be
used for didactic purposes, or for debugging on tiny
data samples. Larger samples make the graphs too
large to be readable.

8 Conclusions

We have presented a set of tools based on a simple
observation, that DAFSA can be useful in variety of

natural language applications. The main data type
is an automaton representing a set of strings. For
the automata construction programs, the strings are
just sequences of symbols or characters. This makes
it easy to use data from other tools. The meaning
is attributed to the strings by application programs
that interpret them.

The tools are available in the Internet and can
freely be used for research purposes. They can han-
dle large data, e.g. they have been used to build a
morphological dictionary of German with 3,977,448
inflected forms. It took 20 minutes on a pentium
350MHz computer. They are also very fast. For ex-
ample, morphological analysis using the same Ger-
man dictionary is 7.5 times faster than that done
by mmorph. Depending on compile options, an au-
tomaton holding the German morphological dictio-
nary can take approximately 0.5 MB.

A page describing the software package, with
pointers to downloadable software and relevant in-
formation accessible through the Internet is available
at:
http://www.pg.gda.pl/~jandac/fsa.html
The package contains source code in C++, man
pages, and a few accompanying documentation files
(README, CHANGES, and INSTALL). HTML
versions of man pages are available either directly
from the same page, or as a tar archive. Another
(rather dated) software package using Mealy’s au-
tomata (transducers) is also available from the same
address. That package is no longer developed, as al-
most all its features are also available in the package
described in this paper.

References

Jan Daciuk, Richard E. Watson, and Bruce W. Wat-
son. 1998. Incremental construction of acyclic
finite-state automata and transducers. In Finite
State Methods in Natural Language Processing,
Bilkent University, Ankara, Turkey, June — July.

Jan Daciuk, Stoyan Mihov, Bruce Watson, and
Richard Watson. 2000. Incremental construction
of minimal acyclic finite state automata. Compu-
tational Linguistics, 26(1):3-16, April.

Tomasz Kowaltowski, Claudio L. Lucchesi, and
Jorge Stolfi. 1993. Minimization of binary au-
tomata. In First South American String Process-
ing Workshop, Belo Horizonte, Brasil.

Tomasz Kowaltowski, Claudio L. Lucchesi, and
Jorge Stolfi. 1998. Finite automata and efficient
lexicon implementation. Technical Report 1C-98-
02, January.

Claudio Lucchiesi and Tomasz Kowaltowski. 1993.
Applications of finite automata representing large
vocabularies. Software Practice and Experience,
23(1):15-30, Jan.

Kemal Oflazer and Cemalettin Gilizey. 1994.

Spelling correction in agglutinative languages. In
4th Conference on Applied Natural Language Pro-
cessing, pages 194-195, Stuttgart, Germany, Oc-
tober.

Kemal Oflazer. 1996. Error-tolerant finite state
recognition with applications to morphological
analysis and spelling correction. Computational
Linguistics, 22(1):73-89, March.

Dominique Petitpierre and Graham Russell, 1995.
MMORPH - The Multext Morphology Program.
ISSCO, 54 route des Acacias, CH-1227, Carouge,
Switzerland, version 2.3 edition, October.

Emmanuel Roche. 1995. Finite-state tools for lan-
guage processing. In ACL’95. Association for
Computational Linguistics. Tutorial.

The XML Framework and ItsImplicationsfor the Development
of Natural L anguage Processing Tools

Nancy IDE
Department of Computer Science
Vassar College
Poughkeepsie, New Y ork, USA 12604-0520
ide@cs.vassar.edu

Abstract

The eXtensible Markup Language (XML)
(Bray, et a., 1998) is the emerging standard
for data representation and exchange on the
World Wide Web. The XML Framework
includes very powerful mechanisms for
accessing and manipulating XML
documents that are likely to significantly
impact the development of tools for
processing natural language and annotated
corpora.

I ntroduction

All language processing applications, including
machine translation, information retrieval and
extraction, text summarization, user/machine
dialogue systems, and speech understanding and
synthesis, manipulate language data represented
in some electronic format. Some applications
(e.g., machine translation, summarization,
speech understanding) process streams of data
more or less sequentially, while others (e.g.,
retrieval and extraction) rely more heavily on
search and access over large bodies of data. In
either case, processing exploits the markup in
the data to assist in the analysis. For example, in
textual data, markup for logical structure (e.g.,
section, paragraph, and sentence boundaries,
etc.) provides essential information for any
language processing task. In addition, markup
identifying terms, foreign words, names, dates,
etc. can be exploited for tasks such as machine

translation and information retrieval, while
identification of titles, footnotes, and other
extra-textual matter can be used to limit the data
to be searched. Because the data that will be
analyzed by language processing applications in
the future will consist largely of documents
delivered over the World Wide Web, the markup
format these applications process will be XML.
The language processing community also
creates text and speech data for training
statistical language processing algorithms. The
cost of creating annotated data can be very high,
both in direct financial terms and in terms of the
cost of allocating skilled labor. So funders,
whether public or commercial, have come to
expect that the cost of resource creation will be
amortized over multiple research and
development efforts. Such reusability demands
the use of standardized, non-proprietary
encoding formats for data interchange and to
enable easy human-readable display and access
to data. For the applications we are now
beginning to develop, these formats must
support multi-lingual, multi-media, and multi-
modal data, as well as linkage among them.

As an international standard, the eXtensible
Markup Language (XML) (Bray, et al., 1998) is
the obvious basis for a standardized encoding
format, and is or will be used by severa
language processing projects (e.g., LT XMLZ,
ATLAS?, XCES?, ANCH. At its most basic level

1 McKelvie, Brew, and Thompson, 1998.
2Bird, et al., 2000.

XML is a document markup language directly
derived from SGML (i.e., allowing tagged text
(elements), element nesting, and element
references). However, various features and
extensions of XML make it a far more powerful
tool for data representation and access than
SGML, including means for complex linkage
within and between documents, easy data
transformations using the XML Transformation
Language (XSLT) (Clark, 1999), constraint and
validation of markup using XML Schemas
(Thompson, et al., 2000; Biron & Malhotra,
2000), and display, manipulation, and search of
data via the World Wide Web.

This paper provides an overview of the most
important XML mechanisms and suggests how
they may impact the design of language
processing tools. The focus here is on the use of
XML for the creation and annotation of text and
speech data; however, we also consider some of
the capabilities for search and retrieval from
XML-encoded documents.

1 XML Links

The recommended practice in encoding
annotated corpora is to maintain all or most
annotations in separate documents, each of
which references appropriate locations in the
document containing the original data (Ide &
Brew, 2000). This strategy yields, in essence, a
finely linked hypertext format where the links
specify a semantic role rather than navigational
options. That is, links signify the location(s)
where markup contained in a given annotation
document would appear in the document to
which it is linked. As such, annotation
information comprises remote or "stand-off"
markup that is virtually added to the document
to which it is linked. In principle, the original
data may contain no markup at all (or, more
likely, markup for gross logical structure only);
all markup can be retained in separate

3 1de, Bonhomme, and Romary, 2000.
4Macleod, Ide, and Grishman, 2000.

documents with links into the original based on

offsets.

The standoff scheme, then, requires addressing

elements within the original document, as well

as characters and chains of characters within
those elements. It aso requires that elements and
characters can be addressed both within the

same document and other documents. XML

provides the following linking mechanisms,

which satisfy these requirements:

e XLink (DeRose, et a., 2000), a mechanism
for specifying alink (uni-directional or more
complex linking structures) between two or
more resources or portions of resources,

o the XML Path Language (XPath) (Clark &
DeRose, 1999), an extended addressing
syntax that defines a concise notation for
element localization in the document tree (as
defined by the nesting of elements in the
document itself), and allows addressing
fragments within a particular element by
providing predicates for manipulating chains
of characters;

o XPointer (DeRose, Daniel, & Maler, 1999),
which extends XPath syntax to allow
addressing points and ranges as well as
nodes, locating information by string
matching, and use of addressing expressions
in URI-references as fragment identifiers.

For example, the Xpath expression

/div/p(2]1/s(3] specifies the third < s >

(sentence) element within the second <p >

(paragraph) element within each <daivs (text

division) element; /descendant : :p specifies all

<p> €lements in the document. In addition,

Xpath allows addressing text fragments within a

particular element by providing predicates for

manipulating chains of characters. The
expression

substring (/p/s[2]/text(),6)
selects the string "one would expect that the
whole sky would be as bright as the sun, even at

night." from the following text:

<p><s 1d="d3pl3s4">The difficulty
is that in an infinite static
universe nearly every 1line of
sight would end on the surface of

a star.</s><s 1d="d3pl3s5">Thus
one would expect that the whole
sky would be as bright as the sun,
even at night.</s></p>

The Xlink mechanism can be used to link
corresponding segments of two or more primary
documents (as for alignment of text or speech),
to link annotation documents to a base document
containing the primary data, or, more generaly,
to link resources in any medium (audio, video,
etc.). This alows for linking speech, external
images, video, applets, form-processing
programs, style sheets, etc.

In addition to specifying the target location for
information in the same or external documents,
XLink attributes can be used to specify the role
of thelink, i.e., how the link should be activated
(by hand, or automatically by the browser) and
what to do with the target fragment (replace it or
insert it into the source document).

2 XML transformations

The Extensible Style Language (XSL) is a part
of the XML framework, consisting of two parts:
the XSL formatting or "style sheet" language,
and a powerful tree-traversal language, XSLT
(Clark, 1999), that can be used to convert any
XML document or documents into another
document in any form (e.g., XML, well-formed
HTML, plain text, etc.) by selecting,
rearranging, and/or adding information to it. The
transformed documents may or may not be
intended for rendering data on a computer
screen, but may be used to move data from one
computer system or program to another (e.g., to
transduce between encoding and/or annotation
formats, etc.).

XSLT supports the following kinds of document

mani pulation:

o selection of elements or portions of element
content using the XPath syntax, from one or
more XML documents;

e rearrangement or transformation of extracted
information (including not only text content
but aso element names, etc.) in the target
document;

e addition of information in the target
document.

A suite of documents representing a base
document (or documents) and its annotations
can be manipulated to serve any application that
relies on part or al of its contents. Thus, XSLT
is likely to have the most impact on the design
of language processing tools.

Several projects have developed and
implemented language processing tools and tool
architectures intended to facilitate flexibility and
reusability: for example, MULTEXT (lde &
Véronis, 1994), LT XML (McKelvie, Brew, &
Thompson, 1998), GATE (Cunningham, Wilks,
& Gaiauskas, 1996), ATLAS (Bird, et al., 2000).
While each of these systemsis dlightly different,
they all implement a modular, "plug-and-play”
tool architecture based on a three-layered
design: one for physical storage representation;
one to tranglate to and from the physical storage
representation to one or more internal formats,
and an API to enable application development.
In addition, all assume SGML or (in the more
recently developed systems) XML as the
physical representation, together with the use of
the stand-off strategy for annotation. The SGML
or XML documents containing the data and its
annotations are typically transduced into some
internal format used by the tools; at any stage in
the processing, the results may be transduced
back into SGML or XML As a powerful
language for selecting from one or several
documents and transducing the data into other
formats, XSLT provides the means to enable the
import and export of datafrom and to XML.

Of course, XSLT can be used with the
documents resulting from processing by tools to
deliver the data in any desired format. Although
space prevents a full description of XSLT,
which is relatively complex, a short example can
provide some idea of the possibilities. Using as
input a document containing morpho-syntactic
information (e.g., a document containing the
fragment in Figure 15, the XSLT document in

5 Note that this document, encoded according to the

Figure 2 can be used to create an HTML
document that displays atext in "word | lemma |
pos' form. When the resulting HTML document
is loaded into a browser, it will display the

following:

It|it|PPER3 was|be|PAST3 a|a|DINT
bright |bright |ADJE cold|cold|ADJE
day|day | NN...

<?xml version="1.0">
<chunk type="BODY" lang="en"
xml :base=
"http://www.cs.vassar.edu/~ME/Oen.xcesDoc#" >
<par xlink:href="xptr (substring(//pl[1]">
<s xlink:href="xptr (substring(//p/s[1]">
<tok type="WORD"
xlink:href=
"xptr (substring(//p/s[1]/text(),1,2">
<orth>It</orth>
<disamb>
<base>it</base>
<msd>Pp3ns</msd>
<ctag>PPER3</ctag></lex>
<lex>
<base>it</base>
<msd>Pp3ns</msd>
<ctag>PPER3</ctag></lex></tok>
<tok type="WORD"
xlink:href=
"xptr (substring (//p/s[1]/text(),4,2">
<orth>was</orth>
<disamb>
<base>be</base>
<msd>Vmis3s</msd>
<ctag>PAST3</ctag></lex>
<lex>
<base>be</base>
<msd>Vaisls</msd>
<ctag>AUX1l</ctag></lex>
<lex>
<base>be</base>
<msd>Vais3s</msd>
<ctag>AUX3</ctag></lex>
<lex>
<base>be</base>
<msd>Vmisls</msd>
<ctag>PAST1l</ctag></lex>
<lex>
<base>be</base>
<msd>Vmis3s</msd>
<ctag>PAST3</ctag></lex></toks>..

complex examples). Similarly, XSLT can be
used to produce concordances, paired sentences
or words from a parallel text, or even a web
document that displays the orthographic
representation of a text and provides the audio
rendition when the word is clicked on, etc.
XSLT can also be used to implement an
inheritance mechanism over the document treef;
for example, Ide, Kilgarriff, & Romary (2000)
show how XSLT can implement inheritance
mechanism for lexical information.

<xsl:stylesheet version="1.0"
xmnls:xsl=
"http://www.w3.0rg/1999/XSL/Transform" >

<xsl:template match= “/”">
<htmls>
<body>
<xsl:apply-templates/>
</body>
</html>

</xsl:template>
<xsl:template match="//par"/>

<xsl:for-each select="//tok”/>
<xsl:value-of select="orth”/>
<xsl:text>|</xsl:text>
<xsl:value-of select="disamb/base”/>
<xsl:text>|</xsl:text>
<xsl:value-of select="disamb/ctag”/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Figure 1 : Fragment of an xcesAna document

The XSLT script in Figure 2 could be modified
to produce output in any desired form, or to
produce another XML document containing the
merged data and annotation documents (see
[www.cs.vassar.edu/XCES] for some more

xcesAna specifications (Ide, Bonhomme, & Romary,
2000), contains full segmentation and annotation
information, including full morpho-syntactic
specifications for all potential annotations and the
results of automatic disambiguation.

Figure 2 : XSLT document to create HTML output

3 XML Schemas

The XML Schema definition language
(Thompson, et al., 2000; Biron & Malhotra,
2000) enables document creators to constrain
and document the meaning, usage and
relationships of the constituent parts of XML
documents: datatypes, elements and their
content, and attributes and their values. Schemas
can also be used to provide default values for
attributes and elements. As such, XML schemas
provide means to define an abstract data model
for a class of documents. While duplicating (or
making explicit) some of the capabilities
provided by XML DTDs, they significantly
extend their power and provide for much tighter
validation of document form and content.

6 See also Erjavec et al. (2000)

XML schemas have considerable implications

for the creation of annotated data. The following

lists only a few possibilities for the application
of XML schemas:

o different attribute declarations and/or
content models can apply to elements with
the same name in different contexts,
building on definitions using XML
Namespaces (Bray, Hollander, and Layman,
1999). This alows for more tightly
constrained content models than possible
with DTDs. For example, names in headers
(names of authors, etc., consisting of the
usual "first name", "last name" elements)
and names in the text ("named entities")
should have different content models and
attributes in order to provide for tight
validation of form in each context.

e equivalence classes can be defined for
groups of elements and/or attributes,
indicating that they may be used in the same
ways as defined for a particular named
element ("the exemplar").

e attribute or element values, or combinations
of attribute and element values, can be
constrained to be unique. That is, it is
possible to indicate in a computational
lexicon that only one entry can be defined
with the value of a given word form as its
content (or the content of one of its child
elements), only one paragraph can have an
attribute indicating that it is the 23rd, only
one disambiguated form is given for each
token in an annotation document, or only
one correspondence for a given item in an
alignment document. Obviously, this is
useful for error detection and prevention.

dependencies can be established based on values

of elements or attributes. This has similar
benefits for error detection in creating
annotation documents: nouns can be prevented
from being assigned a tense, tokens whose type
attribute has the value PUNCT can be specified
to include only <orth> elements containing
specific characters, etc. In addition, annotation
labels (e.g., POS indicators) used in an

annotation document can be specified elsewhere,
and element content can be constrained to these
valuesonly.

Conclusion

This paper outlines some of the potential uses of
the mechanisms provided within the XML
framework for the creation and use of annotated
text and speech data. Because XML is an
international standard that is becoming the base
of information exchange and access over the
World Wide Web, high-end language processing
applications intended to extract and manipulate
information from diverse sources will
necessarily handle XML. It is to our advantage
to exploit the XML framework to our greatest
advantage, and to ensure compatibility of the
data we create with the emerging standard.

Acknowledgements

The author gratefully acknowledges the
contributions of Laurent Romary, Patrice
Bonhomme, and Chris Brew to the ideas and
examplesin this paper.

References

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun,
C. Liberman, M., 2000. ATLAS: A Flexible and
Extensible Architecture for Linguistic Annotation.
In Proceedings of the Second International
Language Resources and Evaluation Conference.
Paris. European Language Resources Association,
1699-1706.

Biron, P. & Malhotra, A., 2000. XML Schema Part 2:
Datatypes. W3C Working Draft, 25 February 2000.
http://www.w3.org/ TR/xmlschema-2/.

Bray, T., Paoli, J., Sperberg-McQueen, C.M. (eds.),
1998. Extensible Markup Language (XML)
Version 1.0. W3C Recommendation.
http://www.w3.0rg: TR/1998/REC-xml-19980210.

Bray, T., Hollander, D., Layman, M., 1999.
Namespaces in XML. World Wide Web
Consortium Recommendation, 14 January 1999.
http://www.w3.0rg/TR/REC-xml-names/.

Clark, J. (ed.), 1999. XSL Transformations (XSLT).
Version 1.0. W3C Recommendation.
http://www.w3.0org/ TR/xslt.

Clark, J. and DeRosg, S., 1999. XML Path Language
(XPath). Version 1.0. W3C Recommendation.
http://www.w3.org/ TR/xpath.

Cunningham, H., Wilks, Y., Gaizauskas, R., 1996.
GATE -- a General Architecture for Text
Engineering. In Proceedings of the 16th
International Conference on Computational
Linguistics, COLING-96, Copenhagen, Denmark,
1057-1060.

DeRose, S, Maler, E., Orchard, D., Trafford, B.
(eds.), 2000. XML Linking Language (XLink).
W3C Working Draft, 21 February 2000.
http://www.w3.0org/ TR/xlink.

DeRose, S., Daniel, R., & Maler, E., 1999. XML
Pointer Language (XPointer). W3C Working Draft,
6 December 1999. http://www.w3.org/TR/xptr.

Ide, N. & Brew, C., 2000. Requirements, Tools, and
Architectures for Annotated Corpora. In
Proceedings of the EAGLES/ISLE Workshop on
Meta-Descriptions and Annotation Schemas for
Multimodal/Multimedia Language Resources and
Data Architectures and Software Support for Large
Corpora. Paris: European Language Resources
Association, 1-6.

Ide, N., & Véronis, J.,, 1994. MULTEXT:
Multilingual Text Tools and Corpora. In
Proceedings of the 15th International Conference
on Computational Linguistics, COLING'94, Kyoto,
Japan, 588-92.

Ide, N., Bonhomme, P., & Romary, L., 2000. XCES:
An XML-based Encoding Standard for Linguistic
Corpora. In Proceedings of the Second
International Language Resources and Evaluation
Conference. Paris. European Language Resources
Association, 825-30.

Ide, N., Kilgarriff, A., Romary, L., 2000. A Formal
Model of Dictionary Structure and Content. In
Proceedings of EURALEX'00 (to appear).

Macleod, C., Ide, N., Grishman, R., 2000. Progress
Report on the American National Corpus. In
Proceedings of the Second International Language
Resources and Evaluation Conference (to appear).
Paris. European Language Resources Association,
831-35.

McKelvie, D., Brew, C., & Thompson, H. 1998.
Using SGML as a Basis for Data-Intensive Natural
Language Processing. Computers and the
Humanities 31:5, 367-388.

Thompson, H., Beech, D., Maoney, M. Mendelsohn,
N., 2000. XML Schema Part 1: Structures. W3C
Working Draft, 25 February 2000.
http://www.w3.0rg/TR/xmlschema-1/.

Benefits of Modularity in an Automated Essay Scoring System

Jill BURSTEIN
ETS Technologies
Rosedale Road
Princeton, NJ 08541
jburstein@ets.or g,
jbur stein@etstechnol ogies.com

Abstract

E-rater is an operational automated essay
scoring application. The system combines
several NLP tools that identify linguistic
features in essays for the purpose of evaluating
the quality of essay text. The application
currently identifies a variety of syntactic,
discourse, and topical analysis features. We
have maintained two clear visions of e-rater’s
development. First, new linguistically-based
features would be added to strengthen
connections between human scoring guide
criteria and e-rater scores. Secondly, e-rater
would be adapted to automatically provide
explanatory feedback about writing quality. This
paper provides two examples of the flexibility of
erater’s modular architecture for continued
application development toward these goals.
Specifically, we discuss @ how additional
features from rhetorica parse trees were
integrated into e-rater, and b) how the salience
of automatically generated discourse-based
essay summaries was evaluated for use as
instructional feedback through the re-use of e
rater’ stopical analysis module.

1 Introduction

E-rater is an operational automated essay
scoring system that was designed to score essays
based on holistic scoring guide criteria
(Burstein, et a 1998), specifically for the
Graduate Management Admissions Test

Daniel MARCU
Information Sciences I nstitute
University of Southern California
4676 Admiralty Way, Suite 1001
Marinadel Rey, CA 90292-6601
marcu@isi.edu

(GMAT). Holistic scoring guides instruct the
human reader to assign an essay score based on
the quality of writing characteristicsin an essay.
For instance, the reader is to assess the overall
quality of the writer’'s use of syntactic variety,
the organization of ideas, and appropriate
vocabulary use. E-rater combines several NLP
tools to identify syntactic, discourse, and
vocabulary-based features.

In developing this automated essay scoring
application, we have two primary goals. We are
continually experimenting with e-rater to enrich
its current feature sets to represent additional
scoring guide criteria. Furthermore, we are
adapting the system to provide test-takers with
feedback about the quality of their writing, so
that they may use it to improve their overal
writing competency.

In light of the application development goals,
this paper discusses the erater application
components and the benefits of its modular
design. Using specific studies to exemplify, the
paper points out the importance of the
application’s modularity with regard to: a)
experiments that evaluate the integration of new
features, and b) the re-use of modules for
evaluations that contribute to the adaption of the
system toward the generation of feedback.

2 E-rater System Modules &
Design

The e-rater application currently has five main
independent modules. The application is
designed to identify features in the text that
reflect writing qualities specified in human
reader scoring criteria. The system has three
independent modules for identifying scoring
guide relevant features from the following
categories. syntax, discourse, and topic. Each of
the feature recognition modules described below
identifies features that correspond to scoring
guide criteria features which can be correlated
to essay score, namely, syntactic variety,
organization of ideas, and vocabulary usage.
E-rater uses a fourth independent model
building module to select and weight predictive
features for essay scoring. The model building
module reconfigures the feature selections and
associated regression weightings given a sample
of human reader scored essays for a particular
test question. A fifth module is used for final
score assignment.

All modules are called from a main driver
program. Each independent module can be run
as a stand-alone program. There are interactions
between the modules, and these are described
throughout the paper.

The modules and their subcomponents are
written in either Perl or C programming
languages. The model building module is
implemented in SAS, a statistical programming
language. E-rater can be run on both Unix or
PC platforms.

2.1 Syntactic Module

E-rater’s syntactic analyzer (parser) works in
the following way to identify syntactic features
constructions in essay text. E-rater tags each
word for part-of-speech (Brill, 1997), uses a
syntactic “chunker” (Abney, 1996) to find
phrases, and assembles the phrases into trees
based on subcategorization information for
verbs (Grishman, et al, 1994). The parser

identifies various clauses, including infinitive,
complement, and subordinate clauses. The
ability to identify such clause types allows
e-rater to capture syntactic variety in an essay.

2.2 Discourse Module

E-rater identifies discourse cue words, terms,
and syntactic structures, and these are used to
annotate each essay according to a discourse
classification schema (Quirk, et a, 1985). The
syntactic structures, such as complement
clauses, are outputs from the syntactic module
described earlier. Such syntactic structures are
used to identify, for example, the beginning of a
new argument based on their position within a
sentence and within a paragraph.

Generdly, erater's discourse annotations
denote the beginnings of arguments (the main
points of discussion), or argument development
within a text, as well as the classification of
discourse relations associated with the argument
type (e.g., parallel relation). Discourse features
based on the annotations have been shown to
predict the holistic scores that human readers
assign to essays, and can be associated with
organization of ideas in an essay.

E-rater uses the discourse annotations to
partition essays into separate arguments. These
argument partitioned versions of essays are used
by the topical analysis module to evaluate the
content individual arguments (Burstein, et a,
1998; Burstein & Chodorow, 1999). E-rater’s
discourse analysis produces a flat, linear
sequence of units. For instance, in the essay
text e-rater’s discourse annotation indicates that
a contrast relationship exists, based on discourse
cue words, such as however. Discourse-based
relationships across sentences in text are not
defined by this module.

2.3 Topical Analysis Module

Vocabulary usage is another criterion listed in
human reader scoring guides. To capture use of
vocabulary, or identification of topic e-rater
includes a topica analysis module. The

procedures in this module are based on the
vector-space model, commonly found in
information retrieval applications (Salton,
1989). These anayses are done at the level of
the essay (big bag of words) or the argument.

For both levels of analysis, training essays are
converted into vectors of word frequencies, and
the freguencies are then transformed into word
weights. These weight vectors populate the
training space. To score a test essay, it is
converted into a weight vector, and a search is
conducted to find the training vectors most
similar to it, as measured by the cosine between
the test and training vectors. The closest
matches among the training set are used to
assign a scoreto the test essay.

As dready mentioned, erater uses two
different forms of the general procedure
sketched above. For looking at topical analysis
at the essay level, each of the training essays
(also used for training e-rater) is represented by
a separate vector in the training space. The score
assigned to the test essay is a weighted mean of
the scores for the 6 training essays whose
vectors are closest to the vector of the test essay.

In the method used to analyze topical analysis
at the argument level, al of the training essays
are combined for each score category to
populate the training space with just 6
"supervectors', one each for scores 1-6. The
argument partitioned version of the essays
generated from the discourse module are used in
the set of test essays. Each test essay is
evaluated one argument at a time. Each
argument is converted into a vector of word
weights and compared to the 6 vectors in the
training space. The closest vector is found and
its score is assigned to the argument. This
process continues until all the arguments have
been assigned a score. The overall score for the
test essay is an adjusted mean of the argument
scores.

2.4 Model Building and Scoring

The syntactic, discourse, and topical analysis
modules each yield numerical outputs that can
be used for model building, and scoring.
Specifically, counts of identified syntactic and
discourse features are computed. The counts of
features in each essay are stored in vectors for
each essay (test candidate). Similarly, for each
essay, the scores from the topical analysis by-
essay, and topical anaysis by-argument
procedures are stored in vectors. The vectors
generated from each module are stored in
independent output files. The values in the
vectors for each feature category are then used
to build scoring models for each test question as
described below.

To build models, a training set of human scored
sample essays is collected that is representative
of the range of scores in the scoring guide. For
the type of essay generally scored by e-rater, the
scoring guides typicaly have a 6-point scale,
where a “6” indicates the score assigned to the
most competent writer, and a score of “0”
indicates the score assigned to the least
competent writer. Optimal training set samples
contain 265 essays that have been scored by two
human readers. The data sample is distributed
in the following way with respect to score
points: 15 1's, and 50 in each of the score points
2 through 6.*

The model building module is a program that
runs a forward-entry stepwise regression.
Feature values stored in the syntactic, discourse,
and topical analysis vector files are the input to
the regression program. This regression
program automatically selects the features
which are predictive for a given set of training
data (from one test question). The program
outputs the predictive features and their
associated regression weightings. This output
composes the model that is then used for
scoring.

In an independent scoring module, a linear
equation is used to compute final essay score.
To compute the final score for each essay, the

sum of the product of each regression weighting
and its associated feature integer is calculated.

2.4.1 Advantages of Modularity for
Model Building & Scoring

In the model building program, one can choose
to use al the features for a particular run, or
some feature subset. This flexibility makes it
relatively easy to introduce new sets of features
into the model building procedure for research
and development purposes. The model building
module can be run independently. Therefore,
once e-rater has generated feature vector files
for training samples, the model building module
can be revised accordingly, so that numerous
runs can be performed on data sets, using
various feature combinations for model
building, without rerunning the entire
application.?

Once new models have been built, they can be
easily cross-validated on an independent data
set. Specifically, once the feature vector
information has been generated for the
independent data set, it can be scored quickly
using any model desired to test the performance
of the model. For each new model, the vector
information, (e.g., counts of syntactic clauses) is
recombined in the linear equation using the
model-specific predictive features and
regression weightings. Therefore, given the
same set of test data, performance may vary
across models.

The design of an independent scoring module is
also useful for tracking down changes in
performance that occur when making revisions
to the code. Code changes can have unexpected
affects on feature assignment which can alter
vector counts. If vector counts are affected for a
feature used in the model, then this may affect
the final essay score. Simple comparisons can
be made between the scoring equation variables
in a previous version of the code, and the
revised version. Such comparisons are often
useful to trouble-shoot the unanticipated affects

of code changes on specific feature variables,
and final scores.

3 Benefits of Modularity for
Application Development

As discussed earlier, a goal in erater
application development is to enhance the
current feature set by adding new features that
correspond to characteristics of writing defined
in the scoring guide criteria. Currently, e-rater
features represent these scoring guide criteria:
syntactic variety, organization of ideas, and
vocabulary usage. E-rater discourse features
capture the criterion, organization of ideas, at a
high level. However, the existing discourse
features are linear, and do not express
relationships across a text. Hierarchical
discourse relations can be expressed with
rhetorical structure theory (RST) features (Mann
and Thompson, 1989).

In an experiment, we evaluated the potential use
of RST features in erater. An existing
rhetorical parser (Marcu, 1997) was used to
generate parse trees for essay samples from 20
test questions to the GMAT. A program was
written to identify the RST features in essays,
compute counts of tokens, types and ratios of
the features, and to store the three categories of
feature counts in vectors for each essay. For the
RST vector files, separate files were output for
each type of feature count (tokens, types, and
ratios). The model building program was
modified to introduce the new RST variables. In
this way, the RST feature variables could be
evaluated either individually or in combination
during model building -- as specified in the
model building program.

E-rater had been run on these 20 essay samples
previously, so al of the standard vector
information that e-rater outputs already existed.
The model building component in e-rater can
easily be run independently once all vector
information exists, so the process of building
new models after RST feature variables had
been integrated was quickly and easily done.

Accordingly, the evaluation of experimental
models on independent test sets is aso
conveniently done with the erater scoring
module. Specifically, the predictive features and
their associated regression weightings from the
new models that include RST features are
introduced into the linear equation used in
scoring.

So, in experimental runs (of which we do
many!), only the additional pieces, in this case
the rhetorical parser, and RST feature extraction
program, were required for feature generation,
and extraction, and creation of formatted vector
files used as input to the model building and
scoring programs. This particular experiment
provided strong evidence that the RST features
would serve to enhance the current application.

Running model building and scoring
independently on an essay sample (training and
cross-validation® sets) for a single prompt takes
approximately 5 seconds. To build a model and
score the same essay sample would take up to an
hour. The independence of the model building
and scoring programs alows unlimited
flexibility for continued research and
development of the application with regard to
the addition of new features.

4 ReUsing E-rater's
AnalysisModule

Topical

A strong motivation behind e-rater application
development is to adapt the system so that it
generates feedback along with an essay score. In
a recent experiment, we re-used the e-rater
topical analysis module, and the essay data to
evaluate the saliency of text in automated essay
summaries (Burstein and Marcu, 2000). The
score from the topical analysis by-argument
module is amongst e-rater’s strongest predictors
of essay score. That is, it is amost aways
selected in the model building process.
Furthermore, by itself, the topical analysis by-
argument score agrees with human reader scores
approximately 85% of the time, on average.*

Within the context of adapting e-rater to
generate feedback, we hypothesized that
summaries could be used to determine the most
important points of essays. We envisioned at
least two possible uses of essay summaries.
First, for any essay question, one can, for
example, build individua summaries of all
essays of score 6 (the most competent essay);
use sentence-based similarity measures to
determine the topics that occur frequently in
these essays; and present these topics to a test-
taker. Test-takers would then be able to assess
what topics they might have included in order to
be given a high score. Second, for any given
essay, one can build a summary and present it to
the test-taker in a format that makes explicit
whether the main points in the summary cover
the topics that are considered important for the
test question. One way of doing this might be to
present to test-takers, summaries of other essays
that received a high score. Test-takers would be
able to assess whether the rhetorical
organization of their essays makes the important
topics salient.

For the experiment, the training and cross-
validation sets from the 20 GMAT essay
samples were run through an existing discourse-
based automatic text summarizer (Marcu, 1999).
Summaries were generated at different
compression rates. 20%, 40% and 60%. For
each of the 20 samples, the topical analysis
module was run on training and cross-validation
sets. We evaluated the performance of the
topical anaysis by-argument score on al
summaries.’> The performance of the topical
analysis by-argument measure was higher for
40% and 60% summaries than using the full text
of essays. The re-use of this e-rater module for
evaluating the saliency of essay summaries
proved to be informative.

5 Discussion and Conclusions

In this paper, we have discussed the importance
of modularity in an automated essay scoring
system for research and development.
Modularity, especially with regard to the model
building and scoring functionality, is critical to

application development. Unlike other NLP
tools, such as part-of-speech taggers and
syntactic parsers, for which there is a reasonably
well-defined and standard feature set, the
feature set that will become part of e-rater will
be determined by continued experimentation.
Though e-rater currently contains linguistic
features that have been shown to be highly
predictive of essay score, the interests and
queries from the writing community require
further experimentation with new features (such
as RST features).

As was discussed in the paper, the new types of
features that could become used in the system
reflect qualities of writing that appear in scoring
guide criteria. These criteria are “fuzzy” in
some sense, in that they describe general
qualities of writing (e.g., organization of ideas),
but do not state specifically what form of
linguistic feature will reflect a particular quality.
Therefore, repeated experimentation with new
features is critical in order to discover how to
represent these criteria computationally.

From a purely linguistic perspective we must
first ask: What linguistic features map to the
concept, organization of ideas, for instance?
But, in addition, from the computational
linguistic view we must also ask: What are the
linguistic features that map to a scoring guide
criteria that can be reliably captured by NLP-
based tools? To further develop erater, we
must be able to handle both points-of-view;
hence, a modular system isrequired in which we
can easily test the use of new features (or,
hypotheses about new features) toward further
application development. The ability to easily
modify e-rater’s model building module, so that
models can be easily reconfigured with new
feature combinations allows us to conveniently
evaluate the performance of new features. This
is shown in the experiment in which RST
features were introduced into e-rater models.
This approach also allows us to quickly evaluate
feature performance within the linear regression
modeling technique. What we have also learned
through our continued research is that
alternative measures outside of the linear
regression may also be useful to characterize the

competency of an essay with regard to its
rhetorical structure. Similar research is on-
going that employs aternative methods of
evaluating the relevance of essay vocabulary
using measures independent of the regression. It
is critical to have the ability to evaluate the
reliability of different approaches for
representing and evaluating features of writing
as they relate to writing competency.

A second argument for the modularity of the
system is to be able to re-use independent e-
rater tools and data for related applications
(e.g., automated scoring of short answers).
Alternatively, in the summarization experiment,
we were able to re-use the essay data for the
purpose of generating summaries, and also to re-
use the topical anaysis tool to evaluate the
performance of the tool on the summaries.
Since the topical analysis component is an
independent module, no modifications were
required to run the experiment.

Acknowledgements

We thank Martin Chodorow and Dennis Quardt
for helpful discussions and insights. We are
also grateful to Magdalena Wolska for writing
the programs that perform the model building
and scoring functionality for our research.

References

Abney, S. (1996) Part-of-speech tagging and partial
parsing. In Young, S. and Bloothooft, G. (eds),
Corpus-based Methods in Language and Speech.
Dordrecht: Kluwer, 118-136.

Brill, E. (to appear). Unsupervised Learning of
Disambiguation Rules for Part of Speech
Tagaing, Natural Language Processing Using
Very Large Corpora. Dordrecht: Kluwer
Academic Press.

Burstein, J. and D. Marcu (2000). Toward Using Text
Summearization for Essay-Based Feedback. In
the Proceedings of TALN 2000, Swiss Federal
Ingtitute of Technology, Lausanne, Switzerland,
October, 2000.

Burstein, J., Kukich, K., Wolff, S, Lu, C., Chodorow,
M., Braden-Harder, L., and Dee Harris, M.
(1998). Automated Scoring Using A Hybrid
Feature Identification Technique. In the
Proceedings of the Annual Meeting of the
Association of Computational Linguistics,
Montreal, Canada.

Grishman, R., Macleod, C., and Meyers, A. (1994).
"COMLEX Syntax: Building a Computational
Lexicon", Proceedings of Coling, Kyoto, Japan.
(available for download
at:http://cs.nyu.edu/cs/proj ects/proteus/comlex/)

Mann, W.C. and Thompson, S.A. (1988). Rhetorical
Structure Theory: Toward a Functional Theory
of Text Organization. Text 8(3), 243-281.

Marcu, D. (1999). Discourse trees are good indicators
of importance of text. In I. Mani and M.
Maybury eds., Advances in Automatic Text
Summarization, pp. 123-136.The MIT Press.

Marcu D. (1997). The Rhetorical Parsing of Natural
Language Texts. The Proceedings of the 35"
Annual Meeting of the Association for
Computational Linguistics, pp. 96-103.

Quirk, R., Greenbaum, S., Leech, S., and Svartik, J.
(1985). A Comprehensive Grammar of the
English Language. Longman, New Y ork.

Sdton G. (1989). Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wedey
Publishing Co.

' Essays at score point 0 are not required as these tend
to contain no text at al, or to be off-task in some way.
? In practice, we wrote a program that performs the
functionality of the model building and scoring
modules. Itisin this program where code revision
actually occurs, not in the application code.

® Cross-validation samples usually contain about 500
essays.

4 Agreement statistics are for the 20 GMAT essay
samples discussed. The agreement indicates that the
human reader and topical analysis scores are within 1-
point. This is a standard measure of agreement
between 2 human readers. Additionaly, two human
readers agree within 1 point of each other
approximately 92% of the time.

® The performance of the topical analysis by-
argument scores is approximately 5% higher than the
scores from the topical analysis by-essay procedure.

An Integrated Development Environment for Spoken Dialogue
Systems

Matthias Denecke
Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
denecke@cs.cmu.edu

Abstract

Development environments for spoken dialogue pro-
cessing systems are of particular interest because the
turn-around time for a dialogue system is high while
at the same time a considerable amount of compo-
nents can be reused with little or no modifications.
We describe an Integrated Development Environ-
ment (IDE) for spoken dialogue systems. The IDE
allows application designers to interactively specify
reusable building blocks called dialogue packages for
dialogue systems. Each dialogue package consists
of an assembly of data sources, including an object-
oriented domain model, a task model and grammars.
We show how the dialogue packages can be specified
through a graphical user interface with the help of a
wizard.

1 Introduction

The specification and design of interactive spoken
language systems has become the focus of research
recently. Partly fueled by the increasing demand of
spoken language applications and telephony-based
services, the deployment of development environ-
ments has increased. At the time of writing, at
least three main types of dialogue tools can be dis-
tinguished. One approach to development environ-
ments consists of graphical editors for Finite State
Automata (FSA) [Sutton et al, 1996], [Cole, 1999].
These systems equate a dialogue with a possible path
from the start state to one of the accepting states.
Possible actions of the application are specified by
annotations on states or arcs or both. Besides rely-
ing on a dialogue model that has been considered as
problematic in the past, finite-state automata based
dialogue editors do not exploit the desirable charac-
teristics of software engineering, such as reusability
and orthogonality of the components. For example,
recovery strategies need to be duplicated for each
state in which they should be applied. Moreover,
they require a system designer to anticipate every
single possible path through the system, a fact that
leads to an explosion of dialogue states.

Another approach to development environments
emphasizes reusability of the domain model over

graphical design interfaces. Here, object-oriented
features of the underlying programming language
such as Java or C+4++4 are used to design a class
hierarchy of speech objects or dialogue modules that
can be assembled and re-assembled for new applica-
tions. These modules are often used for basic data
types, such as date, time, credit card numbers, etc.
This approach has proven its practicability in nu-
merous commercial applications. Since the modules
can be reused, this is an improvement over finite-
state based dialogue machines. However, fine tuning
of recovery strategies requires separate fine-tuning in
each module. Moreover, the dialogue flow is partly
defined by an FSA whose nodes consist of the dia-
logue modules. When a node is reached, the dialogue
module determines the dialogue control until it gives
up control and an adjacent arc is traversed.

A third approach consists in designing a library
of reusable dialogue strategies based on the observa-
tion that the behavior of a dialogue manager should
be predictable in similar situations across several do-
mains. Araki et al [Araki et al, 1999] proposed a li-
brary of dialogue strategies to be reused. Koelzer
[Koelzer, 1999] proposed a reusable dialogue sys-
tem architecture based on specifications of knowl-
edge sources for the different components.

In this paper, we identify knowledge sources such
as grammars, task models and database conversion
rules, that characterize our dialogue manager for a
given application. Each of the knowledge sources
can be composed of smaller; modular knowledge
sources. A collection of these knowledge source mod-
ules, called a dialogue package, specifies a subdo-
main of a dialogue application. We borrow tech-
niques known from object oriented programming
languages to combine partial specifications of knowl-
edge sources to form the knowledge sources for a new
application. The specifications are mostly declara-
tive rather than procedural, leaving to the dialogue
manager the decision how best to interpret them in
the context of the dialogue. We describe the im-
plementation of a wizard-based integrated develop-
ment environment called Chapeau Clac that allows
the specification of the knowledge sources, their in-

tegration and testing.

2 The Architecture of the IDE and
the Dialogue System

2.1 The Architecture of the Dialogue
System

The dialogue manager makes use of different knowl-
edge sources. First, it contains a set of task de-
scriptions or task models. A task description can
be considered as a form to be filled in through the
dialogue, together with constraints stating the mini-
mum amount of information necessary to execute the
task. The dialogue strategy is specified in a declara-
tive programming language similar to PROLOG that
can be easily adapted to the task at hand should the
need arise.

The state of the dialogue system at any given time
is determined implicitly by the relations of the forms
with the information available in the discourse at
that time. For example, a task description whose
constraints are inconsistent with information in the
discourse can not be a description of the intent of
the user. The elements the forms can be populated
with are descriptions of objects, actions and prop-
erties of objects and actions drawn from a domain
model. The domain model can loosely be compared
to a class hierarchy in object oriented programming
languages. In addition to task model and domain
model, the dialogue manager uses data base conver-
sion rules to generate SQL queries and to transform
the result sets. As the domain model 1s dependent
on the particular speech application, it belongs to
the knowledge sources to be specified through the
wizard.

As the semantics of the utterances are expressed
in terms of the domain model, we need to provide
a mechanism to translate the text input from the
speech recognizer into a canonical representation.
Attributed grammar rules provide transformation
between text input and semantic representations.

The place of the dialogue manager in the system
is similar in spirit to, but different in functionality
from, the design of a Graphical User Interface for a
back-end application. In the case of the GUI, the
design of windows, dialog boxes and menus is inde-
pendent from the design of the back-end application
that uses these graphical display elements. Simi-
larly, in our approach, the design of dialogue gram-
mars, dialogue goals and domain models is indepen-
dent of the design of the back-end application. As
in GUIs, the back-end application is notified of ma-
nipulations through events and callback functions.
This approach separates clearly the speech user in-
terface from the back-end application. The call-
backs and events constitute one integration point
between speech user interface and back-end appli-
cation whose form and content needs to be specified

for each new speech application.

It should be noted, however, that the analogy be-
tween graphical and speech user interfaces ends here.
Reference in GUIs is extensional. For example, the
click of the button or a menu, together with the state
of the application and the focus, determines the in-
tended action. In spoken dialogue systems, the need
to resolve reference of noun phrases or ellipsis forces
us to provide one more integration point with the
back-end application in order to allow database re-
trieval.

Consequently, we argue that a dialogue manager
for a given speech application can be character-
ized by the specification of four knowledge sources,
namely (i) the domain model to characterize the se-
mantic content of the utterances, (ii) the conversion
from the text input into a canonical semantic rep-
resentation and vice versa, (iii) the task model to
describe the event stream from the speech user in-
terface to the back-end application, and (iv) the con-
version from semantic representation into database
retrieval requests. Figure 1 shows the place of the
knowledge sources in the dialogue manager. As can
be seen, the knowledge sources (ii) to (iv) encapsu-
late entirely the dialogue manager from the remain-
ing components of the system.

Note that we make no assumptions as to how the
dialogue manager might make use of these knowl-
edge sources. In particular, we do not make any as-
sumptions as to how the dialogue strategy might de-
termine the actions of the dialogue manager. As long
as the provided knowledge sources are sufficient for
the dialogue manager to determine its actions, the
dialogue manager could implement a simple informa-
tion seeking dialogue system or a more sophisticated
system based on speech act or discourse theories.

All four knowledge sources can be modularized
more or less straightforwardly. The domain model
can be composed of different subdomain [Denecke
and Waibel, 1999]; new concepts may use multiple
inheritance of abstract base types. Grammar rules
containing generic semantic information can be spe-
cialized and adapted to the given domain. Database
conversion and dialogue goal specification modules
may simply be joined; but see section 6 for poten-
tial problems. It is the task of the wizard to help
the user in specifying and reusing these knowledge
sources.

2.2 Requirements for the IDE

The requirements for the IDE’s functionality com-
prise three main items. First, it should guide the
application designer to specify and modify the spo-
ken language part of an entire application through a
GUI. The data sources relevant for the spoken lan-
guage interface currently include grammars, domain
model, data bases, task model and input/output
channels. Moreover, conversions back and forth

Speech Recpgnizer

Text toSpeech

Grammar rules
Conversion rules

‘ Database query

Conversion rules

Dialogue
Manager

Domain model

Figure 1: The place of the knowledge sources in the
system architecture.

application

Back-end

Dialogue goals

between semantic representation of utterances and
database queries and results on one hand and text
on the other need to be specified. The object model
of the data sources used in the dialogue system is
shown in figure 2. Second, the IDE should support
a developer by adapting and modifying the existing
dialogue strategy through the usual debugging tools
such as tracer, walk through, call stacks, breakpoints
and variable dumps. Third, it should support an
application designer in testing the final application
using batch tests and single utterance tests.

In addition, since experienced users may obtain
results faster using a keyboard rather than a wizard
interface, the system designer should be able switch
between a standard text editor and the wizard in-
terface at any time in the design process. Surpris-
ingly, this design requirement had a more thorough
impact on the layout of the system implementation
than anticipated. For each data source to be spec-
ified, we need two classes that implement the data
source: one class implementing the data source it-
self, and a second class implementing a description
of the data source. The second class consists only
of primitive data types such as strings and integers
that can easily be manipulated by a wizard interface
and can also be easily parsed from a file. When the
final data sources are instantiated, the constructor
of the data source, taking a description as its only
argument, creates the data source according to the
specification.

In addition to the decoupling of the GUI with the
dialogue system itself, the description objects also
introduce an additional level of abstraction that al-
lows the replacement of similar data source imple-
mentations (such as different grammar formalisms

Domain model
root

VAN

action property object

SN SN

Dialogue Package
consists
of reservation
DATE : date
Base Package NAME : name

Grammar
[obj] -> [obj] with [obj]

Dialogue Goals

consists
of

558
338

Conversion rules
parse tree -> fs

fs -> text

fs -> db request

result set->fs

Figure 2: The object model for the dialogue system.

as required by JSAPI and Sap1). Figure 3 depicts
the relationship between the different entities.

The data source specifications are organized in a
modular fashion in dialogue packages. Each dialogue
package consists of at least one and possibly all the
mentioned data sources. A final application is then
composed of several dialogue packages. In order to
avoid naming conflicts, each dialogue package intro-
duces its own namespace. As an example of a dia-
logue package, consider the task of a hotel reserva-
tion. The implementation of the hotel reservation
package may contain several tasks, such as calcu-
lating the price of a stay or displaying the hotel’s
location on a map. The interface between the im-
plementation of the package and the dialogue system
is regulated by the knowledge sources in the pack-
age description. For example, the hotel reservation
package may consist of several concepts such as ho-
tel, room, reservation, and all possible actions that
go with 1t. The dialogue system notifies the dialogue
package in case an event related to the package oc-
curs. It 1s then the responsibility of the dialogue
package to process the event properly.

Similar to class libraries in object-oriented pro-
gramming languages, the dialogue packages may
be reused in different applications. The hotel
reservation package may be reused in an informa-
tion booth application (which uses another dialogue
package concurrently offering services related to cur-
rent events) and in a travel agency setting (which, in
turn, allows the user to book flights through the use
of a third dialogue package). The intention of this
level of granularity 1s it to have each package cover
all aspects of an entire subdomain.

3 The Specifications

The IDE offers a wizard-style GUI to specify the
data sources described above. The wizard guides
the user through the process of specifying a dialogue
package. In this section, we describe the steps the

Dialogue Package Desc. Dialogue Application

Dialogue Package

Classes

o

Text
Editor modifies

Text Files

Figure 3: Descriptions specify the content of the
data sources to be used in the application. Descrip-
tions of data sources can be created and modified
using the IDE or a plain text editor.

wizard guides a user through for each dialogue pack-
age. In each step, one of the four knowledge sources
described above is interactively specified.

3.1 The Domain Model Specification

The domain model employed in the dialogue sys-
tem uses a simple class hierarchy. A class hierarchy
is a type hierarchy [Carpenter, 1992] extended by
method descriptions. Class specifications may con-
tain variables (whose type is a class from the on-
tology) and methods (whose arguments are classes
from the ontology). In addition, class specifications
may be related through multiple inheritance. While
in conventional object-oriented design, objects in the
domain correspond to classes, actions of the objects
correspond to methods, and properties correspond
to variables, we chose to model these elements by
classes. First, this allows us to uniformly express
mappings from noun phrases, verbal phrases and
adjuncts to classes (see section 3.3). Second, any
constituent of a spoken utterance may be under-
specified. Our approach allows us to select through
the inheritance mechanism the most specific class
from the ontology whose informational content can
be warranted in the absence of complete informa-
tion.

A method specification does not implement any
particular behavior of the class it belongs to.
Rather, it can be seen as a constraint specification
that generates an event to the back-end application
as soon as it 1s satisfied. It is then the task of the
back-end application to carry out the functional-
ity associated with the method. Consider a class
obj_displayable with an associated method display()
and the constraint string < obj_displayable.name,int
< obj_displayable.x,int < obj_displayable.y (read: the
variable obj_displayable.name contains more informa-
tion than the fact that it is a string,i.e. 1t is instan-
tiated). As soon as the position and the name of the

object become known to the dialogue system (e.g.
through database retrieval), an event is generated
and sent to the implementation of the dialogue pack-
age, providing class information as well as the values
of the three variables expressed in the constraint.
Should a description of an object refer ambiguously,
an event is generated for each retrieved object that
verifies the constraint. Not only does this approach
provide a declarative way of specifying behavior and
abstract over the form of the dialogue, it also decou-
ples the natural language understanding component
from the application itself in a natural way.

This form of method invocation interacts nicely
with another characteristic of our approach to
object-oriented design. While traditionally an in-
stance of a class is an object, in dialogue process-
ing an instance of a class can only be a (possibly
incomplete) description of an object. Necessary in-
formation for object instantiation may be missing
and can only be acquired through dialogue. Since
descriptions of objects do not need to refer uniquely
to objects, procedural method invocations become
more complicated. For this reason, we chose the
declarative approach to method invocation over a
procedural one.

The domain model is the backbone of the spec-
ification process. Not only does the dialogue man-
ager use the domain model for inferences at runtime,
but other knowledge sources such as grammar and
database access specifications can partly be derived
from the domain model. Moreover, the type infor-
mation helps to restrict choices and to verify the
consistency of the specification at the design stage.
Consequently, the design of the domain model is the
first step in the design process. This is in contrast to
many other design tools whose first step is to design
the information flow of the dialogue.

Example

By way of an example, we describe the design of a
fast food order service. The service offers pizza with
different toppings and different pasta with different
sauces. Pizzas and pasta come in different sizes. The
price of the items varies as a function of the size and
the toppings or the sauce, respectively. The user
should be able to query properties of the 1tems, such
as price, add and remove items from a virtual shop-
ping list, and finalize the purchase. We introduce
one abstract base type obj_priceable with the real
valued feature BASEPRICE and a feature SIZE, the
value being one of small, medium, large. As toppings
and sauces may not be purchased separately, a sec-
ond abstract base type obj_buyable, inheriting from
obj_priceable, allows to distinguish the dishes from
its ingredients. obj_buyable serves then as a base
type for obj_pizza and obj_pasta while obj_topping
and obj_sauce are derived from obj_priceable. As the
calculation of the price is a task specific to the back-

end application, we introduce a method
obj _buyable.caleprice : real x set(real) x real

with the constraints

obj_buyable.baseprice > real,
obj buyable.ingredients {baseprice} > real,
obj _buyable.price > real

As soon as an obj_buyable whose values of the
BASEPRICE features is defined appears in the dis-
course, all values are passed on to the back-end ap-
plication. It is the task of the back-end applica-
tion to determine the price of the dish and to return
the result in the third argument of the method de-
scription. Since the third argument is described by
the constraint obj _buyable.price > real (a constraint
that is always satisfied due to the feature definition),
the dialogue manager places the result returned from
the back-end application at the appropriate place in
the feature structure.

3.2 The Dialogue Goal Specifications

The application designer needs to design a descrip-
tion of a dialogue goal for each task the back-end
system can execute. A dialogue goal can be consid-
ered as the description of a form that is filled out
through the spoken dialogue with the system [Pa-
pineni et al, 1999]. The goal description consists
of a typed feature structure [Carpenter, 1992] whose
types are drawn from the class hierarchy designed in
step 3.1. It serves as an informational lower bound,
guaranteeing that the back-end application is noti-
fied if and only if the information acquired through
the dialogue is at least as specific as the specification
in the dialogue goal.

Note that the dialogue goal specification does not
make any assumptions as to how this information
is acquired, nor as to how the acquired information
is to be processed. Thus, the dialogue goals form
the specification of a task model that is orthogonal
to any dialogue strategy specification and indepen-
dent from the implementation of the back-end sys-
tem. Furthermore, it should be noted that the spec-
ification of dialogue goals in typed feature structures
does not restrict the dialogue strategy to be a sim-
ple form filling strategy. Rather, the dialogue goal
specification i1s an encapsulation of a method invo-
cation which, when triggered, causes the back-end
application to do what the user intended the system
to do. The assumptions made here are similar to
those in the general PARADISE framework [Walker
et al, 1997] for dialogue evaluation where the task
model for dialogue managers is equally described in
attribute value matrices.

Example (continued)

We continue the fast food service example. We con-
centrate on the dialogue goals relevant to the pizza

and pasta objects, as we assume that we have re-
course to a dialogue package Shopping Cart that de-
fines the knowledge sources relevant to the virtual
shopping list. We thus need to introduce only one
dialogue goal, namely the one allowing the user to
seek information on the buyable objects.

3.3 The Grammar Specification

It is the task of the grammar specification to map
an utterance onto a feature structure. We use the
robust spoken language parser described in [Gavalda
and Waibel, 1998] for context free parsing. In addi-
tion to the grammar rule specification, a set of con-
version rules needs to be created to declare the way
a parse tree is mapped onto a semantic representa-
tion. A parse tree generated by this parser contains
semantic concepts as nonterminal symbols.

Grammar rules can be either lexical rules, i.e.
rules whose right hand side consists entirely of lex-
ical entries, or phrasal rules, 1.e. rules whose right
hand side consists entirely of nonterminal symbols.
A grammar nonterminal symbol consists of three
part (sem, sYnmaj, SYNmin) Where sem is a type
drawn from the type hierarchy, syn,q; is the name
of the major syntactic category, currently one of
N,V, A or their phrasal projections NP, AP,V P,
and syn,i, 1s the name of their minor syntactic
category. Minor categories depend on the major
categories. For example, minor categories for ad-
jectives are predicative, comparative and superla-
tive. The purpose of separating syntactic and se-
mantic information in the nonterminal symbols is
threefold. First, it allows the technique of multi-
ple inheritance to be applied during grammar de-
sign and parsing. For example, a nonterminal sym-
bol (sem, synmaj, $Yynmin) might be expanded by a
rule with a left hand symbol (sem’, synmaj, synmin),
provided that sem subsumes sem’ in the type hier-
archy. Second, it provides more information to com-
pare nonterminal symbols during parsing than plain
slot names. Third, the semantic information is help-
ful in ensuring the semantic constructions associated
with the grammar rules is well-typed. Please refer
to [Denecke, 2000] for more information on the first
two points. In this paper, we will concentrate on
the third point as it is relevant to the design of the
wizard interface.

As the syntactic structure of the input sentences
might vary, 1t is not sufficient to rely on the names
of the concept to extract the meaning of the utter-
ances. Rather, we pursue an approach that is re-
sembles the one found in attributed grammars used
in compiler construction or Montague grammars in
that the grammar rules contain an annotation de-
scribing how to construct the semantics. Consider a

rule

1 1 1
<5€m75ynma]75ynmin> — <S€1TL 7synma]7synmin>

(sem™, synia;, SYNpin)
for an expression describing an object of type
sem. We assume by induction that the con-
stituents described by <semi,synimj,syninm> are
expressions describing objects of type sem?. As the
semantic representation of the phrases covered by
(sem, sYNmaj, SYNmin) Needs to be a feature struc-
ture of type sem, all that remains to be done is to
define n feature paths 7' = fi .. fan, for each of the
right hand symbols such that sem.7® is allowable
according to the type hierarchy specification and
sem.m takes a value that is compatible with sem?.
This sort of type information restricts the number of
possible feature paths. Only allowable feature paths
are offered through the wizard interface so as to en-
sure that the resulting structures correspond to the
domain model.

As an application designer sets out to develop a
new application, he can take recourse to a base ontol-
ogy and a base grammar. We make the assumptions
that the base grammar and the base ontology al-
ready cover a wide variety of surface forms of the
input sentences. The application designer simply
needs to provide the lexical rules and to specialize
existing generic rules. The nonterminals in the base
grammar do not contain any domain-specific seman-
tic information, but only rather general information
such as object, or location. It is then only necessary
for the application designer to specialize the prede-
fined rules and to provide the “ontological” part of
the grammar.

Robust Parsing

The fact that syntactic and semantic information are
represented separately in the nonterminal symbols
enables a more fine grained comparison of nontermi-
nal symbols. This can be exploited for robust pars-
ing. For example, two symbols differing only in their
minor syntactic category could be matched, with an
appropriate penalty, to allow for robust parsing. At
the time of writing, a standard context free gram-
mar to be used in the parser is created from the
rule specifications. Additional rules covering close
matches are created for robustness.

The well-typed constraint imposed on the rules by
the conversion information does not render the pars-
ing more brittle as robustness is achieved by loosely
matching the input and by a fuzzy matching of non-
terminal symbols. The form of the rules can be ex-
pected to be unaltered.

Clarification Questions

The need to generate a clarification question arises
in the case of ambiguous reference. The dialogue
manager determines discriminating information of a

set of representations using a technique described in
[Denecke and Waibel, 1997]. As the grammar rules
contain syntactic and semantic information, they are
reversible to a limited extent. Thus, the rules can
be used to generate phrases describing the discrimi-
nating information.

Example (continued)

In the fast food application, phrases such as a pizza
with salama or tortellini with cream sauce need to be
covered. The generic grammar provides an abstract
rule of the form (obj, N) — (obj, N){p, with){obj, N')
which is specialized to

(objpizza, N) —

(obj _pizza, NY{p, with){obj_topping, N) and
(obj_pasta, N) —

(obj _pasta, NY{p, with){obj_sauce, N

respectively (minor categories are omitted for clar-
ity). Each nonterminal symbol on the right hand
side 1s assigned a part of the resulting semantic rep-
resentation. The first right hand symbol gets as-
signed an empty feature path, since its relation to
the left hand symbol relation needs to be an is — a
relation. The semantics of the second nonterminal
symbol is ignored. We concentrate on the third
nonterminal symbol in both rules. In this exam-
ple, TOPPINGS and SAUCE, respectively, are the only
feature paths that express an is — part — of relation
between obj_pizza and obj_toppings, and obj_pasta
and obj_sauce, respectively. This yields the follow-
ing annotated rules.

(objpizza, N) —
(obj _pizza, N)
(p, with)
(obj topping, N)

and

(obj_pasta, N) —
(obj_pasta, N)
(p, with)
(obj_sauce, N')

The type information serves to restrict the number
of admissible feature paths for the semantic con-
struction. Only admissible feature paths are offered
as choices in the wizard, thus reducing the burden on
the grammar designer. Had the designer erroneously
specialized the abstract rule to

[0bj_pizza)

[0bj_pizza TOP’S obj topping]

[0bj_pasta)

[0bj_pasta SAUCE obj_sauce]

(objpizza, N) —

(obj pizza, NY{p, with){obj_sauce, N)
the wizard would not be able to offer any consis-
tent semantic interpretation, thus uncovering incon-

sistencies in the specification early in the design pro-
cess.

3.4 The Database Access Conversion Rules

The IDE provides an interface to SQL databases.
The tables of SQL databases are self-describing in

that the form, the datatypes and the relations be-
tween the tables can be determined at run-time. If
the user wishes to create a new database for some
of the objects specified in step 3.1, then the cor-
responding SQL data definition query is generated
from the domain model automatically. In this case,
there is a one-to-one relationship between a type de-
scription and a table, and conversion rules are cre-
ated automatically. However, it is more probable
that application designers are faced with the design
requirement that existing databases be reused. In
this case, the wizard interface allows the user to es-
tablish a conversion between features and entries in
tables. Please note that in this case there is not nec-
essarily a one-to-one correspondence between type
descriptions and tables. Here, the databases con-
sist typically of multiple tables 7" that are linked via
primary keys F.

The dialogue strategy executes database requests
at appropriate times during the dialogue with the
goal being to fill in missing feature values. It is
then the responsibility of the database manager to
determine the database that needs to be queried
and to generate the query itself based on the in-
formation available. This 1s done in the following
manner. First, by examining the partly filled form
and scanning the conversion rules, the set of tables
th,...,tL € T) for which keys are given are deter-
mined. Then, we need to obtain all pairs of pri-
mary keys that establish the links between the ta-
bles in 77. However, a link between two tables can
be given through a chain of tables not all of which
need to be in 7. Thus, we need to determine the set
t3,...,t2, € Ty of all tables involved in the query by
calculating a minimal subtree (T, Fs) of the graph
(T, E') that spans over all tables from 77. The infor-
mation in 71,75 and E5 together with the partially
filled form 1s then sufficient to arrive at a query of
the form

SELECT
2 2
ti.e1, cee, tl.eny
2 2
tie1, -y ty€n,,
FroM t3,...,82,
WHERE
t%.el = UlAND
tr.ep = vy AND
t?.ek = t?.elAND V(t?.ek, t3.61> c b

where the v; are the values provided by the partly
filled form. The result set returned from the query
engine is then converted back to feature structures
corresponding to the domain model. There exist ad-
ditional constraints on the size of the result set that
are verified before converting in order to avoid time
consuming conversion operations in the case of large
result sets.

Example (continued)

In the fast food application, the data is stored
in four tables, namely pizza,pasta,sauces and
toppings. The tables are assigned to the types
obj_pizza,obj_pasta, obj _sauces and obj _toppings in
the same order; additional assignments exist be-
tween feature names and table entries. The tables
pizza and toppings, and pasta and sauces, respec-
tively, are linked in the database through unique IDs.
As the relationships between the tables is is-part-of,
the links are assigned the path prefixes SAUCES and
TOPPINGS. A feature structure
obj_pasta

SAUCE obj_cheesesauce

is then converted to the query

SELECT
pasta.name, pasta.baseprice, pasta.size,
sauces.name, sauces.baseprice
FroM pasta, sauces
WHERE
sauces = cheesesauce AND
pasta. D = sauce.ID

Using the same conversion rules backwards, un-
derspecified feature structures are constructed from
the resulting table. Note that the database
as a relational database cannot express inheri-
tance relationships. This means that although
tortellini, greennoodles and spaghett: all are de-
rived from pasta, a query containing the constraint
pasta.name = ”pasta” would return the empty set,
as the database does not know about the inheri-
tance relationships. For this reason, the conversion
rules associated with the table entries also contain
a type restricting the constraint generation. Only
types that are more specific than the restriction are
taken into consideration for query generation. In
this example, the types taken into consideration for
query generation would need to be more specific
than obj_pasta. This is to ensure extensionality for
database access. Alternatively, one could employ
extensional feature structures as described by Car-
penter [Carpenter, 1992] and make sure that only
extensional types are used for queries.

3.5 Interfacing the Wizard with the
Knowledge Sources

A wizard-style GUI guides the application designer
through the design process of the dialogue package.
The knowledge sources are introduced in the order in
which they are described in this section. The result
of the process is a prototypical system that needs
to be refined interactively using test sets. Figure 4
shows a screenshot of the wizard in step 1 at the
point of specifying the domain model.

In order to abstract over different input and out-
put modalities, the dialogue system contains an en-
tity to maintain input and output channels. For each
channel, there is a channel specification that allows

- Chapeau Clac Dac - cpof =] 3

Fle Edt Yiew Inset Froject Build Test Window Help

DEFEEEar s ee
CIT o [A =

gererc.dm

input.dim

- Log file
Batch tests

| = map.dm

Please specify the new description

hatehieservation | Desciiption

[hatelreservation New
reseration

inherits from— [reservation Add
, |

CE (o)]

-] bot Add,

with data hotelreservation & FROM
hotelreservation « NAME

Please add a data member to your new class.

and metheds [verifyDates datexc My =] Data Member

() meta_actic

For Help, press F1

hoteheservation « T0 [ember...

D action Name: |FLACENAME

©8E oBJECT Value: |shing o
i

- gestureinpt

L INPUT

*-BE SOURCE

(22 mapoommand

B[] z00m
h] >

Add Cancel

Figure 4: The wizard in action. Currently, a class
hotelreservation is being specified. The list boxes
in the larger dialog box display the base class, the
member variables and the methods associated with
the class. A new member variable is being added
through the smaller dialog box in the foreground.
The tree-shaped interface item provides a view on
the domain model.

to transform an array of strings into a feature struc-
ture (for an input channel) or a feature structure into
an array of strings (for an output channel). Input
and output devices communicate with the dialogue
system only through these channels. The intention
of this approach is it to abstract away the particu-
lar form of input and output events, thus achieving
modularity and extensibility.

4 Debugging of the Dialogue
Strategy

The dialogue manager is driven by a PROLOG style
program which contains the dialogue strategy. As
long as a user is engaged with the system in a dia-
logue, it is then the task of the dialogue system

1. to determine if the user intends to have the sys-
tem perform one of the tasks known to the sys-
tem, and if so,

2. to interactively acquire all the information that
is needed for the system to uniquely determine
the task to be executed and all its parameters,
and

3. finally to notify and pass control to the subsys-
tem responsible for the task execution once this
state has been reached.

For that purpose, each task description has an in-
ternal state that can take one of the following values:
NEUTRAL, SELECTED, DESELECTED, DETERMINED
and FINALIZED. The state transitions are as shown
in figure 5. Each state transition is passed on to
the implementation of the dialogue package in the

Neutral /™ Selected —— ™ _ Determined —* Finalized

|

Deselected

Figure 5: State transitions of the dialogue goals

back-end application which may or may not choose
to make use of this information.

The state of the dialogue system 1s implicitly rep-
resented by the vector of dialogue goal states. The
states of the dialogue goals are updated by a set of
rules that compare the representations of the utter-
ances with the representations in the dialogue goals.
The state of a goal incompatible with the current
representation becomes DESELECTED. A goal in the
state SELECTED becomes DETERMINED as soon as
it is the only goal in the SELECTED state. A DE-
TERMINED goal becomes FINALIZED as soon as the
information acquired in the dialogue is at least as
specific as it 1s required by the goal.

There is a generic dialogue strategy that serves as
a starting point for system development. As possible
domains may be very distinct, 1t becomes necessary
to adapt the strategy to the domain at hand. For
this reason, the IDE offers an interactive debugger
interface to the rule program. It allows for single
step execution, display of call stacks and variable
substitutions as well as a direct query interface to
evaluate the effects of single rules.

5 Testing

The cycle of grammar maintenance, testing and eval-
uation is a tedious and time consuming part of the
development of a new application. The IDE offers a
set of utilities simplifying the task.

5.1 Batch Testing
Grammar Testing

The IDE offers a tool for batch testing of grammar
coverage. Here, a text string is passed through the
semantic parser and conversion routine. The result-
ing feature structure is then presented graphically to
the user. The designer is then prompted to evaluate
the semantic representation of the utterance. Cur-
rent choices are those defined by the partial order
of feature structures. In other words, the system’s
designer can specify if the semantic content contains
information that is equal to, less specific than, more
specific than or inconsistent with the information
the sentence conveys. The text string, the feature
structure and the evaluation are then automatically
entered to the batch test set. The system designer
can then run this batch test set later in the devel-
opment process and receive notification should the
resulting feature structures differ in informational
content. This procedure assumes, however, that the
domain model 1s not changed between the tests. Al-
ternatively, the system designer can enter the desired

feature structure directly.
Testing for Goal State Transitions

In addition to the grammar coverage batch test,
there is a dialogue goal batch test. As mentioned
above, the state of the dialogue manager is implic-
itly described by the vector of goal states. FEach
utterance is assumed to represent a speech act that
performs a state transition in some of the dialogue
goals. Here, we store together with the utterance
two vectors of dialogue goal states: before the utter-
ance has been processed and after the utterance has
been processed. During batch testing, the dialogue
goals are set to the states specified in the first vec-
tor. Subsequently, the utterance is passed through
the dialogue system. Then the actual goal states af-
ter processing of the utterance are compared with
those in the batch test and differences are prompted
to the application designer.

Testing for Orthogonality between Modules

Testing for dialogue goal state transitions requires
the configuration of dialogue packages to be constant
between tests. However, there are several utterances
whose meaning can unambiguously be attributed to
one dialogue package. For this reason, the IDE of-
fers an additional batch test. Here, the utterances
are assigned a dialogue package as well as vectors of
goal states. In contrast to the state transition test,
we only represent goal states from dialogue goals in
the package in question. As above, the application
developer is notified if the desired goal configuration
in the package differs from the calculated one. More-
over, any goals not in the assigned dialogue package
whose state differs from DESELECTED are displayed
to the user.

5.2 Dialogue Goal Activation and WOZ

Since the IDE contains a detailed description of
the dialogue goals, it is possible to present the di-
alogue goals to the application designer in form that
needs to be filled in through the standard graphi-
cal user interface rather than through speech. Once
the back-end application is in place, the application
designer may proceed to test the interface of the di-
alogue system with the back-end application. An-
other possibility would be to use this feature as a
poor man’s Wizard of Oz interface, in which case
only the domain model and the task model need to
be in place (although additional support from the
database would be desirable). This feature is cur-
rently under development.

6 Discussion

We are currently using the described system to pro-
totype two spoken language applications. While it is
too early to arrive at any conclusive results, our pre-
liminary experience shows that a substantial amount
of time is saved simply by using the wizard to avoid

formatting errors and typographic errors in the sev-
eral specification files. Moreover, as the wizard dis-
plays the options available for the user to choose
from, 1t is easier to arrive at consistent specifications.
This is particularly true in the instances where type
information from the domain model can be used to
reduce the number of options.

Another characteristic of the system is its inte-
grated architecture. The entire system runs as a
single thread in a single process. Comparing to an
earlier version of the system in which a client/server
architecture was employed, we find debugging and
testing easier.

From a domain model perspective, the dialogue
packages as a primary building block offer a coarse
granularity compared to dialogue states, speech ob-
Jjects or dialogue libraries. We feel it is for this reason
more comprehensive. Whether this characteristic is
of benefit and whether the specifications in the dif-
ferent packages are sufficiently orthogonal to not in-
teract when building the final system remains to be
seen.

Although the specifications of knowledge sources
in separate modules can be independent of each
other, undesired interaction may not be excluded.
In particular, the informational content of the dia-
logue goal specifications need pairwise inconsistent.
The reason is that the dialogue manager bases its de-
cision on the compatibility of the dialogue goals with
the information in the discourse. If one dialogue goal
were less specific than another, the second dialogue
goal could never be reached as the first is satisfied
first. For this reason, the dialogue manager checks
for pairwise inconsistency of the goals at runtime.

Future work includes the integration of a speech
recognizer directly into the development environ-
ment and improvements of the graphical user in-
terface to speed up the design process. These im-
provements can only be made by experiences gained
through continuous use of the wizard.

Acknowledgements

This research is supported by the Defense Advanced
Research Projects Agency under contract number
DAADI17-99-C-0061. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the author and do not neces-
sarily reflect the views of the DARPA, or any other
party. I would like to thank the members of the dia-
logue working group in the DARPA Command Post
of the Future project for valuable discussions.

References

M. Araki, K. Komatani, T. Hirata and S.
Doshita. A Dialogue Library for Task-Oriented
Spoken Dialogue Systems Workshop on Knowl-
edge and Reasoning in Practical Dialogue Sys-

tems. Stockholm, Sweden, 1999. Available from
http://www.ida.liu.se/ext /etai.

B. Carpenter. The Logic of Typed Feature Struc-
tures. Cambridge University Press, 1992.

R. Cole. Tools for Research and Education in Speech
Science. Proceedings of the International Confer-
ence of Phonetic Sciences, San Francisco, USA,
1999.

M. Denecke and A. Waibel, Dialogue Strategies
Guiding Users to Their Communicative Goals.
Proceedings of Eurospeech, Rhodos, Greece,1997.
Available from http://www.is.cs.cmu.edu.

M. Denecke and A.H. Waibel, Integrating
Knowledge Sources for a Task-Oriented Di-
alogue System. Workshop on Knowledge
and Reasoning in Practical Dialogue Sys-
tems, Stockholm, Sweden,1999 Available from
http://www.is.cs.cmu.edu.

M. Denecke. Modularity in Grammar and On-
tology Specification. Proceedings of the MSC
2000 Workshop, Kyoto, 2000. Available from
http://www.is.cs.cmu.edu.

M. Gavalda and A. Waibel. Growing Seman-
tic Grammars. Proceedings of the COL-
ING/ACL, Montreal, Canada. Available from
http://www.is.cs.cmu.edu.

Anke Koelzer. Universal Dialogue Specification for
Conversational Systems Workshop on Knowl-
edge and Reasoning in Practical Dialogue Sys-
tems. Stockholm, Sweden, 1999. Available from
http://www.ida.liu.se/ext /etai.

K.A. Papineni, S. Roukos and R.T. Ward. Free-Flow
Dialogue Management Using Forms. Proceedings
of EUROSPEECH 99, Budapest, Ungarn, 1999.

S. Sutton, D. G. Novick, R. A. Cole, and M. Fanty.
Building 10,000 spoken-dialogue systems. Pro-
ceedings of the International Conference on Spo-
ken Language Processing, Philadelphia, PA, Oc-
tober 1996.

Walker, M.A. and Litman, D.J. and Kamm, C.A.
and Abella, A. PARADISE: A Framework for
FEvaluating Spoken Dialogue Agents Proceedings
of the 35th Annual Meeting of the Association of
Computational Linguistics, 1997. Available from
http://www.research.att.com/ walker.

A Rational Agent for the Construction of a Semantic Model*

PAUTRET Vincent
Université de Rennes |, ENSSAT
6 rue de Kérampont, BP 447
Lannion, France, 22300
Vincent.Pautret@enssat.fr

Abstract

This paper presents a methodology that
aims at building knowledge models from
a naturad language description of a
domain. Our methodology is based on
the establishment of a dialogue with the
knowledge engineer of an application.
This dialogue is motivated by the
Semantic Differentiation Process, which
solves problems related to acquisition
and modelling.

Moreover, the dialogue can be naturally
formalised within a theory of
communicating rationa agents. We can
thus consder a more complete
automation of the process of modelling
and show how to integrate our
methodology into this type of theory.

I ntroduction

Knowledge Based Systems separate the
semantic model - which handles the system
knowledge - from the reasoning process -
which uses this knowledge. The main
advantage of this approach is that only the
semantic model has to be changed to handle a
different application domain. However, the
creation of a semantic model for a given
application is a manual process, which is
difficult to automate (Paris and Vander Linden
(1996)).

Tools (Heijst et a. (1997)) or workbenches
((Mikheev and Finch (1995), (Delisle (1996))
dready exist that am at building semantic
representations at the domain leve (using the
vocabulary of KADS (Wielinga et al. (1992)).
With these tools and workbenches, conceptual
knowledge models (like ontologies)
independent of the application domain are
built. However, the knowledge engineer task
remains fastidious. One of the difficulties in

* This work was realised within the framework of a PhD

in France Télécom R&D.

completely automating the acquisition and
modelling process comes from a lack of
interaction with the knowledge engineer.

In order to improve these interactions (and thus
to facilitate modelling), we propose a
methodology based on a natural language
dialogue with the knowledge engineer. This
methodology can be implemented into a
rational agent. In this way, this agent is given
capabilities of modelling by means of
conceptual diagrams defined in our
methodology. We show how to make this
integration within the forma theory of
communicating rational agents of Sadek
(Sadek (1991), (Sadek et al. (1997))).

Section 1 introduces the bases of the
methodology. Section 2 explains how to
integrate it into a theory of rational agents for
its effective implementation. The last section
presents the guidelines to implement our
methodology into arational agent.

1 Basesof the methodology

The methodology aims at building a semantic
moded of a domain from a natural language
description. It is based on three successive
stages: the acquisition stage, the modelling
stage, and the transfer stage.

The acquisition stage consists of the analysis
of each domain description utterance. A
morpho-syntactic analysis is followed by a
semantic analysis in order to build a semantic
representation of each utterance. In an iterative
way, these representations are integrated into a
general model: the Construction Model (CM).
The modelling stage consists of an interactive
reorganisation of the CM once the description
process is compl eted.

The transfer stage extracts the reevant
information from the CM and builds the
Semantic domain model.

1.1 Construction Mode€l

On the one hand, Construction Model must
have a sufficient expressiveness, which makes
it possible to represent domain knowledge and
knowledge related to its own structure at the
same time. On the other hand, it must have a
flexible enough structure, which can be
handled ssimply and efficiently.

We use a formal language based on KL-ONE-
like description logic. The central part of the
model is a semantic network whose nodes are
concepts and whose arcs are semantic domain
or modeling relations (for example
subconcept, composition, property, etc.) The
representation language aso offers the
possibility to express abstract concepts (as a
composition of concepts and relations of the
network), as well as constraints and negative
knowledge related to the concepts and relations
of the network.

1.2 Basic tools for
acquisition

knowledge

During the modelling process, which is based
on dialogue, the knowledge engineer
utterances are anaysed and the relevant
information has to be extracted from them. For
this purpose, we use two tools to acquire
knowledge from texts.

The first tool is a robust morpho-syntactic
analyser, which produces a syntagmatic graph
(Giguet (1998)) where each node is a syntagm
and each relation is a syntactic relation. A
syntagmatic graph is produced for each
utterance of the description.

The semantic tool makes use of the results of
the morpho-syntactic tool to produce a
semantic representation of each utterance.
Thanks to four basic operations, it integrates
this representation into CM. The first operation
identifies the concepts that are aready known.
The second one is related to generalisation and
organises the concepts into hierarchies. The
third one cal culates the common characteristics
to the concepts. Finaly, the last one places the
semantic relations resulting from the semantic
analysisinto CM.

1.3 Semantic Differentiation Process

The Semantic Differentiation Process is based
on a set of generic conceptua diagrams, whose
role is to modify the CM structure. We follow
an empirical process to exhibit modelling
problems and to define a conceptual diagram
as asolution to each one.

An initial situation and severa fina situations
define a conceptual diagram. Situations are
expressed in terms of the language of CM
representation, namely as sets of first order
logic formulae. A Situation corresponds to a
particular structuring of generic concepts and
generic relationships between these concepts.
A condition is associated with each final
situation. The conceptual diagrams are
represented in the following form (we will use
more readily a chart of the initial and final
situations of a diagram as on the example of
figure 1).

Name_of the diagram
<Initial _situation>
<condition_1> <Final_situation_1>

<condition_n> <Final_situation_n>

where Initial_situation and Final_situation_k
(k € {1,...,n}) refer to the initid situation and
the n final situations associated with the
diagram, and condition_k (k €{1,...,n}) refer
to the condition associated with
Final_situation k.

Diagrams are divided into three main families.
The first family (two diagrams) is dedicated to
the integration problems. The second one
(seven diagrams) allows mode simplifications
while the third one (eleven diagrams) alows
modifications of the model structure. The
diagrams congtituting the first family are
applied during the acquisition stage while
those of the two other families are applied
during the moddlling stage. The diagrams are
ordered according to the importance of the
modifications they produce on the model. For
example, the simplification diagrams are
applied before the modelling ones.

A diagram can only be used once the mode
under development has validated the initial
situation. When the initial situation has been
instantiated, a dialogue begins with the
knowledge engineer until one of the conditions
associated with each final situation is
validated. CM is then restructured to resemble
the final situation, which corresponds to the
condition. The role of this didogue is to
determine the best transformation of the model
by the considered conceptua diagram for the
problem under consideration. An algorithm of
processing of graphs carries out the passage
from the initia situation to the selected fina

situation, which directly removes assertions
from the model or adds someto it.

Initial situation
C (03
T R—RB~
Cl Cf CQ Ch Cn
Final situation 1
R
C (03
G|l |G |G ||C |]C,
Final situation 2
C (03
/|\ R
R R
c.|-|¢cl..lcl.|c|-|c
C,: concept : relation
R: relation —— : subconcept relation

determined thanks to the following dialogue
with the knowledge engineer:

Q1 — Subconcepts C,, ..., C, of C have the same
relation R with C'. Have all subconcepts of C
thisrelation with C'?

With a positive answer, the model is
transformed like final situation 1 (by adding
relation R on C and by removing R between
subconcepts of C and C'). With a negative
answer the dialogue proceeds as follows:

Q2 — What are the different concepts that have
this relation Rwith concept C'?

The model then evolves to situation 2.

Figure 1: Factorisation diagram

Figure 1 shows the Factorisation diagram,
which belongs to the second family of
diagrams. The role of this diagram is to
factorise a relation from the subconcepts to
their supconcept (final situation 1) or to add
relations, which would have been forgotten by
the knowledge engineer (final situation 2). The
first case makes it possible to reduce the
number of relations and thus the complexity of
the model. With the second one, supplements
can be added to the model after missing
information has been detected.

The initial situation shows several subconcepts
C, ..., Cg of concept C, which have the same
relation R on the same concept C'.

In fina Situation 1, relation R is placed on
concept C, whereasin final situation 2, relation
R is extended between C' and some of the
subconcepts of C (conceptsC,, ..., C, ..., C).
When the initial situation is detected in the
model, the evolution of the model is

Initia situation
C

C, C .. |c

Final situation
ropert
c | property P
P P P,

C,: concept —Pp : relation
P, property — : subconcept relation

Figure 2: Property Extraction diagram

Figure 2 shows the Property Extraction
diagram, which belongs to the third family of
diagrams (modelling stage). It is intended to
extract a particular property of a concept from
its structure. From the structural viewpoint, a
definition of a concept could be compared to
the complex terms extracted by LEXTER
(Bourigault (1994)). A concept comprises a
word in head position (the headword) and a list
of qudifications. Each qudification is
recursively composed of a word and a list of
gualifications. For example, a specialised
server for weather forecast has the word server
as headword and weather forecast and
specialised as qualifications. In the context of

the diagram of figure 2, weather forecast is
seen as a property of the concept.

Hence, if the system detects different
qualifications of the concepts that have the
same headword, the system asks the
knowledge engineer whether it is possible to
gather the qualifications under a same
property. The dialogue associated to this
diagram is very simple. The system only needs
to ask the knowledge engineer if ghe wants to
apply the diagram. If s/he answers positively,
the system asks the knowledge engineer for the
name of the property. Otherwise, the system
does not modify the model.

1.4 A short example

Here is an example of dialogue in the AGS
application, which is a vocal query, over the
telephone, of the shared-revenue information
voice services directory (applied to the areas of
“employment” and “weather forecast”) hosted
by France Téécom. K stands for the
knowledge engineer, S for the system, and N
for note on the current modelling state.

K: There exist servers for weather forecast,
servers for employment and mail order
Servers.

N: The system cresates the concept "server" and
places the three types of servers as subconcepts
of this abstraction (by using the second basic
operation, cf. section 1.2).

K: The servers for weather forecast and the
servers for employment have telephone
numbers.

K: Thatisall.

S OK.

S The servers for weather forecast and the
servers for employment own a telephone
number. Do mail-order servers own a
telephone number as well?

K: Yes.

S OK.

N: The system factorizes the relation on the
concept "server" by applying the Factorization
diagram.

S | detect some properties of the servers
(weather forecast, employment, and mail
order). Is it possible to group together these
properties under the same concept?

N: The system applies here the Property
Extraction diagram.

K: Yes.

S Could you give the name of the concept?
K: Theme.

S OK.

N: Then the system builds the final model.

telephone number
T possess
property
server theme
| | |
weather employment mail-order
forecast

Figure 3: Example of a semantic model

2 Integration of the methodology into
arational agent

The core of our methodology is the dialogue
with the knowledge engineer. The
communicative rational agents provide a
theoretical framework that is particularly
adapted to the formalisation of this dialogue. In
this way, we extend the theory of rationa
agents proposed by Sadek (Sadek (1991)), thus
giving the agents the ability to build a semantic
model of an application while following the
interactive principles of our methodology.

2.1 Thetheory of rational agency

The whole theory of rationa agency is
expressed in a homogeneous multimodal logic
of mental attitudes and actions (or events).
Modal operator of belief B satisfies a KD45-
model. The resulting agents are fully
introspective and have consistent beliefs.
Formula Bp is read “property p is a logical
consequence of the beliefs of agent i”. The
mental attitude of intention is defined as a
complex combination of primitive mental
attitudes like belief and choice!, as a relatively
similar way as Cohen and Levesque (1990).
Formula I,p is read “agent i intends to bring
about proposition p”.

In order to reason about action, two modal
operators are introduced, a being an action
expresson and ¢ a formula Feasible(a,¢)
means that a can take place and if it does, ¢

1 For sake of simplicity, we only focus on belief
and intention. For more details, see Sadek (1991).

will be true after that, and Done(a,$) means
that a has just taken place and ¢ was true
before that.

The formal theory provides a set of axioms that
specify rational agent behaviour in multi-agent
environment and flexible behaviours according
to the type of desired agent. For example, the
first ones alow infer chains of actions
corresponding to the agent intentions and the
second ones generate cooperative reactions.

2.2 Primitive action of modelling

We propose to formalise conceptual diagrams
with primitive actions of the theory of rational
agency. Conceptua diagrams are then directly
usable and can be planned by the agents like
the other actions.

2.2.1 Action mode

For each action to be planned, the classical
components preconditions and effects are
defined with the following meaning.
Preconditions refer to the statements that must
be true for the action to be performed. Effects
refer to the statements that are intended to hold
in the world following the performance of the
action. Actions are represented in actions
schemata:

<actor, Action(parameters)>
P: ¢,
E: ¢,

where actor refers to the agent of the action,
parametersrefers to eventua parameters of the
action, ¢, refers to the preconditions, and ¢,
refersto the effects.

For example, the communicative act of an
agent i informing an agent j that a proposition
¢ holdsis defined by the actions schema:

<i, Inform(j, ¢)>
P: BoA—B(Bo v B—)
E: B¢

Thus an agent who achieves the act to inform
of ¢ aimsthat j believes that ¢ is true. It cannot
make it if it thinks itself ¢ true and does not
think that j already has a belief on ¢.

Among the axioms, which define the
characteristics of an action in the theory, we

exhibit the one, which refers to the
preconditions?:

B(Feasble(a) < ¢,) D

where ¢, refers to preconditions of a.

2.2.2 Actions and conceptual diagrams

In order to express conceptual diagrams of our
methodology into the theory, we propose to
associate with them the primitive actions,
which make the transformation from their
initial situations to each one of their final
situations. In particular, this is made possible
thanks to the fact that the situations can be
described in a logical language. In this way,
each one of these primitive actions corresponds
to a modification of the mental state of the
agent. We define actions associated with
conceptual diagramsin the following way:

<i, Action_1>
P: B/(initial_situation A condition_1)
E: B(final_situation_1)

<i, Action_2>
P: B/(initial_situation A condition_2)
E: B(final_situation_2)

In this schemata, i refers to the agent (the
modeller agent), which applies the
methodol ogy, initial_situation,
final_situation 1, ... refer to logical formulae
associated with situations of a conceptua
diagram, and condition_1, condition_2,
refer to logical formulae, which describe
conditions for each fina dituation of the
conceptua diagram.

2.2.3 Axiomsfor conceptual diagrams

Unlike actions defined in the theory of Sadek,
the primitive actions that we associate with
each conceptual diagram are not planned
according to their effects. The conceptua
diagrams are applied as long as possible.
Therefore, their planning by the modeller agent
does not depend on the goals it seeks, but
rather on the current situation of its mental
state, i.e. on its knowledge.

The following axioms schema corresponds to
this strategy. As soon as an action can be

2 Feashle(a) is the syntactic abbreviation of
Feasible(a, True).

applied, it must be done. The calculation of
feasibility results from the axiom (1) of the
theory.

B (Feasible(a)) = | Done(a))

where a refers to a primitive action associated
with a conceptual diagram.

Conditions associated with each aternative of
a conceptual diagram are the source of the
dialogue to apply the diagram (see section 1).
We have to supplement the mode of
communicative behaviour of modeller agent in
order to convey to it the capacity to initiate the
dialogue with the knowledge engineer. This
dialogue increases its knowledge until it can
determine which aternative of the diagram
(i.e. which primitive action) to apply. For each
primitive action, we introduce an axioms
schema of the following form:

B (initial_situation) A ¢ = |y (©))

where initial_situation is associated with the
corresponding conceptual diagram. ¢
(condition of release of the primitive action)
and vy (goad starting the corresponding
didlogue) are expressed according to
condition k (condition associated with the
primitive action).

For example, ¢ can be defined by
—Bif (condition_k) and y by Bif (condition_K).
Bif¢ is a syntactic abbreviation defined in the
theory and means that agent i knowsif ¢ istrue
or not.

When several actions (resulting from the
intentions derived by the axioms) are
applicable in the same state, logic does not
make it possible to choose the order in which
they are applied. In an implementation, we
need to be careful to follow the order defined
by the methodology. This is achieved by a
process of control of the inferences.

2.3 Example

We show the reasoning process related to the
application of the factorisation diagram
presented in section 1. The primitive actions
associated to the diagram are:

<i, Facto 1>
P: B(initial_situation A relation(R,C,C’))
E: B(final_situation_1)

<i,Facto_2>
P: B(initial_situation A —réation(R,C,C')) A

, Bif (relation(R,C,,C’))
E: B(final_situation_2)

whereR, C, C, ..., C,and C' are the relations
and the concepts identified in the conceptual
diagram (cf. figure 1).

The two axioms schemata associated to the
primitive actions are respectivelys:

B (initial_situation) A —Bif, (relation(R.C,C))
= | Bif (relation(R.C,C’)) 4

B (initial_situation) A B(—relation(R,C,C’)) A

—[Aeq. ., Bif (relation(RC,C"))] = | Bref (ix
relation(Rx,C’) A subconcept(x,C)) 5)

where R, C, and C' are the relations and
concepts identified in the conceptual diagram
(cf. figure 1).

Let us suppose that the modeller agent is
configured in such a way that the conceptual
diagram is applicable, i.e. B(initial_situation)
can be derived from its mental state. Moreover,
let us suppose that it can infer no knowledge in
connection with relation(R, C, C'), i.e. it can
only conclude (Bif (relation(R, C, C')).

The instantiation of the axiom (4) thus
generates the intention of the agent to know if
the concepts C and C' are or not linked by R.
Then the traditional mechanisms of planning of
the theory take over (cf. Sadek (1991)) and
produce an act of dialogue aiming at requiring
missing information to the knowledge engineer
(cf. didlogue Q1 of section 1.3).

If the answer to this question is positive, the
axioms of rational behaviour of the theory
involve B(reation(R, C, C)). All the
preconditions of the primitive action Facto_1
are then checked and the axioms (1) and (2)
induce the execution of the first alternative of
the conceptua diagram (Facto_1). The
resulting mental state of the agent conforms to
the final situation 1.

If, on the contrary, the answer is negative, the
agent acquires the knowledge: B(—relation(R,
C, C)). The axiom (5) then applies as long as
the agent does not have a knowledge

3 Bref(ix ¢(x)) means that agent i knows the
objects, which check the property ¢.

supplements on relation(R, C, C') for dll
ke{1,..., n}. These produces the intention at
the origin of the act of dialogue aming at
requiring of the knowledge engineer the whole
of the subconcepts of C in relation R with C
(cf. dialogue Q2 of section 1.3). The primitive
action Facto 2 can then be carried out and
leads to a mental state that conforms to the
final situation 2.

3 Integration into an operational
system

3.1 TheArtimistechnology

The Artimis technology of France Télécom
R&D provides a generic framework to
instantiate intelligent dialoguing agents. Such
agents can interact cooperatively in natural
language with human users.

Artimis software is composed of four main
modules: arational unit (which isthe kernel of
the system), a natural language interpretation
unit, a natural language generation unit, and a
domain knowledge management unit (Sadek et
al. (1997), Sadek (1999)).

The rational unit conveys the agent the ability
to dialogue and to reason about knowledge and
action.

The natural language interpretation unit uses
island-driven parsing and semantic completion
(Sadek et a. (1997)). Idand-driven parsing
means that small syntactic structures in the text
are spotted, with as few range dependencies as
possible. The semantic completion builds a
well-formed logical formula with the result of
the parse.

The natural language generation unit verbalises
dialogue acts produced by the rational unit.
Finaly, the domain knowledge management
unit contains a representation of the domain
knowledge. It provides severa functions (like
concepts identification) to have access to the
knowledge.

Artimis software works in lab versions on
several real applicationslikethe AGS one. Itis
written in Quintus Prolog.

3.2 Guiddines for the integration into
an Artimis dialogue agent
We present, in this section, the needed

modifications in order to integrate our
methodol ogy into an Artimis dial ogue agent.

3.2.1 Modification of the two natural
language components

We have to modify the natural language
interpretation unit at two levels.

Firstly, the system must take into account al
the words of the utterance in order to detect the
new concepts. We make the assumption that
the sentences ae syntacticdly and
semantically correct.

Secondly, arobust syntactic analysis, based on
an approach such as (Giguet (1998)) must be
implemented to get as much information as
possible on the relations between the concepts.
In order to solve syntaxico-semantic
ambiguities we introduce two particular
relations: unknown and context. The unknown
relation means that the analyser detects a
relation but can not determine its exact nature.
The relation context means that two concepts
are present in the same utterance without any
other information.

Example:

Input sentences:

There are servers and telephone numbers.
Results:

concept([server]) concept(] telephone,
number])
relation(context, [server], [telephone,
number])

The natural language generation unit recovers
the vocabulary necessary to the generation of
sentences related to the domain thanks to the
interpreter, which keeps the link between the
concepts of CM and the vocabulary of the
description.

3.2.2 Moadification of therational unit

In order to increase the reasoning capabilities
of the rational unit so that it can direct the
construction of the semantic moddl as well as
the dialogue with the knowledge engineer, we
add the logical axioms and the primitive
actions that we defined in section 2. The
rational unit should then not be rebuilt but
rather updated.

3.2.3 Maodification of the
management unit

The main modifications concern this module.
We extend the language of representation of
the model with the primitives of the CM.

In order to be able to insert a new knowledge
in the model, we add the four basic operations.

knowledge

The original identification function is modified
to take into account the modification of the
knowledge representation language.

The second function builds the hierarchies by
using the structure of the concepts. For
example, “ server for employment " and
“server for weather forecast” belong to the
same hierarchy since they are two “servers’.
They are generalised by the concept “ server”.
The third function places relations between
two concepts and their qualifying common
part. For example, “server for employment”
and “employment theme” have the common
part “employment”.

The last one is a transfer function between the
result of interpretation and CM.

The organisation algorithm of the model tries
to instantiate the initia situations of the
diagrams in a definite order. This order
depends of the priority associated to each
diagram. The priority is given according to the
transformations carried out by the diagram: the
more dignificant the transformations, the
weaker the priority. When a situation is
validated, the corresponding formulae are
injected into the rational unit. This one then
takes over to caculate a question. Following
the answer of the knowledge engineer, a new
knowledge is asserted and the process starts
again from the beginning. When no diagram is
applicable, the algorithm stops and the
knowledge engineer is provided with the
model.

4 Conclusion

We define a methodology of semantic
modelling of a domain. It is based on
conceptua diagrams that formalise the
incremental evolutions of the structure of the
semantic model during its construction. A
dialogue with the knowledge engineer directs
the application of these diagrams.

We also formalise the use of our methodology
within a theory of communicating rational
agents. This specification provides the rational
agent with new reasoning capabilities, which
am at building a semantic model by
questioning the knowledge engineer and by
applying the conceptual diagrams according to
the principles of our methodology.

We thus open prospects for automation since
effective agents implementing this type of

theory are dready operational like, for
example, those resulting from Artimis
technology (Sedek et a. (1997), Sadek
(1999)).

References

Bourigault D. (1994) Lexter, un logiciel
d Extraction de Terminologie. Application a
I’acquisition & partir de textes. Ecole des Hautes
Etudes en Sciences Sociales, Paris.

Cohen P.R. and Levesque H.J. (1990) Intention is
choice with commitment, Artificial Intelligence
42(2-3):213-262.

Delise S. (1996) Le Traitement Automatique du
Langage Naturel au Service de I'Ingénieur de la
Connaissance : le Systeme READER.
International Conference on Natural Language
Processing and Industrial Applications, Moncton
(New-Brunswick, Canada).

Giguet E. (1998) Méthode pour [’analyse
automatiqgue de structures formelles sur
documents multilingues. Thése de Doctorat
Informatique, Université de Caen, France.

Mikheev A. and Finch S. (1995) Towards a
Workbench for Acquisition of Domain
Knowledge from Natural Language. Proceedings
of EACL’ 95, Dublin, Ireland.

Paris C. and Vander Linden K. (1996) Building
Knowledge Bases for the Generation of Software
Documentation, COLING'96, University of
Copenhagen, Denmark.

Sadek M.D. (1991) Attitudes mentales et
interaction rationnelle : vers une théorie formelle
de la communication, Thése de Doctorat
Informatique, Université de Rennes |, France.

Sadek M.D., Bretier P., and Panaget F. (1997)
ARTIMIS: Natural Dialogue Meets Rational
Agency, 1JCAI-97, Japan.

Sadek D. (1999) Design Considerations on
Dialogue Systems. From Theory to Technology —
The Case of Artimis- Proceedings of the ESCA
TR Workshop on Interactive Dialogue for
Multimodal Systems (IDS99), Kloster Irsee,
Germany.

Van Heijst G., Schreiber A.TH., and Wielinga B.J
(1997) Using Explicit Ontologies in KBS
Development, International Journal of Human-
Computer Studies, 42(2/3) : 183-292.

Wielinga B., Schreiber A., and Breuker J. (1992)
KADS A Modelling Approach to Knowledge
Engineering. Knowledge Acquisition 4(1):5-53.

Diamod - a Tool for Modeling Dialogue Applications

Anke Kolzer

Speech Understanding Systems (FT3/AV)
DaimlerChrysler AG — Research and Technology
P.O.Box 2360
D-89013 Ulm (Germany)

e—mail: anke.koelzer@daimlerchrysler.com

Abstract

Speech dialogue systems are currently becom-
ing state—of-the—art for different kinds of ap-
plications, but they are still weak in the sup-
port of spontaneous speech and correct inter-
pretation of what was said. One reason for
the lack of good interactive dialogue systems is
their complexity. To develop a system which is
able to handle more than simple commands and
phrases requires a lot of experience and time.
To be able to accelerate and improve this pro-
cess we are currently working on methods and
tools which support this development. A new
method called Dialogue Statecharts was defined
for the graphical specification of complex dia-
logues. It is capable of representing parallel di-
alogue steps which is e.g. necessary for mixed—
initiative dialogues. Our tool system named
Diamod provides editors for different dialogue
concepts, such as dialogue structures, grammars
and parameters. The modeling is supported by
graphical editors for Dialogue Statecharts and
Task Hierarchies. Diamod is able to check
for the completeness and consistency of dia-
logue models. One goal when developing Di-
amod was to provide specification models which
are universal enough to be interpreted within
different dialogue systems, i.e. different imple-
mentations of generic conversational systems.
With the help of a uniform representation of
data a transformation between different mod-
els and different dialogue description languages
(DDL) such as VoiceXML (AT&T et al., 2000)
and some in—house-DDLs, such as Temic-DDL
and Dialogue-Prolog, will be possible.

!By this we mean systems which are implemented
application independently and are easily adapted to dif-
ferent applications.

1 Introduction

You find different dialogue system approaches
on the market place and in research. One has
been developed by the DaimlerChrysler research
and is able to understand spontaneous speech
speaker—independently and carry on dialogues
on special topics. The structure and algorithms
used are based on concepts developed in the
Sundial project (Peckham, 1993). Most applica-
tions are made for telephony domains. Thus, up
to now we gathered experience in applications
like train time-table information, call centers
for insurances and telematic systems for traf-
fic data (see (Brietzmann et al., 1994), (Heis-
terkamp and McGlashan, 1996), (Ehrlich et al.,
1997), (Boros et al., 1998) for further informa-
tion).

We made the experience that developing new
applications is very expensive concerning time
and staff and needed tools to accelerate the
process. Another goal was to make dialogue
application modeling possible even for non—
experts and help the expert to achieve consis-
tent reusable applications. As there are dif-
ferent dialogue systems all over the world and
many steps of application development are sim-
ilar or even the same for all of them we de-
cided to create tools which are system indepen-
dent resp. easily adaptable to different needs
and different dialogue systems. Our focus was
on modeling dialogue structure for information—
extracting resp. —processing systems of the slot—
filling kind (Bilange, 1991).

In order to find out what functionality a tool
must provide to be helpful we analyzed the way
we construct dialogue applications and the dif-
ferent knowledge bases that are needed. Similar
operation steps have to be executed for every
new application in order to obtain a structured
and maintainable dialogue. Typical tasks are:

— modeling of the dialogue structure: i.e. di-
vide the dialogue into subdialogues to han-
dle a special part of the interaction like the
identification of a caller

— definition of the application parameters,
i.e. the parameters necessary to give infor-
mation to the caller or access a database
like the name of the caller

— attachment of system prompts to dialogue
situations like what the system has to say
when asking the name of the caller

— definition of the appropriate vocabulary
(pronunciation) and training of the lan-
guage models

— definition of linguistic structures (lexicon,
grammar, semantics)

— definition of the interface to the application
system (e.g. an SQL-interface to a data
base)

Diamod supports the specification of all of
these dialogue application concepts (some are
still under construction) and generates code
which is interpreted by the target dialogue sys-
tem.

2 Requirements

Dialogue systems which allow for spontaneous
speech are much more difficult to handle than
those which are only capable of processing sin-
gle commands. Diamod has to support dif-
ferent ways of modeling dialogue structure and
to transform one into another regarding special
consistency requirements.

Thus the knowledge — i.e. the dialogue con-
cepts — has to be represented in a universal way
so that different aspects of dialogue can be mod-
eled and code for different dialogue systems can
be generated. A transformation from a sponta-
neous speech dialogue model to a rather restric-
tive command-and—control one and vice versa
should be possible or a transformation from a
state—based dialogue flow model to a rule-based
one which is organized in tasks (as will be de-
scribed in section 3.1). The approach must be
extensible with little effort for specifying the ad-
ditional knowledge bases, necessary for conver-
sational systems, such as grammar models.

All the concepts necessary for dialogue flow
modeling are to be integrated in the dialogue
flow tool. Thus the dialogue flow tool must pro-
vide concepts such as application parameters,
system prompts, state and task modeling. The
state logic has to be described in a rather ab-
stract way so that an automatic transformation
for different dialogue systerms is possible. There-
fore it is not sufficient to use the widely em-
ployed state machines with which the specialties
of spontaneous speech cannot be described ade-
quately. Instead we use a design method based
on Harel’s statecharts (Harel, 1987) which are
capable of describing concurrency and provide
special event mechanisms and called it Dialogue
Statecharts.

2.1 Properties of Diamod

Diamod is a CASE-tool (Computer Aided Soft-
ware Engineering) specialized for language en-
gineering which provides the concepts necessary
for dialogue specification. To be able to develop
new and modify old knowledge bases easily, the
tool supports the language engineer with the
following functionality:

Graphical editors for visual languages such
as Dialogue Statecharts for the specifica-
tion of structured dialogue data. The
graphical interface shall enable the user to
specify his models in a rather easy and in-
tuitive way.

Data representation of all relevant informa-
tion and the dependences between them.

Consistency checking by a formalism for
defining constraints on the models and in-
forming the user of violations of these con-
straints.

Code—generation (Prolog, VoiceXML, stan-
dardized speech API-code, ...) that can
be interpreted by the currently preferred
generic dialogue system.

Reuse support of formerly developed appli-
cation models.

Two-phase modeling in order to be able to
specify generic data independently of ap-
plication specific data.

Easy adaptability to further dialogue sys-
tems and needs.

The principles of working with Diamod are
described in the following sections.

3 The Tool System Diamod

Figure 1 shows the workflow in Diamod. The
central unit is the tool system which provides
methods for specifying knowledge, keeps the
data and models, and does consistency checks.
The user modifies the models with the help of a
graphical user interface. A second possibility in
future editions will be a textual interface for off-
line specification where the user can model the
dialogue with the help of a dialogue description
language. The tool system represents data in
a uniform graph representation and is able to
generate code in different dialogue description
languages such as Prolog? or VoiceXML depen-
dent on the generic dialogue system currently
in use. This code output (commonly spoken
textual files) is read and interpreted by the cor-
responding generic dialogue system at runtime.

3.1 Dialogue flow models

With Diamod the application developer models
what the system has to do in a given situation.
As this must work for different generic dialogue
systems, Diamod must also consider the generic
features of the system (because they can be dif-
ferent for different dialogue systems). Therefore
a two—phase approach is supported where in the
first phase a dialogue expert (usually the devel-
oper of the generic dialogue system) models ap-
plication independent data. In a second phase
an application developer models application de-
pendent data using the data which was modeled
by the expert (Kolzer, 1999).

Another feature of Diamod 1is the support
of different dialogue structure models. Our re-
search system is a rule-based system (Ehrlich,
1999) which can be modeled in Diamod using
tasks and task—hierarchy—diagrams. A rather
state—based system can be modeled using the
Dialogue—Statecharts—editor.

The following listing sums up the most impor-
tant steps which have to be done by the appli-
cation developer in order to specify the dialogue
flow of a new application:

— definition of the components of the dia-
logue; e.g. a subdialogue for handling the

2A predefined sublanguage of Prolog is used to model
applications for the DaimlerChrysler research system.

identification of the caller and finding out
why he calls, a subdialogue for reservation
of a ticket, and one for callers who only
want information.

— definition of the dialogue structure i.e.
what the system has to handle first and
what comes next. This is done by defin-
ing a start dialogue and the successors of
each dialogue.

— attachment of application parameters to
the dialogues; e.g. in the identification dia-
logue the system must request the caller’s
name and password.

— attachment of system prompts to the states
where the system has to say something such
as confirm the parameter ”Source” in the
reservation dialogue.

The following sections describe how Diamod
supports the modeling for different approaches.
With Diamod the user can model every concept
by entering a name, a comment and information
on the specific structure of the concept.

3.1.1 Task—Based Approach

The DaimlerChrysler research system is orga-
nized in tasks. Every task represents a sub-
dialogue, e.g. a caller identification or a hotel
reservation. The task structure is organized in
a task hierarchy as shown in figure 2, which
can be modeled with Diamod using the task—
hierarchy—editor. At runtime the dialogue sys-
tem can only activate the direct daughter— or
mother—task of a currently active task in this
hierarchy. This is used to make dialogue han-
dling easier and more consistent. It is not nec-
essary to model exactly the system states and
their sequence as it often has to be done for
other dialogue systems. The dialogue system
uses a set of dialogue acts (Gazdar, 1981), (Heis-
terkamp et al., 1992) such as confirm, request
and inform in order to distinguish between dif-
ferent dialogue situations. Every task has differ-
ent application concepts attached to it. Among
others these are:

Task (application) parameters: These are
the concepts which model what values must
be found out in order to reach the goals
of the task, e.g. to be able to make a
database access. This is usually what you

User Interface Dialogue

Representation

Gul Tool System
|:| Uniform
graph
\ representation
Consistency
checks
Models
Textual /
oﬁ_line Methods
interface

Code Generic
Generation Dialogue
System
> Lang1uage
|,
> Langnuage

Figure 1: Specification of dialogues with Diamod. The central unit is the tool system which
provides methods for the dialogue specification, keeps the data and is capable of checking the
consistency. Data are modeled by the user on-line with the help of a graphical user interface or
offline with textual dialogue description languages. When the specification is complete, the tool
system generates the code necessary for the dialogue system in use.

Start

Task 1

Identify

Task 2

Topic

Task 3

Reservation Information

Task 4

Figure 2: Task hierarchy diagram. Each rectan-
gle models a task i.e. a subdialogue. The edges
between the tasks show how tasks can follow

each

other.

have to request from the user such as a
caller name or address. Task parameters
can have attributes such as if they are op-
tional or obligatory and if the system may
repeat them or not (like passwords). Di-
amod supports the specification of such
parameters with user definable types such

as records and lists. The user can enter de-
faults and set the mentioned task parame-
ter specific attributes using masks as shown
in figure 3.

Databases and database parameters: If
the dialogue system uses databases every
task can declare a set of databases and
database parameters that it wants to
access. Task parameters can be mapped
to database parameters. E.g. if the user
speaks of tomorrow, this must be mapped
to a concrete database date like 03.03.2000.
This is supported by Diamod with special
masks.

System prompts: Given a dialogue act and
an application parameter this concept
models what the system has to say in that
situation. With Diamod dialogue acts can
be modeled and combined with task pa-
rameters in order to model the appropriate
prompt. References to the values of task
parameters can be used in a prompt such as
in "*Your name is <value name>?"". This

prompt is an example for confirming (dia-
logue act confirm) a task parameter name.
Diamod is able to check if a used param-
eter value reference is feasible. This is the
case when the appropriate task parameter
was declared for this task. Prompts can be
entered for different languages and Diamod
can check if there is a prompt for every sit-
uation in every language. Figure 4 shows
the prompt table mask of Diamod.

The prompt table can be calculated auto-
matically. Le. all combinations of dialogue
acts and application parameter values are
generated in order to gain all those system
states, where a system prompt is needed.
The result of such a generation is shown in
figure 4. The user only has to fill in the
prompts or delete table entries which are
not needed.

Language models, grammars and lexicons:

They can be declared for a task in order to
switch between different ones and improve
speech recognition this way. This is still
under development (see section 4.1).

Actions: The application developer can model
typed actions which should be performed
on entering, resp. exiting the task. They
can be related to task parameters using Di-
amod-masks which offer the user a list of
accessable parameters and functions.

The transitions between tasks are realized us-
ing rules and conditions which are generic. This
means that they are implemented in the dia-
logue system and do not have to be modeled
by the application developer. Such a rule is
for example that a task can only be exited suc-
cessfully if all obligatory task parameters are
known. In order to determine the next task to
be activated the user’s utterance is interpreted,
like if he wants a hotel reservation. This to-
gether with preconditions for entering possible
successor tasks is considered to control the dia-
logue flow.

When the developer has finished the specifi-
cation he or she starts the code generation. The
code produced can then be interpreted by the
dialogue system. For our research system this
is Prolog—code specifying the application knowl-
edge bases.

— Edit Task e

. General dafta

Marne: |IdentiM

System D |ZD

Documentation:

Vislbility: Expert 4

— Task—specific data

Parameter|Opt\una\|Secret |\m’urm| Infer| ijH
Related task |Password Optional Mot secret Inform Infer
parameters; name Optianal Mot secret Inform Infer ﬂﬂﬂ

=) I =

Parameter

L 15|

Related steer E
parameters: jjﬂ

Generate Prompt Table | Edit Prompt Table |

OK I Apply

| Cancel |

Figure 3: A mask for the description of a di-
alogue for the DaimlerChrysler research sys-
tem. In some dialogue systems parameters can
have attributes like if they are obligatory or op-
tional. Therefore the masks have to be con-
figured for the dialogue system. Clicking the
button Generate Prompt Table will generate
the possible prompts. Clicking the button Edit
Prompt Table will open the mask shown in fig-
ure 4.

3.1.2 State—Based Approach

Many dialogue systems use a state based ap-
proach where dialogue flow is described in
detail using state—transition-models combined
with events (Failenschmid and Thornton, 1998),
(Cole, 1999). Simple state-transition-models
are adequate for very simple dialogue systems
such as command-and-control systems.® As
conversational systems have a high complexity
of states, the expressiveness of state—transition—
models is too small to be a good means for di-
alogue flow modeling. The number of states is
usually too big to be handled by a human.

A good alternative for complex state model-
ing are statecharts as described by Harel (1987).
They provide different means of abstraction
such as concurrent states, state refinement, spe-
cial event handling and action triggers.

3These are systems where a speaker may only say spe-
cial commands like ”radio louder” and not speak spon-
taneously.

Thus modeling of complex dialogue flow can
be done in a rather intuitive way. Figure 6 is
an example of modeling the task data shown in
figure 2 in a state-based way. The dialogues
are represented as complex states that are re-
fined top—down to basic states where actions to
be triggered are defined. Thus the state DoDi-
alogue is represented as an XOR-State. This
indicates that the system can only be in one of
the states Identify, PossibleTopics or End at the
same time. In simple cases a dialogue is repre-
sented by a basic state (End) which need not be
refined any more. The Reservation—state must
be refined into substates, one for each dialogue
act. These are refined again as shown in fig-
ure 7. The developer defines entry and exit ac-
tions for basic states, i.e. actions to be triggered
when entering and when leaving the state. The
preconditions for changing the state taking an
outgoing transition are described by events and
conditions which have to occur. It is possible
to describe actions and conditions common for
several states or transitions by special means.
E.g. any exit from the states Reservation and
Information will lead to the state End.

There were already some state—based ap-

a %

Edit the prompt table by adding and/or deleting utterances.

\nstamcel Dialogue act | Parameters | Utterances 3

[]-h Bestaetigung

password: <V AR>
name: <V AR=
"Ihr Password ist $17

Bz Bestaetigung

B3 Bestaetigung

B4 Anfrage —'J :H ﬂ
E-5 Anfrage jJ ﬂ

] Anfrage

B-7 Fehlerfall

B3 Fehlerfall

B3 Fehlerfall —

B-10 Undefinierter Zustand

mL11 | Indnfininrtnr Tuictand il
] [|

QK I Cancel |
Figure 4: Defining the prompts for a dia-

logue. The application parameters that are
talked about in this dialogue have to be declared
for it before. For every dialogue act and every
application parameter there must be a system
prompt defined. The table here is calculated
automatically by Diamod using the generic pa-
rameters (in this case the dialogue acts) defined
by the expert and the application parameters
defined here. The application developer only
has to fill in the system prompts.

—- = Statecharleditor - Macro state: ApplMacroState117 SN

File Edit Layout Customize |

& % X X kgl

1 0

TN

DoDialogue |

PossibleTopics

=] P
4|

Figure 5: The Dialogue-Statecharts—editor.

4 .)
DoDialogue
i [not successful]
Identify
[continuation]
[successful]
y
(" PossibleTopics)
[topic=reservation] [topic=information]
y A
Reservation Information
_ J
v [no continuation]
End
exit action: <
close_down
S J

Figure 6: Describing dialogue flow in a stat-
echart based manner. States are represented
by rectangles with rounded corners and can be
structured. Thus the state DoDialogue is an
XOR~State. This indicates that the system can
only be in one of the states lying graphically in-
side. The small rounded arrow at the state Iden-
tify means that this is the default entry state for
DoDialogue. The transitions are labeled with
conditions indicating when this transition is to
be taken.

proaches for graphical dialogue representation.
They were never used for complex systems such

4)
HandleDepart

RequestDepart

entry action:

prompt("Where do you

want to start?")

[no valid source found)] . . [valid source found]
exit action:
get_user_utterance()
y
HandleProblem ConfirmDepart
entry action:
prompt("You want to
start from <source_par>?")
X
exit action:
get_user_utterance()
[confirmation negative]
[confirmation positive]
g J
\

Figure 7: Refining states: the confirmation sub-
dialogue in the reservation dialogue. The dia-
logue developer can add to the basic states ac-
tions to be triggered. Entry actions are exe-
cuted when entering the state, exit actions when
leaving the state.

as mixed— and user—initiative dialogues because
there expressiveness was too small. With Di-
alogue Statecharts we think that we found a
way to handle even such complex structures us-
ing the concurrency concepts of Harel’s state-
charts. Figure 8 shows an example for the rep-
resentation of a mixed initiative dialogue. All
the topics that a speaker may talk about in one
sentence are represented as parallel slots of a
concurrent dialogue state. All the slots repre-
sent parallel* substates of the dialogue system.
If the speaker can tell the departure city, the
destination city and the departure time in one
sentence in a train time table information, there
will be one slot for every parameter. The ac-
tion which the dialogue system has to perform
are described inside these slots. E.g. if the utter-

“This does not mean, that they really have to be pro-
cessed in parallel, but that they are independent of one
another.

HandleParams
[contains(Utter)

T T
1 1
DepartCity)] ' DestCity)] | DepartTime)]

1 1

1 1
X HandleDest X HandleTime

1 1

1 1

1 1

Figure 8: Concurrent states: dialogue param-
eters which the speaker can talk about in one
sentence are handled in parallel. The picture
represents e.g. for a train time table informa-
tion that the speaker can tell the departure city,
the destination city and the departure time at
one time. The statechart in figure 7 is a possible
refinement of the state HandleDepart.

[contains(Utter,} [contains(Utter)

ance contains a value for the departure time the
value of a dialogue parameter concerned with
the departure time must be set and analogous
for the other parameters.

Diamod supports the state—based modeling
with graphical editors which can check con-
sistency concerning the depth of the state—
hierarchy, unwanted cycles, completeness of the
system prompts etc. The rules which indicate
when the model is consistent must be entered
for every dialogue system, as they can be differ-
ent according to the given system. States can
be described in detail using masks similar to the
ones used for task modeling (see figure 3). Here
also prompts, conditions, actions and so on can
be related to the state.

This is only a short description of what can
be done with statecharts. The figures are sim-
plified for reasons of clarity. Statecharts offer
many features of abstraction which makes them
capable of complex state modeling.

The models specified by the user of Diamod
are internally represented as graphs which are
also used as the basis for the model transfor-
mation. In order to do this, rules have to be
specified how one graph can be automatically
transformed into another. As different dialogue
systems work with different concepts this trans-
formation cannot be completely automatic. The
approach here is to use defaults where possible
and ask the user to make some additional edit-
ing, where needed. Some information can be
lost by such a transformation. Diamod must
warn the user about this.

3.1.3 Rule-based approach

Advanced dialogue systems are often not mod-
eled using states and transitions but rules and
conditions. Diamod can support this, too, as
states can be used as abstract dialogue units.
Thus states can represent subdialogues and di-
alogue steps. Every state can be modeled by
a set of preconditions which indicate when the
state may be entered and postconditions which
represent when the state can be exited success-
fully. Rules can be specified to model how the
next state to be activated has to be selected.
There is a default order on the states which sup-
ports this selection. Some of these concepts are
used for the application modeling of the Daim-
lerChrysler research dialogue system.

The benefits of Diamod in this context has
not been investigated yet as one needs a well de-
fined dialogue description language as interface
to such a rule-based dialogue system.® Thus
this is work for the future.

3.1.4 Concistency checking

An important point is that the tool is capable
of checking the completeness of the models and
their consistency. This is done using an object—
oriented graph structure which represents all re-
quired concepts and the dependences between
them. Cousistency checks can be executed by
formulating constraints on the graph using path
expressions and having them examined by a spe-
cial path interpreter (Ebert et al., 1996). Thus,
it is possible to guarantee that for example

— there are no problematic cycles in the
model

— there is a system prompt defined for every
system initiative state (i.e. states where
the system has to speak an utterance) and
every parameter, so that the system never
runs in a situation where it is ’speechless’.

— domains are defined properly for all param-
eters

— there is a following state in every situation
(or the end of the dialogue)

4 Summary

The paper introduces the tool system Diamod
which implements a universal approach for the

5This would be a quite interesting project and we
would be grateful for suggestions of collaboration here.

specification of dialogue applications with a fo-
cus on task-oriented dialogue systems of the
slot—filling kind. The tool system supports dia-
logue flow modeling in terms of tasks and states
which can be specified in detail by describing
parameters, actions, prompts and other typical
concepts of dialogue models. The most impor-
tant features of Diamod are

— a uniform knowledge representation which
allows for automatic transformation of data
for different generic dialogue systems

— the possibility of modeling different aspects
of dialogue with different views on the data

— the capability of checking the consistency
of the models automatically

— the support of the reuse of models

— the easy adaptability to additional knowl-
edge bases and different dialogue systems.

4.1 State of work — technical realization

The task and statechart modeling are com-
pletely implemented as described in section 3.
The following summary gives an overview over
what Diamod contains up to now:

— task structure modeling as shown in figure
2

— Dialogue Statecharts modeling as shown
in figure 5; this includes relating prompts,
conditions, actions and events etc. to the
dialogues. These are described in masks as
shown in figure 3

— automatic prompt table generation

— system parameters and application depen-
dent application parameters which repre-
sent the dialogue state

— mapping from application parameters to
data base parameters; e.g. if the caller talks
about ”tomorrow” this has to be mapped
into the actual date in a form that can be
handled by the database such as 03.02.99

— attaching multilingual system prompts to
the modeled dialogues.

The system is implemented in C++ using
graphs and one set of constraints per dialogue

system, which represents the consistency rules
for this system.

We are currently working on adapting the
system to the needs of Temic-DDL (a dialogue
description language developed by Temic) and
VoiceXML (AT&T et al., 2000) and on the au-
tomatic transformation of models. The inte-
gration of a grammar specification tool (work
in progress) is planned for the end of the year.
This module will provide different grammar for-
malisms such as UCG (Zeevat, 1988), PSG
(Boros, 1997) and Java Speech API (Sun mi-
crosystems, 2000). The conversion between
these grammar types will be supported.

The implementation of the system has just
been finished so far that it can be used by appli-
cation developers. But as it is completely new
and the graphical user interface is still being
improved in order to make it more intuitive, we
have not made any experience yet how much the
win of using Diamod will be for realistic dia-
logues. We are currently starting the evaluation
and we are optimistic after the first tests.

4.2 Outlook

The dialogue systems we aimed at when we de-
veloped Diamod were mainly task—oriented sys-
tems, i.e. systems giving information on special
topics or modifying databases. The benefits of
Diamod in another context like translation sys-
tems (e.g. Verbmobil (Wahlster et al., 2000))
has not been investigated so far, but this is one
of our goals in the future.

Another interesting topic would be the adap-
tation of Diamod to dialogue systems using
dialogue grammars (Reichman, 1981) or plan-
based systems (Cohen and Levesque, 1980).

Further plans include the integration of a pro-
totyper into the tool system to be able to im-
mediately check the consequences of the mod-
ifications made. With these different means it
will be possible even for an untrained user to
specify new applications for his or her own re-
quirements.

References

AT&T et al. 2000. VoiceXML. World Wide
Web, http://www.voicexml.org/.

Eric Bilange. 1991. A task independent oral
dialogue model. In Proceedings of the Fifth
Conference of the European Chapter of the
Association for Computational Linguistics,

pages 83-88, Congress Hall, Alexanderplatz,
Berlin, Germany.

Manuela Boros, Ute Ehrlich, Paul Heisterkamp,
and Heinrich Niemann. 1998. An evaluation
framework for spoken language processing.
In Proceedings of the International Work-
shop Speech and Computer 1998, Russian
Academy of Sciences, St.Petersburg, Russia,
October.

Manuela Boros. 1997. Gepard - dokumenta-
tion des parsers f’ur phrasenstrukturgram-
matiken. Projektbericht, FORWISS, Juni.

Astrid Brietzmann, Fritz Class, Ute Ehrlich,
Paul Heisterkamp, Alfred Kaltenmeier, Klaus
Mecklenburg, Peter Regel-Brietzmann, Ger-
hard Hanrieder, and Waltraud Hiltl. 1994.
Robust speech understanding. In Interna-
tional Conference on Spoken Language Pro-
cessing, pages 967-970, Yokohama.

Philip R. Cohen and Hector J. Levesque. 1980.
Speech acts and the recognition of shared
plans. In Proceedings of the Third Biennial
Conference of the Canadian Society for Com-
putational Studies of Intelligence, pages 263—
271.

Ron Cole. 1999. Tools for research and edu-
cation in speech science. In Proceedings of
the International Conference of Phonetic Sci-
ences, San Francisco, USA, August.

Jirgen Ebert, Angelika Franzke, Peter Dahm,
Andreas Winter, and Roger Sttenbach. 1996.
Graph based modeling and implementation
with eer/gral. In B. Thalheim, editor,
15th International Conference on Conceptual
Modeling (ER’96), Proceedings, number 1157
in LNCS, pages 163-178, Berlin. Springer.

Ute Ehrlich, Gerhard Hanrieder, Ludwig
Hitzenberger, Paul Heisterkamp, Klaus
Mecklenburg, and Peter Regel-Brietzmann.
1997. ACCeSS - automated call center
through speech understanding system. In
Proc. FEurospeech 97, pages 1819-1822,
Rhodes, Greece, September.

Ute Ehrlich. 1999. Task hierarchies - represent-
ing sub-dialogs in speech dialog systems. In
6th European Conference on Speech Commu-
nication and Technology (EUROSPEECH),
Budapest, Hungary, September.

Klaus Failenschmid and J.H. Simon Thornton.
1998. End-user driven dialogue system de-
sign: The reward experience. In Proceedings

of the International Conferemce on Spoken
Language Processing (ICSLP) 1998, Sydney,
Australia, November.

Gerald Gazdar. 1981. Speech act assignment.
In Aravind K. Joshi, Bonnie Lynn Webber,
and Ivan Sag, editors, Elements of Discourse
Understanding, pages 63—-83. Cambridge Uni-
versity Press, Cambridge.

David Harel. 1987. Statecharts: A visual for-
malism for complex systems. Science of Com-
puter Programming, 8:231-274.

Paul Heisterkamp and Scott McGlashan. 1996.
Units of dialogue management: An example.
In Proc. ICSLP 96, volume 1, pages 200-203,
Philadelphia, PA, October.

Paul Heisterkamp, Scott McGlashan, and
N. Youd. 1992. Dialogue semantics for an
oral dialogue system. In International Con-
ference on Spoken Language Processing (IC-
SLP), Volumel, pages 643-646, Banff, Al-
berta, Canada.

Anke Kolzer. 1999. Universal dialogue specifi-
cation for conversational systems. In Proceed-
ings of the International Workshop: Knowl-
edge and Reasoning in Practical Dialogue
Systems, IJCAI 1999, pages 65-72, Stock-
holm, Sweden, August.

Jeremy Peckham. 1993. A new generation
of spoken dialogue systems: Results and
lessons from the sundial project. In 3rd Fu-
ropean Conference on Speech Communication
and Technology (EUROSPEECH’93); Vol.1,
pages 33—40, Berlin, September.

Rachel Reichman. 1981. Plain-speaking: A the-
ory and grammar of spontaneous discourse.
Ph.D. thesis, Department of Computer Sci-
ence, Harvard University, Cambridge, Mas-
sachusetts.

Sun microsystems. 2000. Java
Speech APL World Wide Web,
http://java.sun.com/products/java-
media/speech/index.html.

Wahlster et al. 2000. Project Verbmo-
bil. World Wide Web, http://www.coli.uni-
sb.de/~vm/.

Henk Zeevat. 1988. Combining categorial
grammar and unification. In Reyle, Rohrer:
Natural Language Parsing and Linguistic
Theories, pages 202-229, Dordrecht. D. Rei-
del Publishing Company.

