
YAG : A Template -Based Generator for Rea l -T ime Systems*

Susan W. McRoy Songsak Channarukul
{ mcroy, songsak, syali} @cs. uwm. edu

Syed S. All

Natural Language and Knowledge Representation Research Group
~.: a h t ~ p g / . / t i g g e r . c s , u w m a e d u / 7 n l k r r g

Electrical Engineering and Computer Science Department
University of Wisconsin-Milwaukee

1 Introduction
Y A G (Yet Another Genera tor) is a real-time,
general-purpose, template-based generation system
that will enable interactive applications to adapt
natural language output to the interactive context
without requiring developers to write all possible
output strings ahead of t ime or to embed extensive
knowledge of the g r a m m a r of the target language
in the application. Currently, designers of interac-
tive systems who might wish to include dynamically
generated text face a number of barriers; for exam-
ple designers must decide (1) How hard will it be
to link the application to the generator? (2) Will
the generator be fast enough? (3) How much lin-
guistic information will the application need to pro-
vide in order to get reasonable quality output? (5)
How much effort will be required to write a genera-
tion g rammar that covers all the potential outputs of
the application? The design and implementation of
YAG is intended to address each of these concerns.
In particular, YAG offers the following benefits to
applications and application designers:

S u p p o r t for U n d e r s p e c i f i e d I n p u t s YAG sup-
ports knowledge-based systems by accepting
two types of inputs: applications can either
provide a feature structure (a set of feature-
value pairs) or provide a syntactically under-
specified semantic structure that YAG will map
onto a feature-based representation for realiza-
tion. YAG also provides an opportunity for an
application to add syntactic constraints, such
as whether to express a proposition as a ques-
tion rather than a statement, as a noun-phrase
rather than as a sentence, or as a pronoun rather
than a full noun phrase.

S p e e d YAG has been designed to work in real-
time. The YAG ten,plate processing engine
does not use search to realize text. thus the
speed of generation depends oi1 the complex-
ity of the template that the application selects.

° T h i s work ha~s been suppo r t ed by the National Science
Foundat ion , under grants, I RI-97016 l 7 and ,,I,RI=9523666, and
by lntel Corporat ion.

not on the size of the grammar . Short, sim-
ple utterances are always realized faster than
longer ones. (In many other approaches, speed
is a function of the g rammar size, because it
is searched during realization (Elhadad, 1992;
Elhadad, 1993; Mann, 1983; McKeown, 1982;
McKeown, 1985).)

R o b u s t n e s s In YAG, the realization of a template
cannot fail. Even if there are inconsistencies in
its input (such as subject-verb disagreement),
the generator will produce an understandable
(if not grammatical) output. Applications that
need to enforce grammatical i ty can use the
YAG preprocessor to detect missing or conflict-
ing features and to supply acceptable values.
The preprocessor makes use of a declarative
specification of slot constraints, based on an
at t r ibute g rammar (Channarukul et al., 2000).
This specification is modifiable and extensible
by the application designer.

E x p r e s s i v e n e s s YAG offers an expressive language
for specifying a generation grammar. This lan-
guage can express units as small as a word o1"
as large as a document equally well. Unlike
the typical template-based approach, the valu(~s
used to instantiate slots are not limited to sim-
ple strings, but can include a variety of struc-
tures, including conditional expressions oi ref-
erences to other templates. (This paper will
include a more detailed discussion in the next
section.) Any declarative grammar, such as one
based oll feature structures, would be express-
ible in YAG.

C o v e r a g e The coverage of YAG depends oil the
number of templates that have been defined in
its specification language. In theory, any sen-
tence may be realized given an appropriate tem-
plate. In practice, an application builder must
be concerned with whether it is possible to re-
use existing templates or whether it is necessary
to create new ones. YAG simplifies the task
of specifying a generation g rammar in several
w a y s :

264

e It provides an expressive, declarative lan-
guage for specifying templates. This lan-
guage supports template re-use by allowing
template slots to be filled by other tem-
plates.

o It includes a general-purpose, template-
based grammar for a core fragment of En-

T h e C o n d i t i o n rule is similar to the cond state-
ment in LISP, returning a result when one of its
antecedent conditions is true.

T h e I n s e r t i o n ru le returns the result of interleav-
ing the results of two template rules.

T h e A l t e r n a t i o n rule selects one alternative

glish. These templates ;include .default val-
ues for many of the • slots, so an application
may omit a feature if it has no informa-
tion about it. Currently, the YAG distribu-
tion includes about 30 domain-independent
syntactic templates, along with some se-
mantic templates.

o It offers a tool for helping people edit tem-
plates and see what text would be realized
from a template, given a set of values for
its slots.

YAG itself comes in two versions, one in CLISP,
one in JAVA, both of which run on a wide variety of
platforms, including Unix and Windows 95/98.

In the remainder of this paper, we will describe
YAG's template specification language, and some
examples that illustrate the use of YAG from an
application. More details can be found in (Chan-
narukul, 1999).

2 Y A G ' s T e m p l a t e S p e c i f i c a t i o n
L a n g u a g e

A template is a pre-defined form with parameters
that are specified by either the user or the applica-
tion at run-time. In YAG, each template is com-
posed of two main parts: template slots and tem-
plate rules. Template slots are parameters or vari-
ables that applications or users can fill with values.
Template rules express how to realize a surface con-
stituent. Templates are realized as strings by replac-
ing slots in each rule with values from the application
and then evaluating the rule. YAG template rules
support nested and recursive templates. There are
ten types of template rules.

T h e S t r i n g rule returns a pre-defined string as a
result.

T h e E v a l u a t i o n rule evaluates the value of a rein-
plate slot• If the value of the slot is another
feature structure, then that structure is evalu-
ated recursively. If the value of the specified
slot is not a feature structure, this rule returns
the value without any further processing.

T h e T e m p l a t e rule returns the result of instanti-
ating a template with a given set of slot-vahle

• pairs.

T h e I f ru le is similar to an (f-then statement in
most prograanming_languages, returning a re-
sult when {he antecedent of the rule is true.

template rule to be realized based on a uniform
prob'ability-dis~ri-bution~-t hereby adding variety
into a generated text.

T h e P u n c t u a t i o n rule concatenates a punctua-
tion mark to the specified end of adjacent
strings. The position of a punctuation mark
is e i ther l e f t , r i g h t , or bo th .

T h e C o n c a t e n a t i o n rule appends the the result
of one template rule with the results of a second
rule.

T h e W o r d rule is used in association with pre-
defined functions and a lexicon to realize expres-
sions that should not be "hard-coded" in a tem-
plate, such as the inflected forms of a word from
the dictionary or the cardinal/ordinal number
corresponding to an integer.

Figure 1 shows the template rules that would
be used to express propositions of the form
has-property(agent, pname, pval), such as
has-property(John, age, 20), which corre-
sponds to John's age is 20). These rules are part of

((COND (IF (equal pname nil)
(EVAL agent)

)
(IF (not (equal pname nil))

((C0NCAT (EVAL agent)
(S " ' s "))

(EVAL pname))
))

(TEMPLATE verb-form
((verb "be")
(person (agent person))
(number (agent number))
(gender (agent gender))
(tense present)))

(COND (IF (not (equal property nil))
(EVAL property)

)
(IF (not (equal pval nil))

(EVAL pval)
))

(PUNC " " left)
)

Figure 1: Examples of Template Rules

265

the 0BJECT-PROPERTY semantic template. The rules
use the template slots agen t , p n a m e , pval , and
property and the template rule types IF, CONCAT,
S, TEMPLATE, COND, EVAL, a n d PUNC. If a g e n t =
"John", p n a m e = "age" , and pva l = "20", the
surface text will be "John's age is 20."

((EVAL member)
(TEMPLATE verb-form

((process "be")
(person (member person))
(number (member number))

3 E x a m p l e s o f Y A G in use

YAG provides facilities for generation from two
types of inputs, a feature structure or a knowledge
representation. The lat ter is accomplished by the
use of a knowledge representation specific compo-
nent that must be defined for the particular knowl-
edge representation language to be used.

3.1 G e n e r a t i o n f r o m a K n o w l e d g e
Representation Structure

Example 1, shows a knowledge representation input
to YAG. ~ It contains two propositions and a list of
control features. In this representation, M2 is the
proposition that the discourse entity B2 is a member
of class "dog". M5 is the proposition that the name
of the discourse entity B2 is "Pluto". Thus, we can
read the whole proposition as "Pluto is a member of
class dog." or simply "Pluto is a dog. ". The control
features state that the output should be generated
as a declarative sentence with "be" as the main verb.

E x a m p l e 1 Pluto is a dog.

(((M2 (CLASS "dog")
(MEMBER B2))

(M5 (OBJECT B2)
(PROPERNAME "Pluto")))

((form decl)
(attitude be))

)

\Vhen processing this i n p u t , YAG treats the first
proposition as the pr imary proposition to be real-
ized. YAG will map the MEMBER-CLASS proposition
to the template shown in Figure 2.

The control features, f o r m = dec l and a t t i t u d e
= be, are also used in selecting the template. (If
the form had been i n t e r r o g a t i v e , a template for
generating a yes-no question would have been used.)

Example 2 shows an example where prominaliza-
tion is specified as par t of the control features. The
pr imary proposition says that the agent (B4) is doing
the action "take" on the object (B6). This proposi-
tion. along with the selected control features (f o r m

IThe knowledge representatimr language used in these ex-
amples follows the definition of SNePS case frames described
in (Shapiro et al., 1996). SNePS is a semantic network pro-
cessing system (Shapiro and Rapaport, 1992). llowever, in-
puts to YAG are parenthesized lists of symbols,, not SNePS
data strllCl tires.

(g e n d e r (m e m b e r g e n d e r))))

. (E V A L ' c l a s s)
(PUNC left))

Figure 2: A m e m b e r - c l a s s Template.

= d e c l and a t t i t u d e = a c t i o n) , allows YAG to se-
lect the c l a u s e template.

E x a m p l e 2 "He takes it."

(((M2 (AGENT B4)
(ACT (MI (ACTION "take")

(DOBJECT B6))))
(MS (OBJECT B4)

(PROPERNAME "George"))
(MIi (CLASS "book")

(MEMBER B6))
((form decl)
(attitude action)
(pronominal YES (B6 B4))
(gender MASCULINE B4)))

)

To override the g e n d e r default (NEUTRAL) of B4
and generate "He" instead of "It", Example 2 spec-
ifies B4's g e n d e r as MASCULINE. To override tile de-
fault expression type (full noun phrase) for both B4
and B6, Example 2 specifies (p ronomina l YES (B6
B4)) which forces pronominalization.

3.2 G e n e r a t i o n f r o m a F e a t u r e S t r u c t u r e

Example 3 shows a complete feature structure that
would be used to realize the text "Blood pressure in-
volves your heart and blood vessels.". Within a fea-
ture structure, the name of the template that YAG
should use is given by the template feature. Thus, in
this example, YAG retrieves the c l a u s e template 2
which is shown in Figure 3.

In the clause template, the a g e n t slot is bound
to "blood pressure" since its value is another fea-
ture s tructure representing the n o u n - p h r a s e ten>
plate. The E v a l u a t i o n rule then realizes it as "blood
pressure". The T e m p l a t e rule realizes the verb "in-
volves", by evaluating the v e r b - f o r m template with
the p r o c e s s value taken from the c l a u s e template.
The other slots (which woukt normally be taken from

2This template has:been simplified to fadilitate explana-
tion.

266

Example 3 "Blood pressure involves your heart and
blood vessels."

((TEMPLATE CLAUSE)
(PROCESS "involve")
(AGENT

((TEMPLATE NOUN-PHRASE)
(HEAD "blood pressure")
(DEFINITE NOART)))

(AFFECTED
((TEMPLATE NOUN-PHRASE)
(HEAD ((TEMPLATE CONJUNCTION)

(SENTENCE NO)
(FIRST ((TEMPLATE NOUN-PHRASE)

(HEAD "heart")
(DEFINITE NOART)))

(SECOND ((TEMPLATE NOUN-PHRASE)
(HEAD "blood vessel")
(NUMBER PLURAL)
(DEFINITE NOART)))))

(POSSESSOR ((TEMPLATE PRONOUN)
(PERSON SECOND))))))

the agen t slot, if its value were available) are filled
by defaults (the defaults for n u m b e r , pe r son , and
gender are SINGULAR, THIRD, and NEUTRAL, respec-
tively.) within the verb-form template. The next
E v a l u a t i o n rule realizes "your heart and blood ves-
sels", which is the result of realizing the a f fec ted
slot (its value is a feature structure representing the
noun-phrase template). Finally, the surface string
is concatenated with a punctuation ".".

((EVAL agent)
(TEMPLATE verb-form

((p r o c e s s "process)
(person (agent person))
(number (agent number))
(gender (agent gender))))

(EVAL affected)
(PUNC "." left))

Figure 3: A simplified template rule of the c l ause
template.

4 Conclus ion
We have presented a natural language generation
component, called Y A G (Yet Another Generator),
that has been designed to meet the needs of real-
time, interactive systems. YAG combines a fast,
tenlplate-based approach for the representation of
text structures with knowledge-I)asod methods for
tel)resenting content. Its inputs can include concel)tS
or propositions along :with. optional-annotations to
specify syntactic constraints. YAG can also realize

267

text from a feature-based representation of syntac-
tic structure. YAG can detect and correct missing
or conflicting features by using a preprocessor based
on attribute grammars. (One can also specify de-
fault values in the grammar itself.) YAG uses an
expressive, declarative language for specifying a gen-
eration grammar. The YAG distribution includes a
,graphigaLtool for .ex tendingand testing templa tes .
In these ways, YAG provides the speed, robustness,
flexibility, and maintainability needed by real-time
natural language dialog systems.

References
Songsak Channarukul, Susan W. McRoy, and

Syed S. All. 2000. Enriching Partially-Specified
Representations for Text Realization. In Proceed-
ings of The First International Natural Language
Generation Conference, Israel.

Songsak Channarukul. 1999. YAG: A Natural Lan-
guage Generator for Real-Time Systems. Mas-
ter's thesis, University of Wisconsin-Milwaukee,
December.

Michael Elhadad. 1992. Using argumentation to
control lexical choice: A .functional unification-
baged approach. Ph.D. thesis, Computer Science
Department, Columbia University.

Michael Elhadad. 1993. FUF: The universal uni-
fier - user manual, version 5.2. Technical Report
CUCS-038-91, Columbia University.

Barbara J. Grosz, Karen Sparck-Jones, and Bon-
nie Lynn Webber. 1986. Readings in Natural Lan-
guage Processing. Morgan Kaufmann Publishers,
Los Altos, CA.

William C. Mann. 1983. An overview of the
Penman text generation system. In Proceedings
of the Third National Conference on Artificial
Intelligence (AAAI-83), pages 261-265, Wash-
ington, DC, August 22-26,. Also appears as
USC/Information Sciences Institute Tech Report
RR-83-114.

Kathleen R. McKeown. 1982. The TEXT system
for natural language generation : An overview.
In Proceedings of the 20th Annual Meeting of the
ACL, pages 113-120, University of Toronto, On-
tario, Canada, June 16-18,.

Kathleen R. McKeown. 1985. Discourse strrategies
for generating natural-language text. Artificial
Intelligence, 27(1):1-42. Also appears in (Grosz
et al., 1986)~ pages 479-499.

Stuart C. Shapiro and William J. Rapaport. 1992.
The SNePS family. Computers ~:t Mathematics
with Applications, 23(2-5).

Stuart C. Shapiro, William J. Rapaport, Sung-Hye
Cho. ,J. Choi. E. Felt, Susai1 Hailer..l. Kankiewicz.
and Deepak Kumar, 1996..4 Dictionary o/SNePS
Case Frames. Depar tment of Computer Science,
SUNY at Buffalo.

