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A b s t r a c t  

This paper describes a first a t tempt  at a sta- 
tistical model for simultaneous syntactic pars- 
ing and generalized word-sense disambigna- 
tion. On a new data set we have constructed 
for the task, while we were disappointed not 
to find parsing improvement over a traditional 
parsing model, our model achieves a recall of 
84.0% and a precision of 67.3% of exact synset 
matches on our test corpus, where the gold 
standard has a reported inter-annotator agree- 
ment of 78.6%. 

1 I n t r o d u c t i o n  

In this paper we describe a generative, statis- 
tical model for simultaneously producing syn- 
tactic parses and word senses in sentences. 
We begin by motivating this new approach to 
these two, previously-separate problems, then, 
after reviewing previous work in these areas, 
we describe our model in detail. Finally, we 
will present the promising results of this, our 
first attempt, and the direction of future work. 

2 M o t i v a t i o n  fo r  t h e  A p p r o a c h  

2.1 M o t i v a t i o n  f r o m  e x a m p l e s  

Consider the following examples: 

1. IBM bought Lotus for $200 million. 

2. Sony widened its product line with per- 
sonal computers. 

3. The bank issued a check for $100,000. 

4. Apple is expecting [NP strong results]. 

5. IBM expected [SBAa each employee to 
wear a shirt and tie]. 

With Example 1, the reading [IBM bought 
[Lotus for $200 million]] is nearly impossi- 
ble, for the simple reason that  a monetary 
amount is a likely instrument for buying and 
not for describing a company. Similarly, there 

is a reasonably strong preference in Example 
2 for [pp with personal computers] to attach 
to widened, because personal computers are 
products with which a product line could be 
widened. As pointed out by (Stetina and Na- 
gao, 1997), word sense information can be a 
proxy for the semantic- and world-knowledge 
we as humans bring to bear on attachment 
decisions such as these. This proxy effect is 
due to the "lightweight semantics" that  word 
senses--in particular WordNet word senses-- 
convey. 

Conversely, both the syntactic and semantic 
context in Example 3 let us know that bank 
is not a river bank and that  check is not a 
restaurant bill. In Examples 4 and 5, knowing 
that the complement of expect is an NP or an 
SBAR provides information as to whether the 
sense is "await" or "require". Thus, Examples 
3-5 illustrate how the syntactic context of a 
word can help determine its meaning. 

2.2 M o t i v a t i o n  f r o m  p r e v i o u s  w o r k  
2.2.1 P a r s i n g  
In recent years, the success of statistical pars- 
ing techniques can be attributed to several fac- 
tors, such as the increasing size of comput- 
ing machinery to accommodate larger models, 
the availability of resources such as the Penn 
Treebank (Marcus et al., 1993) and the suc- 
cess of machine learning techniques for lower- 
level NLP problems, such as part-of-speech 
tagging (Church, 1988; Brill, 1995), and PP- 
attachment (Brill and Resnik, 1994; Collins 
and Brooks, 1995). However, perhaps even 
more significant has been the lexicalization 
of the grammar formalisms being probabilis- 
tically modeled: crucially, all the recent, suc- 
cessful statistical parsers have in some way 
made use of bilexical dependencies. This in- 
cludes both the parsers that  attach probabili- 
ties to parser moves (Magerman, 1995; Ratna- 
parkhi, 1997), but  also those of the lexicalized 
PCFG variety (Collins, 1997; Charniak, 1997). 
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Even more crucially, the bilexical dependen- 
cies involve head-modifier relations (hereafter 
referred to simply as "head relations"). The in- 
tuition behind the lexicalization of a grammar 
formalism is to capture lexical items' idiosyn- 
cratic parsing preferences. The intuition be- 
hind using heads as the members of the bilex- 
ical relations is twofold. First, many linguis- 
tic theories tell us that  the head of a phrase 
projects the skeleton of that phrase, to be filled 
in by specifiers, complements and adjuncts; 
such a notion is captured quite directly by 
a formalism such as LTAG (Joshi and Sch- 
abes, 1997). Second, the head of a phrase usu- 
ally conveys some large component of the se- 
mantics of that  phraseJ  In this way, using 
head-relation statistics encodes a bit of the 
predicate-argument structure in the syntac- 
tic model. While there are cases such as John 
was believed to have been shot by Bill where 
structural preference virtually eliminates one 
of the two semantically plausible analyses, it 
is quite clear that  semantics--and,  in particu- 
lar, lexical head semantics--play a very im- 
portant  role in reducing parsing ambiguity. 
(See (Collins, 1999), pp. 207ff., for an excel- 
lent discussion of structural  vs. semantic pars- 
ing preferences, including the above John was 
believed.., example.) 

Another motivation for incorporating word 
senses into a statistical parsing model has 
been to ameliorate the sparse da ta  prob- 
lem. Inspired by the PP-a t tachment  work of 
(Stetina and Nagao, 1997), we use Word- 
Net vl.6 (Miller et al., 1990) as our seman- 
tic dictionary, where the hypernym structure 
provides the basis for semantically-motivated 
soft clusters. 2 We discuss this benefit of word 
senses and the details of our implementation 
further in Section 4. 

2.2.2 W o r d - s e n s e  d i s a m b i g u a t i o n  

While there has been much work in this area, 
let us examine the features used in recent 

1Heads originated this way, but it has become nec- 
essary to distinguish "semantic" heads, such as nouns 
and verbs, that correspond roughly to predicates and 
arguments, from "functional" heads, such as deter- 
miners, INFL's and complemeutizers, that correspond 
roughly to logical operators or are purely syntactic el- 
ements. In this paper, we almost always intend "head" 
to mean "semantic head". 

2Soft clusters are sets where the elements have 
weights indicating the strength of their membership 
in the set, which in this case allows for a probability 
distribution to be defined over a word's membership 
in all the clusters. 

statistical approaches. (Yarowsky, 1992) uses 
wide "bag-of-words" contexts with a naive 
Bayes classifier. (Yarowsky, 1995) also uses 
wide context, but  incorporates the one-sense- 
per-discourse and one-sense-per-collocation 
constraints, using an unsupervised learn- 
ing technique. The supervised technique in 
(Yarowsky, 1994) has a more specific notion 
of context, employing not just  words that  can 
appear within a window of I k ,  but crucially 
words that  abut  and fall in the ~2  window 
of the target word. More recently, (Lin, 1997) 
has shown how syntactic context,  and depen- 
dency structures in particular, can be suc- 
cessfully employed for word sense disambigua- 
tion. (Stetina and Nagao, 1997) have shown 
that  by employing a fairly simple and some- 
what ad-hoc unsupervised method  of WSD us- 
ing a WordNet-based similarity heuristic, they 
could enhance PP-a t tachment  performance to 
a significantly higher level than systems that  
made no use of lexical semantics (88.1% accu- 
racy). Most recently, in (Stetina et al., 1998), 
the authors made use of head-driven bilexi- 
cal dependencies with syntactic relations to 
attack the problem of generalized word-sense 
disambiguation, precisely one of the two prob- 
lems we are dealing with here. 

3 T h e  M o d e l  

3.1 O v e r v i e w  

The parsing model we s tar ted with was ex- 
t racted from BBN's SIFT system (Miller et 
al., 1998), which we briefly present again here, 
using examples from Figure 1 to illustrate the 
model 's parameters.  3 

The model generates the head of a con- 
sti tuent first, then each of the left- and right- 
modifiers, generating from the head outward, 
using a bigram model of node labels. Here are 
the first few elements generated by the model 
for the tree of Figure 1: 

1. S and its head word and part  of speech, 
caught- VB D. 

2. The head constituent of S, VP. 

3. The head word of the VP, caught-VBD. 

4. The premodifier consti tuent ADVP. 

3We began with the BBN parser because its authors 
were kind enough to allow us to extent it, and because 
its design allowed easy integration with our existing 
WordNet code. 
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S(caught-VBD) 

NP(boy-NN) ADVP(also-RB) VP(caught-VBD) 

DET NN RB VBD NP(ball-NN) I I I 
The boy also [ caught DET NN 

i I 
the ball 

Figure 1: A sample sentence with parse tree. 

5. The head word of the premodifier ADVP, 
also-RB. 

6. The premodifier constituent NP. 

7. The head word of the premodifier NP, 
boy-NN. 

8. The + E N D +  (null) postmodifier con- 
stituent of the VP. 

This process recurses on each of the modifier 
constituents (in this case, the subject NP and 
the VP) until all words have been generated. 
(Note that  many words effectively get gener- 
ated high up in the tree; in this example sen- 
tence, the last words to get generated are the 
two the's ) 

More formally, the lexicalized PCFG that  
sits behind the parsing model has rules of the 
form 

Figure 1. For brevity, we omit the smooth- 
ing details of BBN's model (see (Miller et al., 
1998) for a complete description); we note that  
all smoothing weights are computed via the 
technique described in (Bikel et al., 1997). 

The probability of generating p as the 
root label is predicted conditioning on only 
+ T O P + ,  which is the hidden root of all parse 
trees: 

P ( P l  + T O P + ) ,  e.g., P(S I + TOP+) .  (2) 

The probability of generating a head node h 
with a parent p is 

P(hlp) ,  e.g., P ( V P  I S). (3) 

The probability of generating a left-modifier l~ 
is 

P ~ L n L n - I " " L 1 H R I " " R n - i R n  (1) 

where P ,  H, L, and .P~ are all lexicalized non- 
terminals, i.e., of the form X(w, t, f l ,  where X 
is a traditional CFG nonterminal and (w, t, f /  
is the word-part-of.-speech-word-feature triple 
that  is the head of the phrase denoted by X. 4 
The lexicalized nonterminal H is so named be- 
cause it is the head constztuent, where P inher- 
its its head triple from this head constituent. 
The constituents labeled L~ and .R~ are left- 
and right-modifier constituents, respectively. 

3.2 P r o b a b i l i t y  s t r u c t u r e  o f  t h e  
or ig ina l  m o d e l  

We use p to denote the unlexicalized nontermi- 
nal corresponding to P,  and similarly for li, ri 
and h. We now present the top-level genera- 
tion probabilities, along with examples from 

4The inclusion of the word feature in the BBN 
model was due to the work described in (Weischedel 
et al., 1993), where word features helped reduce part 
of speech ambiguity for unknown words. 

PL(Iz I lz- l ,p,h,  wh),,  e.g., (4) 

PL (NP I ADVP, S, VP, caught) 

when generating the NP for NP(boy-NN),  and 
the probability of generating a right modifier 
r; is 

PR(r~ I r i - l ,p ,  h, Wh), e.g., (5) 

PR(NP I + BEGIN+,  VP, VBD, caught) 

when generating the NP for NP(ball-NN). 5 
The probabilities for generating lexical el- 

ements (part-of-speech tags, words and word 
features) are as follows. The part  of speech 
tag of the head of the entire sentence, th, is 

5The bidden nonterminal +BEGIN+ is used to pro- 
vide a convenient mechanism for determining the ini- 
tial probability of the underlying Markov process gen- 
erating the modifying nonterminals; the hidden non- 
terminal +END+ is used to provide consistency to the 
underlying Markov process, i.e., so that the probabil- 
ities of all possible nonterminal sequences sum to 1. 
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computed conditioning only on the top-most 
symbol p:6 

P(th I P). (6) 

Part  of speech tags of modifier constituents, 
tt, and tri, are predicted conditioning on the 
modifier constituent lz or ri, the tag of the 
head constituent, th, and the word of the head 
constituent, Wh: 

P(tt, Ill, th, Wh) and P( t r ,  [ri, th, Wh). (7) 

The head word of the entire sentence, Wh, is 
predicted conditioning only on the top-most 
symbol p and th. 

P(Wh[th,p). (8) 

Head words of modifier constituents, wl, and 
wr,, are predicted conditioning on all the con- 
text used for predicting parts  of speech in (7), 
as well as the parts of speech themsleves 

P(wt, ]tt,, li, th, Wh) 
and P(wr, ] try, r~, th, Wh). (9) 

The word feature of the head of the entire sen- 
tence, fh, is predicted conditioning on the top- 
most symbol p, its head word, wh, and its head 
tag, th: 

P(fh [Wh, th,p). (10) 

Finally, the word features for the head words 
of modifier constituents, fz, and fr,, are pre- 
dicted conditioning on all the context used to 
predict modifier head words in (9), as well as 
the modifier head words themselves: 

P(ft, I known(wt, ), tt~, li, th, Wh) (11) 

and P(fr, I known(w~,), tr,, ri ,  th, Wh) 

where known(x) is a predicate returning true 
if the word x was observed more than 4 times 
in the training data. 

The probability of an entire parse tree is the 
product of the probabifities of generating all of 
the elements of that  parse tree, where an el- 
ement is either a consti tuent label, a part of 
speech tag, a word or a word feature. We ob- 
tain maximum-likelihood estimates of the pa- 
rameters of this model using frequencies gath- 
ered from the training data. 

6This is the one place where we have altered the 
original model, as the lexical components of the head 
of the entire sentence were all being estimated incor- 
rectly, causing an inconsistency in the model. We have 
corrected the estimation of th, Wh and fh in our im- 
plementation. 

4 W o r d - s e n s e  E x t e n s i o n s  t o  t h e  
L e x i c a l  M o d e l  

The desired output  s t ructure  of our com- 
bined parser/word-sense disambiguator is a 
standard, Treebank-style parse tree, where the 
words not only have parts  ef speech, but  also 
WordNet synsets. Incorporating synsets into 
the lexical part  of the model is fairly straight- 
forward: a synset is yet another  element to be 
generated. The question is when to generate it. 
The lexical model has decomposed the genera- 
tion of the (w, t, f )  triple into three steps, each 
conditioning on all the history of the previ- 
ous step. While it is probabilistically identical 
to predict synsets at any of the four possible 
points if we continue to condition on all the 
history at each step, we would like to pick the 
point that  is most well-founded both in terms 
of the underlying linguistic s tructure and in 
terms of what can be well-estimated. In Sec- 
tion 2.2.1 we mentioned the soft-clustering as- 
pect of synsets; in fact, they have a duality. 
On the one hand, they serve to add specificity 
to what might otherwise be an ambiguous lexi- 
cal item; on the other, they are sets, clustering 
lexical items tha t  have similar meanings. Even 
further, noun and verb synsets form a con- 
cept taxonomy, the hypernym relation forming 
a partial ordering on the lemmas contained 
in WordNet. The former aspect corresponds 
roughly to what  we as human listeners or read- 
ers do: we hear or see a sequence of words in 
context, and determine incrementally the par- 
ticular meaning of each of those words. The 
latter aspect corresponds more closely to a 
mental model of generation: we have a desire 
or intention to convey, we choose the appropri- 
ate concepts with which to convey it, and we 
realize that  desire or intention with the most 
felicitous syntactic s t ructure and lexical real- 
izations of those concepts. As this is a genera- 
tive model, we generate a word's synset after 
generating the part  of speech tag but  before 
generating the word i t se l f /  

The synset of the head of the entire sen- 
tence, Sh is predicted conditioning only on the 
top-most symbol p and the head tag, th: 

P(Sh[th,p). (12) 

We accordingly changed the  probability of 

7We believe that synsets and parts of speech are 
largely orthogonal with respect to tlieir lexical infor- 
mation, and thus their relative order of prediction was 
not a concern. 
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generating the head word of the entire sen- 
tence to be 

P(Wh I Sh, th,p). (13) 

The probability estimates for (12) and (13) are 
not smoothed. 

The probability model for generating 
synsets of modifier constituents mi, complete 
with smoothing components, is as follows: 

P(Sm, I tin,, m~, Wh, Sh) = (14) 
~0P(Sm, I tm,, m,, w~, sh) 

+ AlP(SIn, I tm,,m,,sh) 
+ A2P(sm, It~,,rn,,@l(Sh)) 

. . .  

+ )~n+llS(Sm, [tm,,mi,@n(Sh)) 

+ ~+2P(Sm, I tin,, m,) 
+ ~n+3P(Sm, ltm,) 

where @'(Sh) is the i th hypernym of Sh. The 
WordNet hypernym relations, however, do not 
form a tree, but a DAG, so whenever there are 
multiple hypernyms, the uniformly-weighted 
mean is taken of the probabilities condition- 
ing on each of the hypernyms. That is, 

P(Sm, I t~,,mi, @3(Sh) ) = (15) 
n 

1 Z P(Sm, Itm,,m~, @~(sh)) 
n k=l  

when@~(~h) = ( ~ ( ~ h ) ,  . . . ,  @~(sh)}. 

Note that in the first level of back-off, we no 
longer condition on the head word, but strictly 
on its synset, and thereafter on hypernyms of 
that synset; these models, then, get at the 
heart of our approach, which is to abstract 
away from lexical head relations, and move 
to the more general lexico-semantic relations, 
here represented by synset relations. 

Now that we generate synsets for words us- 
ing (14), we can also change the word genera- 
tion model to have synsets in its history: 

P(w~, I sm,, t~,, m,, Wh, Sh) = (16) 

),0P(wm, I sin,, t ~ ,  mi, wh) 
+ ~lP(wm, I sin,, t~ ,  mi, Sh) 
+ A2P(wm, ISm,,tm,,mi,@l(sh)) 

. . o  

+ A~,+lP(wm, I s~,,tm,,m,,@~(Sh)) 

+ ~,~+2.P(w~, I sin,, tin,, m,) 

+ ,Xn+3P(Wm, ISm,,tm,) 

÷ ~n+4P(Wm, ] Sin,) 

where once again, @i(Sh) is the zth hypernym 
of Sh. For both the word and synset prediction 
models, by backing off up the hypernym chain, 
there is an appropriate confiation of similar 
head relations. For example, if in training the 
verb phrase [strike the target] had been seen, if 
the unseen verb phrase [attack the target] ap- 
peared during testing, then the training from 
the semantically-similar training phrase could 
be used, since this sense of attack is the hy- 
pernym of this sense of stroke. 

Finally, we note that both of these synset- 
and word-prediction probability estimates 
contain an enormous number of back-off lev- 
els for nouns and verbs, corresponding to the 
head word's depth in the synset hierarchy. A 
valid concern would be that the model might 
be backing off using histories that are fax too 
general, so we experimented with limiting the 
hypernym back-off to only two, three and four 
levels. This change produced a negligible dif- 
ference in parsing performance, s 

5 A N e w  A p p r o a c h ,  A N e w  D a t a  
Se t  

Ideally, the well-established gold standard for 
syntax, the Penn Treebank, would have a 
parallel word-sense-annotated corpus; unfor- 
tunately, no such word-sense corpus exists. 
However, we do have SemCor (Miller et al., 
1994), where every noun, verb, adjective and 
adverb from a 455k word portion of the Brown 
Corpus has been assigned a WordNet synset. 
While all of the Brown Corpus was anno- 
tated in the style of Treebank I, a great deal 
was also more recently annotated in Tree- 
bank II format, and this corpus has recently 
been released by the Linguistic Data Con- 
sortium. 9 As it happens, the intersection be- 
tween the Treebank-II-annotated Brown and 
SemCor comprises some 220k words, most of 
which is fiction, with some nonfiction and hu- 
mor writing as well. 

We went through all 220k words of the cor- 
pora, synchronizing them. That is, we made 
sure that the corpora were identical up to 
the spelling of individual tokens, correcting all 

8We aim to investigate the precise effects of our 
back-off strategy in the next version of our combined 
parsing/WSD model. 

9We were given permission to use a pre-release ver- 
sion of this Treebank II-style corpus. 
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tokenization and sentence-breaking discrepan- 
cies. This correcton task ranged from the sim- 
ple, such as connecting two sentences in one 
corpus that were erroneously broken, to the 
middling, such as joining two tokens in Sem- 
Cor that comprised a hyphenate in Brown, to 
the difficult, such as correcting egregious parse 
annotation errors, or annotating entire sen- 
tences that were omitted from SemCor. In par- 
ticular, the case of hyphenates was quite fre- 
quent, as it was the default in SemCor to split 
up all such words and assign them their indi- 
vidual word senses (synsets). In general, we at- 
tempted to make SemCor look as much as pos- 
sible like the Treebank II-annotated Brown, 
and we used the following guidelines for as- 
signing word senses to hyphenates: 

1. Assign the word sense of the head of 
the hyphenate. E.g., both twelve-foot and 
ten-foot get the word sense of foo t_ l  (the 
unit of measure equal to 12 inches). 

2. If there is no clear head, then attempt 
to annotate with the word sense of the 
hypernym of the senses of the hyphenate 
components. E.g., U.S.-Soviet gets the 
word sense of country_2 (a state or na- 
tion). 

3. If options 1 and 2 are not possible, the 
hyphenate is split in the Treebank II file. 

4. If the hyphenate has the prefix non- or 
anti-, annotate with the word sense of 
that which follows, with the understand- 
ing that a post-processing step could re- 
cover the antonymous word sense, if nec- 
essary. 

After three passes through the corpora, they 
were perfectly synchronized. We are seeking 
permission to make this data set available to 
any who already have access to both SemCor 
and the Treebank II version of Brown. 

After this synchronization process, we 
merged the word-sense annotations of our cor- 
rected SemCor with the tokens of our cor- 
rected version of the Treebank II Brown data. 
Here we were forced to make two decisions. 
First, SemCor allows multiple synsets to be as- 
signed to a particular word; in these cases, we 
simply discard all but the first assigned synset. 
Second, WordNet has collocations, whereas 
Treebank does not. To deal with this dis- 
parity, we re-analyze annotated collocations 
as a sequence of separate words that have 

all been assigned the same synset as was as- 
signed the collocation as a whole. This is not 
as unreasonable as it may sound; for exam- 
ple, v i c e _ p r e s i d e n t  is a lemma in WordNet 
and appears in SemCor, so the merged corpus 
has instances where the word president has 
the synset v ice  p r e s i d e n t  l, but only when 
preceded by the word vice. The cost of this 
decision is an increase in average polysemy. 

6 T r a i n i n g  a n d  D e c o d i n g  

Using this merged corpus, actual training of 
our model proceeds in an identical fashion 
to training the non-WordNet-extended model, 
except that for each lexical relation, the hy- 
pernym chain of the parent head is followed 
to derive counts for the various back-off levels 
described in Section 4. We also developed a 
"plug-'n'-play" lexical model system to facili- 
tate experimentation with various word- and 
synset-prediction models and back-off strate- 
gies. 

Even though the model is a top-down, gen- 
erative one, parsing proceeds bottom-up. The 
model is searched via a modified version of 
CKY, where candidate parse trees that cover 
the same span of words are ranked against 
each other. In the unextended parsing model, 
the cells corresponding to spans of length one 
are seeded with ( w , t , f )  triples, with every 
possible tag t for a given word zv (the word- 
feature f is computed deterministically for w); 
this step introduces the first degree of ambi- 
guity in the decoding process. Our WordNet- 
extended model adds to this initial ambiguity, 
for each cell is seeded with (w, t, f ,  s) quadru- 
ples, with every possible synset s for a given 
word-tag pair. 

During decoding, two forms of pruning are 
employed: a beam is applied to each cell in the 
chart, pruning away all parses whose ranking 
score is not within a factor of e - k  of the top- 
ranked parse, and only the top-ranked n sub- 
trees are maintained, and the rest are pruned 
away. The "out-of-the-box" BBN program uses 
values of-5 and 25 for k and n, respectively. 
We changed these to default to -9 and 50, be- 
cause generating additional unseen items (in 
our case, synsets) will necessarily lower inter- 
mediate ranking scores. 

7 E x p e r i m e n t s  a n d  R e s u l t s  
7.1 P a r s i n g  

Initially, we created a small test set, blindly 
choosing the last 117 sentences, or 1%, of 
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our 220k word corpus, sentences which were, 
as it happens, from section "r" of the Brown 
Corpus. After some disappointing parsing 
results using both the regular parser and 
our WordNet-extended version, we peeked in 
(Francis and Ku~era, 1979) and discovered 
this was the humor writing section; our ini- 
tial test corpus was literally a joke. To cre- 
ate a more representative test set, we sam- 
pled every 100th sentence to create a new liT- 
sentence test set tha t  spanned the entire range 
of styles in the 220k words; we put all other 
sentences in the training set. 1° For the sake of 
comparison, we present results for both test 
sets (from section "r" and the balanced test 
set) and both the standard model (Norm) and 
our WN-extended model (WN-ext) in Table 
1.11 We note that  after we switched to the bal- 
anced test set, we did not use the "out-of-the- 
box" version of the BBN parser, as its default 
settings for pruning away low-count items and 
the threshold at which to count a word as "un- 
known" were too high to yield decent results. 
Instead, we used precisely the same settings as 
for our WordNet-extended version, complete 
with the larger beam width discussed in the 
previous section32 

, The reader will note that  our extended 
model performs at roughly the same level 
as the unextended version with respect to 
parsing--a shave better with the "r" test set, 
and slightly worse on the balanced test set. 
Recall, however, tha t  this is in spite of adding 
more intermediate ambiguity during the de- 
coding process, and yet using the same beam 
width. Furthermore, our extensions have oc- 
curred strictly within the framework of the 
original model, but we believe that  for the 
true advantages of synsets to become appar- 
ent, we must use trilexical or even tetralex- 

~°We realize these are very small test sets, but we 
presume they are large enough to at least give a good 
indicator of performance on the tasks evaluated. They 
were kept small to allow for a rapid train-test-analyze 
cycle, z.e., they were actually used as development test 
sets. With the completion of these initial experiments, 
we are going to designate a proper three-way divsion 
of training, devtest and test set of this new merged 
corpus. 

UThe scores in the rows labeled Norm, "r", indicat- 
ing the performance of the standard BBN model o n  

the "r" test set, are actually scores based on 116 of the 
117 sentences, as one sentence did not get parsed due 
to a timeout in the program. 

~2This is partly an unfair comparison, then, since 
ours is a larger model, but we wanted to give the stan- 
dard model every conceivable advantage. 

Model, 

test set 

Norm, '~r"* 
WN-ext, "r" 
Norm, bal 

WN-ext, bal 

Norm, "r"* 
WN-ext, "r" 
Norm, bal 

WN-ext, bal 

<40 words t 
LR LP I ~ 0CB <2CB 

69.7 72.6 2.93 31.9 55.0 
69.7 72.7 2.86 30.8 56.0 
83.1 85.0 0.82 75.9 85.7 
82.9 84.0 1.02 70.5 81.3 

All sentences 

LR LP CB 0CB <2CB 
68.6 71.2 3.83 25.9 44.8 
69.7 71.5 3.77 i 2 5 . 0  45.7 
82.0 84.4 1.00 7 3 . 5  83.8 
80.5 82.2 1.43 !68 .4  78.6 

Table 1: Results for both  parsing models on 
both test sets. All results are percentages, ex- 
cept for those in the CB column. *See footnote 
11. 

S(will) 

NP(Jane) VP(will) 

Jane will VP(kill) 

kill NP(Bob) 
I 

Bob 

Figure 2: Head rules are tuned for syntax, not 
semantics. 

ical dependencies. Whereas such long-range 
dependencies might cripple a s tandard gen- 
erative model, the soft-clustering aspects of 
synsets should offset the sparse data  problem. 
As an example of the lack of such dependen- 
cies, in the current model when predicting the 
attachment of [bought company [for million]], 
there is no current dependence between the 
verb bought and the object of the preposition 
mil l ion--a  dependence shown to be useful in 
virtually all the PP at tachment  work, and par- 
ticularly in (Stetina and Nagao, 1997). Re- 
lated to this issue, we note that  the head rules, 
which were nearly identical to those used in 
(Collins, 1997), have not been tuned at all to 
this task. For example, in the sentence in Fig- 
ure 2, the subject Jane is predicted condition- 
ing on the head of the VP, which is the modal 
wdl, as opposed to the more semantically- 
content-rich kill. So, while the head relations 
provide a very useful structure for many syn- 
tactic decisions the parser needs to make, it is 
quite possible that  the synset relations of this 
model would require additional or different de- 
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Noun 
Verb 
Adj 
Adv 

I Recall Precision 

86.5% 70.9% 
84.0% 59.5% 
80.2% 70.4% 
78.5% ~ 75.8% 

I T° ta l  I 84"0% I 67"3% I 

Table 2: Word sense disambiguation results for 
balanced test set. 

pendencies that would help in the prediction 
of correct synsets, and in turn help further re- 
duce certain syntactic ambiguities, such as PP 
attachment. This is because the "lightweight 
semantics" offered by synset relations can pro- 
vide selectional and world-knowledge restric- 
tions that simple lexicalized nonterminal rela- 
tions cannot. 

7.2 Word-sense  d i s amb igua t i on  

The WSD results on the balanced test set are 
shown in Table 2. A few important points must 
be made when evaluating these results. First, 
almost all other WSD approaches are aimed at 
distinguishing homonyms, as opposed to the 
type of fine-grained distinctions that can be 
made by WordNet. Second, almost all other 
WSD approaches attempt to disambiguate a 
small set of such homonymous terms, whereas 
here we are attacking the generahzed word- 
sense disambiguation problem. Third, we call 
attention to the fact that SemCor has a re- 
ported inter-annotator agreement of 78.6% 
overall, and as low as 70% for words with pol- 
ysemy of 8 or above (Fellbaum et al., 1998), so 
it is with this upper bound in mind that one 
must consider the precision of any generalized 
WSD system. Finally, we note that the scores 
in Table 2 are for exact synset matches; that 
is, if our program delivers a synset that is, say, 
the hypernym or sibling of the correct answer, 
no credit is given. 

While it is tempting to compare these re- 
sults to those of (Stetina et al., 1998), who re- 
ported 79.4% overall accuracy on a different, 
larger test set using their non-discourse model, 
we note that that was more of an upper- 
bound study, examining how well a WSD al- 
gorithm could perform if it had access to gold- 
standard-perfect parse trees33 By way of fur- 
ther comparison, that algorithm has a feature 
space similar to the synset-prediction compo- 

1nit is not clear how or why the results of (Stetina et 
al., 1998) exceeded the reported inter-annotator agree- 
ment of the entire corpus.  

nents of our model, but the steps used to rank 
possible answers are based largely on heuris- 
tics; in contrast, our model is based entirely 
on maximum-likelihood probability estimates. 

A final note on the scores of Table 2: given 
the fact that there is not a deterministic 
mapping between the 50-odd Treebank and 
4 WordNet parts of speech, when our pro- 
gram delivers a synset for a WordNet part of 
speech that is different from our gold file, we 
have called this a recall error, as this is con- 
sistent with all other WSD work, where part 
of speech ambiguity is not a component of an 
algorithm's precision. 

8 F u t u r e  W o r k  

This paper represents a first attempt at a 
combined parsing/word sense disambiguation 
model. Although it has been very useful to 
work with the BBN model, we are currently 
implementing and hope to augment a more 
state-of-the-art model, vzz., Models 2 and 3 of 
(Collins, 1997). We would also like to explore 
the use of a more radical model, where nonter- 
minals only have synsets as their heads, and 
words are generated strictly at the leaves. We 
would also like to incorporate long-distance 
context in the model as an aid to WSD, a 
demonstrably effective feature in virtually all 
the recent, statistical WSD work. Also, as 
mentioned earlier, we believe there are several 
features that would allow significant parsing 
improvement. Finally, we would like to inves- 
tigate the incorporation of unsupervised meth- 
ods for WSD, such as the heuristically-based 
methods of (Stetina and Nagao, 1997) and 
(Stetina et al., 1998), and the theoretically 
purer bootstrapping method of (Yarowsky, 
1995). Bolstered by the success of (Stetina 
and Nagao, 1997), (Lin, 1997) and especially 
(Stetina et al., 1998), we believe there is great 
promise the incorporation of word-sense into 
a probabilistic parsing model. 
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