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A b s t r a c t  

We report work on effectively incorporating lin- 
guistic knowledge into grammar induction. We 
use a highly interactive bot tom-up inductive 
logic programming (ILP) algorithm to learn 
'missing' grammar rules from an :incomplete 
grammar. Using linguistic constraints on, for 
example, head features and gap threading, re- 
duces the search space to such an extent that,  
in the small-scale experiments reported here, 
we can generate and store all candidate gram- 
mar rules together with information about their 
coverage and linguistic properties. This allows 
an appealingly simple and controlled method 
for generating linguistically plausible grammar 
rules. Starting from a base of highly spe- 
cific rules, we apply least general generalisation 
and inverse resolution to generate more general 
rules. Induced rules are ordered, for example by 
coverage, for easy inspection by the user and at 
any point, the user can commit to a hypothe- 
sised rule and add it to the grammar. Related 
work in ILP and computational linguistics is 
discussed. 

1 Introduction 

A major advantage of inductive logic program- 
ming is the ability to incorporate domain knowl- 
edge (background knowledge) into the inductive 
process. In ILP domain knowledge is usually 
encoded by (i) a set of definite clauses declar- 
ing rules and facts which are true (or assumed 
to be true) in the domain and (ii) extra-logical 
constraints on the hypothesis space. The ILP 
approach thus allows a very direct and flexible 
method of expressing domain knowledge. 

In this paper, we report on continuation of the 
work described in (Cussens and Pulman,  2000), 

which at tempts  to maximise the effectiveness of 
linguistic knowledge when inducing a grammar. 
We take an existing grammatical  formalism (de- 
rived from the FraCaS Project (1996)) and ex- 
tend it with inductive capabilities, rather than 
shoe-horning a grammar learning problem into 
a form suitable for some particular ILP algo- 
rithm. This has major practical benefits, since 
the required linguistic knowledge can be en- 
coded in a linguistically natural manner. As 
in all real applications of ILP most effort is 
required in 'getting the background knowledge 
right'. Being able to express this knowledge in 
a representation specifically developed to enable 
linguists to write down a grammar makes this 
step easier and quicker. 

The paper is organised in a manner analo- 
gous to that  o f  our algorithm. In Section 2, we 
describe how to generate naive grammar rules 
directly from the chart produced during a failed 
parse. The essentials of this approach have al- 
ready been described in (Cussens and Pulman, 
2000), but we briefly describe it here for com- 
pleteness and also because we have altered its 
implementation. Section 3 describes the most 
important  step of the a lgor i thm-- the  represen- 
tation and use of linguistic constraints at an 
early stage in the inductive process. Section 4 
describes the two generalisation operators cur- 
rently used in the search by way of an exam- 
ple. Section 5 describes two further experiments 
very briefly. Most of the various components of 
our method have been investigated previously 
either in the ILP or the computational  linguis- 
tics literature: in Section 6 we discuss this re- 
lated work. In Section 7, we assess the current 
work and point to future work. 
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2 G e n e r a t i n g  n a i v e  r u l e s  

The first step in our algorithm can be described 
as inductive chart parsing. The details of inte- 
grating induction into chart  parsing have been 
described in (Cussens and Pulman,  2000), here 
we give just  a brief account. This first step of 
the algorithm is the only one that  has been re- 
tained from this previous work. The basic idea 
is that,  after a failed parse, we use abduct ion 
to find needed edges: which, if they existed, 
would allow a complete parse of the sentence. 
These are produced in a top-down manner  start- 
ing with the initial need for a sigma edge span- 
ning the entire sentence. If a need matches the 
mother  of a g rammar  rule and edges for all the 
daughters bar one are in the chart, then the 
missing daughter edge is generated as a new 
need. 

The process of generating naive rules is very 
simple, and we will explain it by way of an ex- 
ample. Suppose the vp_vp rood grammar  rule, 
shown in Fig 1, has been artificially removed 
from a grammar.  The absence of this rule means 

vp_vp_mod syn vp : [gaps= [A, B] ,mor=C, aux=n] ==> 
[ vp : [gaps = [A, D] , mor=C, aux=n] , 
mod: [gaps= [D, B], of =or (s, vp), type=_] ] . 

Figure 1: Missing grammar  rule (human- 
readable representation) 

that,  for example, the sentence All big compa- 
nies wrote a report quickly can not be parsed, 
since we can not get the needed VP wrote a re- 
port quickly from the found VP wrote a report 
and the found MOD quickly. The corresponding 
needed and actual (complete) edges are given in 
Fig 2. A naive rule is constructed by put t ing a 

Y.need (Sent, Cat, From, To). 
need(l, vp([ng,ng], 

f(0,0,0,0,1,1,1,1,1),_), 3, 7). 
%edge (Sent, Id, Origin, From, To, Ca t , . .  ) 
ThCat, From, To). 
edge( l ,  39, vp v rip, 3, 6, 

vp([_A,_A] ,f(O,O,O,O ....... l,l),n) .... ). 
edge(l, 19, quickly, 6, 7, 

mod([_B,_B] ,f (0,0,0, I) ,f(0,1, i,i)),...). 

Figure 2: Needed and (abbreviated) actual 
edges 

needed edge on its LHS and other edges on the 

RHS which in this case gives us the naive rule 
in Fig 3. In (Cussens and Pulman,  2000) only 
actual edges were allowed on the RHS of a naive 
rule, since this ensures that  the naive rule suf- 
fices to allow a parse. Recently, we have added 
an option which allows needed edges to appear 
on the RHS, thus generating more naive rules. 
This amounts to conjecturing that  the needed 
edges should actually be there, but  are missing 
from the set of actual edges because some other 
grammar  rule is missing: thus preventing the 
parser from producing them. Since all naive 
rules are subsequently constrained and evalu- 
ated on the data, and then not added to the 
grammar  unless the user allows them, such bold 
conjectures can be retracted later on. From 

cmp_synrule (rO, 
vp( [ng,ng] ,f (0,0,0,0,1, I, I, 1, i) ,_), 

vp( [_A,_A] ,f (0,0,0,0 ....... 1,1) ,n), 
mod(E_B,_B] ,f (0,0,O, i) ,f (0,I, i,i))). 

Figure 3: Naive VP -+ VP MOD rule in com- 
piled form 

an ILP perspective, the construction of naive 
rules involves repeated applications of inverse 
resolution (Muggleton and Buntine, 1988) until 
we produce a clause which meets extra-logical 
constraints on vertex connectivity. Abbreviat- 
ing, we produce v p ( 3 , 7 )  : -  vp (3 ,6 )  and then 
vp (3 ,7 )  :'- v p ( 3 , 6 ) , m o d ( 6 , 7 ) .  This is then 
followed by variabilising the vertices to give 
vp(Vl,V3) :- vp(Vl,V2) ,mod(V2,V3). Ex- 
actly the same procedure can be implemented 
by building a 'bottom-clause' using the Progol 
algorithm. We previously used P-Progol (now 
called Aleph) to construct naive rules in this 
way, but  have since found it more convenient to 
write our own code to do this. 

3 U s i n g  l i n g u i s t i c  cons tra int s  

3.1 Simple filter constraints 
The user never sees naive rules; most are fil- 
tered out as linguistically implausible and those 
that  survive have generally become specialised. 
Our basic mot to  is: constrain early, constrain 
tightly. The aim is tha t  no linguistically implau- 
sible rule is ever added to the set of candidate 
rules. This allows an incremental  approach to 
implementing the constraints. On observing a 
linguistically implausible rule in the candidate 
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set, we have to specify what makes it implau- 
sible and then express this as a constraint in 
Prolog. In this way, we build up a set of filters 
which get rid of linguistically implausible naive 
rules as soon as they are produced. 

Table 1 lists the constraints currently used. 
The Head features and Gap threading con- 
straints are discussed later. RHS length simply 
limits the number of constituents on the RHS 
of a rule to some small user-defined integer (in 
the experiments described here it was equal to 
4). LHS # RHS filters out rules with a sin- 
gle daughter which is the same category as the 
mother.  Head OK filters out rules', where the 
LHS has a head category which is not found on 
the RHS. The last three constraints in Table 1 
act on the LHS of potential  rules (i.e. needs), 
filtering out, respectively, sigma categories, cat- 
egories which do not appear as the LHS of ex- 
isting rules (and so are probably lexical) and s 
(sentence) categories. 

Constraint Specialises Defined on 
Head features Yes Compiled 
Gap threading Yes Compiled 
RHS length No Compiled 
LHS ~ RHS No Compiled 
Head OK No Readable 
LHS not sigma No Needs 
LHS not new No Needs 
LHS not s No Needs 

Table h Linguistic constraints 

3.2 G a p  t h r e a d i n g  a n d  h e a d  f e a t u r e  
cons tra in t s  

Gap-threading is a technique originating with 
Pereira's 'extraposition grammars '  (Pereira, 
1981). It is an implementat ion technique com- 
monly used for dealing with movement phenom- 
ena in syntax, as il lustrated by a Wh-question 
like What does Smith own _?, where the Wh- 
word is logically associated with the gap marked 
'2. 

There  are three components to this type of 
analysis. Firstly, one rule must introduce the 
'moved' constituent. This rule also sets up an 
expectation for a gap of the same type as the 
moved constituent elsewhere in the sentence. 
This expectat ion is coded as a set of features, 
or in our case, a single tuple-valued feature with 

'GapIn'  and 'GapOut '  values. By setting the 
value of the 'GapIn'  feature to be that  of (a 
copy of) the moved constituent,  and GapOut  
to be some null marker  (here, n g =  nogap) we 
can enforce that  expectation. Secondly, rules 
which do not involve gaps directly pass the value 
of the GapIn and GapOut  values along their 
daughters (this is the ' threading'  part) making 
sure that  the gap value is threaded everywhere 
that  a gap is permi t ted  to occur linguistically. 
Thirdly, there are rules which rewrite the type 
of consti tuent which can be moved as the empty 
string, discharging the 'gap' expectation. Ex- 
ample rules of all three types are as follows: 

(±) s: [gap=(G,G)] -> 
np: [type=wh, agr=A, gap= (ng, ng) ] 
s : [gap= (rip : [type=wh, agr=A, 

gap= (ng, ng) ], ng) ] 

(ii) vp: [gap(In,0ut)] -> 
v: [] np: [gap=(In,Next)] 
pp : [gap= (Nxt, 0ut) ] 

(iii) np: [gap=(np: [type=T,agr=A, 
gap= (ng,ng) ] ,ng), type=T, agr=A] -> 

epsilon 

Rule (i) introduces a fronted wh NP as sister to 
an S which must  contain an associated NP gap 
agreeing in number  etc. Rule (ii) passes the gap 
feature from the mother  VP along the daugh- 
ters that  can in principle contain a gap. Rule 
(iii) rewrites an NP whose gap value indicates 
that  a moved element precedes it as the empty 
string. Rules of these three types conspire to 
ensure that  a moved consti tuent  is associated 
with exactly one gap. 

Consti tuents which cannot contain a gap as- 
sociated with a moved element outside the con- 
st i tuent identify the In and Out values of the 
gap feature, and so a usual NP rule might 
be of the form: np: [gap(G,G)] -> det: [...] 
n: [...] In a sentence containing no gaps the 
value of In and Out will be ng everywhere. 

Naive rules will not necessarily fall into one 
of the three categories above, because the cate- 
gories that make up their components will have 
been instantiated in various possibly incomplete 
ways. Thus in Fig 3 the gaps values in the 
mother are (ng,ng), and those in the daugh- 
ters are separately threaded (A,A) and (B,B). 
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We apply various checks and filters to candi- 
date rules to ensure that  the logic of the gap 
feature instantiations is consistent with the lin- 
guistic principles embodied in the gap threading 
analysis. 

The gap threading logic is tested as follows. 
Firstly, rules are checked to see whether they 
match the general pat tern of the three types 
above, gap-introduction, gap-threading, or gap- 
discharge rules. Secondly, in each of the three 
cases, the values of the gap features are checked 
to ensure they match the relevant schematic ex- 
amples above. 

The most frequently postulated type of rule is 
a gap threading rule. The rule in Fig 3 has the 
general shape of such a rule but the feature val- 
ues do not thread in the appropriate way and 
so it will be in effect unified with a template 
that  makes this happen. The effect here will 
actually be to instantiate all In and Out values 
to ng, thus specialising the rule. Hypothesised 
rules where the values are all variables will get 
the In and Out values unified analogously to 
the example threading rule (ii) above. Hypoth- 
esised rules where the gap values are not vari- 
ables are checked to see that  they are subsumed 
by the appropriate schema: thus all the differ- 
ent threading patterns in Fig 4 would be substi- 
tution instances of the pat tern imposed by the 
example threading rule (ii). At the later gen- 
eralisation stage the correct variable threading 
regime should be the only one consistent with 
all the observed instantiation patterns. 

Y. [ng/ng,ng/ng,  ng/ng] . 1 
[ a l l ,  big,  companies, wrote, a, repor t ,  quickly] .  

%[np/ng,np/ng,ng/ng].  2 
[what ,dont ,a l l ,b ig ,companies , read ,  

with ,a ,machine] .  

~[np/ng,np/np,np/ng] .  3 
[what ,dont ,a l l ,b ig ,companies , read ,  

a , r e p o r t , w i t h ] .  

~[np/np,np/np,np/np] .  4 
[what ,dont ,a l l ,b ig ,companies , read ,  

a , r epo r t , qu i ck ly , f rom] .  

Figure 4: Artificial dataset showing 4 different 
patterns of gap threading 

Our constraints on head feature agreement 

are similar to the gap threading constraints. 
The specialised version of the naive rule in Fig 3 
is displayed in Fig 5. Note that  although the 
rule in Fig 5 is not incorrect, it is overly specific, 
applying only to mor=pl ,  aux=n where there is 
no gap to thread. We now consider how to gen- 
eralise rules. 

vp : [gaps= [ng: [] , ng: [] ] ,mor=pl, aux=n] ==> 
[vp: [gaps= [ng: [] ,ng: [] ] ,mor=pl, aux=n], 
mod: [gaps= [ng: [] ,ng : [] ] , of=vp, type=n] ] 

Figure 5: VP ~ VP MOD rule specialised to 
meet head and gap constraints 

4 G e n e r a l i s a t i o n  o p e r a t o r s  

In this section, we show how to generate gram- 
mar rules by generalising overly specific rules 
using the VP -+ VP MOD running example. 
Our target is to generate the missing grammar 
rule displayed in Fig 1. We will use the ar- 
tificial dataset given in Fig 4 which displays 
4 different patterns of gap threading. From 
the first three sentences we generate the ex- 
pected overly specific grammar rules which cor- 
respond to the three patterns of gap thread- 
ing. These axe given, in abbreviated form, in 
Fig 6. We use least general generalisation (lgg) 

~Covers sentence l 
vp : [gaps = [ng, ng] , mor=pl, aux=n] ==> 
[vp : [gaps = [ng,ng] ,mor=pl, aux=n] , 
mod: [gaps= [ng, ng], of=vp, type=n] ] 

'/.Covers sentence 2 
vp : [gaps= [np ,ng] ,mor=inf, aux=n] ==> 
[vp : [gaps =[np ,ng] ,mor=inf, aux=n] , 
mod: [gaps = [ng,ng] , of=or (nom, vp), type=n] ] 

Y.Covers sentence 3 
vp : [gaps =[np, ng] ,mor=inf, aux=n] ==> 
[vp : [gaps = [np,np] ,mor=inf, aux=n] , 
mod: [gaps =[np, ng], of=or (nom, vp), type=n] ] 

Figure 6: Overly specific gap threading rules (in 
abbreviated form) 

as our basic generalisation operator. This is im- 
plemented (for terms) in the Sicstus te rms li- 
brary built-in te rm_subsumer /3 .  Lgg operates 
on the compiled form of the rules (such as the 
cmp_synru le /3  unit clause displayed in Fig 5), 
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not the human-readable form as in Fig 6. The 
lgg of the first two rules produces the follow- 
ing rule (translated back into human-readable 
form): 

vp: [gaps= [_282, ng: [] ] ,  mor=or ( i n f ,  p1), aux=n] 
= = >  

[ 
vp: [gaps= [_282,ng: []] ,mor=or(inf ,p1),aux=n], 
rood: [gaps= [ng: [] ,ng: [] ] ,  of=or (nora, vp), type=n] 
] 

The lgg of this rule with the third is: 

vp : [gaps= [_ 286, ng : [] ] ,  mor=or ( i n f ,  p l ) ,  aux=n] 

[ 
vp : [gaps= [_286, _270],  mor=or ( i n f ,  p l ) ,  aux=n], 
rood: [gaps= [_270,ng: [] ] ,  of=or (nom,vp), type=n] 
] 

This rule covers the first three sentences but  is 
not general enough to cope with the situation 
where the gap is not discharged on the mother  
V P - - a  pa t te rn  present in the fourth sentence. 

Unfortunately, the fourth sentence needs to 
use the missing rule twice to get a parse, and 
it is a fundamental  l imitation of our approach 
that  a missing rule can only be recovered from 
a failed parse if it is required only once. Note 
that  to induce a rule we only need one sentence 
where the rule is needed oncc our assumption 
is that  in real (large) training datasets there will 
be enough sentences for this to be true for any 
missing grammar  rule. 

Although this assumption seems reasonable, 
we have decided to experiment with a general- 
isation operator,  which is helpful when the as- 
sumption does not hold true. A rule with a 
context-free skeleton of VP -+ VP MOD MOD 
is generated from the fourth sentence. This cor- 
responds to the two applications of the target 
VP --+ VP MOD rule. The rule we have, can be 
derived by having the target rule resolve on it- 
self. It follows that  we can inductively generate 
the target rule from VP ---+ VP MOD MOD by 
implementing a special inverse resolution oper- 
ator which produces the most specific clause C2 
from a clause C1, when C1 can be produced by 
C2 resolving with itself. Applying this operator 
to the VP ~ VP MOD MOD rule renders: 

vp : [gaps= [np, _342] ,mor=inf, aux=n] ==> 
[vp: [gaps= [np ,np] ,mor=inf, aux=n] , 
mod: [gaps= [np, _342], of=or (nom, vp), type=n] ] 

'Lggifying' this latest rule with the lgg of the 
3 other rules finally generates a g rammar  rule 

with the correct gap threading, which we dis- 
play in Fig 7 as it appears to the user (with a 
few added line breaks). However, this rule is 
not general enough simply because our train- 
ing data  is not general enough. Adding in the 
sentences All big companies will write a report 
quickly, All big companies have written a report 
quickly and All big companies wrote a report in- 
credibly generates a more general version cover- 
ing these various cases. However, there is still 
a problem because our induced rule allows the 
modifier to be modifying either a nom or a vp 
(represented by the te rm f (0 ,_280,_280,1)  in 
the compiled form), where the correct rule al- 
lows the modifier to modify an s or a vp (repre- 
sented by the te rm f (0,0, ._280,1) in the com- 
piled form). This is because our constraints still 
need to be improved. 

[ 7- display_rules. 

r158 vp ==> [vp,mod] 
vp : [gaps= [_384,_368] ,mor=or ( in f ,  p l ) ,  aux=n] ==> 
[vp : [gaps= [_ 384, _ 366], mor=or ( i n f ,  p l ) ,  aux=n], 
rood: [gaps= [_366, _368], of=or (nora, vp), type=n] ] 

cmp_synrule(r158,vp([_324,_322],  
f ( 0 , 0 , _ 3 1 6 , _ 3 1 6 , 1 , 1 , 1 , 1 , 1 ) , n ) ,  

[vp( [_324 ,_302] , f (0 ,0 ,_316 ,_316 ,1 ,1 ,1 ,1 ,1 ) ,n ) ,  
mod([_302,_322] , f (O,_280,_280,1) , f (0 ,1 ,1 ,1) ) ] )  

INF0: [head_fea ture_s ta tus (good ,  
[mor/f(O,O,_316,_316,1,1,1,1,1) ,aux/n]= 
[mor / f (0 ,0 ,_316 ,_316 ,1 ,1 ,1 ,1 ,1 ) , aux /n ] ) ,  
gap_feature_status (gap_threading_rule), score (2) ] 
Covers: 4 sentences: 
[4 ,3 ,2 ,1]  

** Hit ENTER to cont inue ,  anything e l se  to stop ** 

Figure 7: Almost finding the missing grammar  
rule 

5 T w o  e x p e r i m e n t s  

Our experiments consist of (i) randomly gener- 
ating 50 sentences from a grammar,  (ii) deleting 
some grammar  rules and (iii) seeing whether  we 
can recover the missing g rammar  rules using the 
50 sentences. Our approach is interactive with 
the user making the final decision on which hy- 
pothesised rules to add to the grammar.  Hy- 
pothesised rules are currently ordered by cover- 
age and presented to the user in that  order. In 
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our artificial experiments the earlier the missing 
rule is presented to the user the more successful 
the experiment. 

In the first experiment we deleted the VP --~ 
VP MOD rule in Fig 1 and the rule 

np_det_nom syn 
np : [gaps= [A, A] ,mor=B,type=C, case=_] ==> 

[det : [type=C ,mor=B] ,nora: [mor=B] ] .  

After generalisation of naive rules, the rule with 
the largest cover was 

np: [gaps= [ng: [] ,ng: []] ,mor=or(pl ,s3),  
type=_414, case=_415] ==> 

[det : [type=or (n, q) ,mor=_405], 
nom : [mor=or (pl, s3) ] ] 

which is over-general since the morphology fea- 
ture of the determiner is not constrained to 
equal that of the mother. However, the third 
most general rule covered 24 sentences and was: 

np : [gaps= [ng : [] ,ng : [] ] ,mot=or (pl, s3), 
type=n, case=_442] ==> 

[det : [type=n, mot=or (pl, s3) ] , 
nora: [mor=or (pl, s3) ] ] 

which does have agreement on morphology. 
Committing to this latter rule by asserting it as 
a grammar rule, removing newly parsable sen- 
tences and re-generating rules produced a vp 
==> [vp,mod] rules which was more general in 
terms of morphology than the one in Fig 7, but 
less general in terms of gap threading. This just 
reflects the sensitivity of our learning strategy 
on the particular types of sentences in the train- 
ing data. 

In a second experiment, we deleted the rules: 

nom_nom_mod syn nom: [mor=A]==> 
[nom: [mot=A] , 
rood: [gaps= [ng: [1 ,ng : [] ] , of=nora, 

type=or (n, q) ] ]. 

vp_v_np syn vp : [gaps=A,mor=B, aux=C] ==> 
Iv : [mor=B, aux=C, inv=n, subc= [np: [gaps=_, 

mor=_, type=_, case=_] ] ] , 
np: [gaps=A, mot=_, type=or (n, q), 

case=nonsubj ] ] . 

s_aux_np_vp syn 
s:[gaps=A,mor=or(pl,or(sl,or(s2,s3))), 

type=or(n,q),inv=y]==> 
[v:[mor=or(pl,or(sl,or(s2,s3))), 
aux=y,inv=y, 
subc=[vp:[gaps=_,mor=B,aux=_]]], 

np : [gaps=[ng : [ ] , ng : [ ] ] ,  

mor=or(pl,or(sl,or(s2,s3))), 
type=or(n,q),case=subj], 

vp:[gaps=A,mor=B,aux=_]]. 

Our algorithm failed to recover the 
s_aux np_vp rule but did find close ap- 
proximations to the other two rules: 

vp: [gaps= [_418, _420],  
mor=or ( i n f ,  or  ( i ng ,  s3) ) ,  aux=n] ==> 

[v : [mor=or ( i n f ,  or  ( i ng ,  s3) ) ,  aux=n, lay=n,  
subc= [rip : [gaps=_430 ,mor=_431, 
t ype=or  ( n , q ) ,  case=nonsubj]  ] ] ,  

np: [gaps= [_418, _420] ,mor=or ( p l ,  s3 ) ,  
type=n ,  case=_407] ] 

nora: [mor=or (pl, s3)] ==> 
[nom: [mor=or (pl, s3) ] , 
rood: [gaps = [_339, _339], 

of=or (nom,vp),type=or (n,q) ] ] 

6 R e l a t e d  w o r k  

The strong connections between proving and 
parsing axe well known (Shieber et al., 1995), 
so it is no surprise that  we find related methods 
in both ILP and computational  linguistics. In 
ILP the notion of inducing clauses to fix a failed 
proof, which is the topic of Section 2, is very old 
dating from the seminal work of Shapiro (1983). 
In NLP, Mellish (1989) presents a method for re- 
pairing failed parses in a relatively efficient way 
based on the fact that,  after a failed parse, the 
information in the chart is sufficient for us to be 
able to determine what constituents would have 
allowed the parse to go through if they had been 
found. 

6.1 R e l a t e d  w o r k  in I L P  

The use of abduction to repair proofs/paxses 
has been extensively researched in ILP as has 
the importance of abduction for multiple pred- 
icate learning. De Raedt (1992), for example, 
notes that  "Roughly speaking, combining ab- 
duction with single predicate-leaxning leads to 
multiple concept-leaxning". This paper, where 
abduction is used to learn, say, verb phrases and 
noun phrases from examples of sentences is an 
example of this. Recent work in this vein in- 
cludes (Muggleton and Bryant, 2000) and the 
papers in (Flach and Kakas, 2000). 

Amongst this work a particularly relevant pa- 
per for us is (Wirth, 1988). Wirth's Learning 
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by Failure to Prove (LFP) approach finds miss- 
ing clauses by constructing partial proof trees 
(PPTs) and hence diagnosing the source of in- 
completeness. A clause representing the P P T  
is constructed (called the resolvent of the PPT)  
as is an approximation to the resolvent of the 
complete proof tree. Inverse resolution is then 
applied to these two clauses to derive the miss- 
ing clause. Wirth explains his method by way of 
a small context-free DCG completion problem. 

Our approach is similar to Wirth's in the 
dependence on abduction to locate the source 
of proof (i.e. parse) failure. Also both meth- 
ods use a meta interpreter to construct partial 
proofs. In our case the meta-interpreter is the 
chart parser augmented with the generation of 
needs and the partial proof is represented by the 
chart augmented with the needs. In Wirth's 
work the resolvent of the P P T  represents the 
partial proof and a more general purpose meta- 
interpreter is used. (We conjecture that  our 
tabular representation has a better chance of 
scaling up for real applications.) Thirdly, both 
methods are interactive. Translating his ap- 
proach to the language of this paper, Wirth asks 
the user to verify that  proposed needed atoms 
(our needed edges) are truly needed. The user 
also has to evaluate the final hypothesised rules. 
We prefer to have the user only perform the 
latter task, but the advantage of Wirth's ap- 
proach is that  the user can constrain the search 
at an earlier stage. Wir th  defends an interac- 
tive approach on the grounds that  "A system 
that  learn[s] concepts or rules from looking at 
the world is useless as long as the results are not 
verified because a user who feels responsible for 
his knowledge base rarely use these concepts or 
rules". 

In contrast to (Cussens and Puhnan,  2000) 
we now search bot tom-up for our rules. This is 
because the rules we are searching for are near 
the bot tom of the search space, and also because 
bot tom-up searching effects a more constrained, 
example-driven search. Bottom-up search has 
been used extensively in ILP. For example, the 
GOLEM algorithm (Muggleton and Feng, 1990) 
used relative least general generalisation (rlgg). 
However, bot tom-up search is rare in modern 
ILP implementations. This is primarily be- 
cause the clauses produced can be unmanage- 
ably large, particularly when generalisation is 

performed relative to background knowledge, as 
with rlgg. Having grammar rules encoded as 
unit clauses alleviates this problem as does our 
decision to use lgg rather than rlgg. 

Zelle and Mooney (1996) provides a bridge 
between ILP and NLP inductive methods. 
Their CHILL algorithm is a specialised ILP sys- 
tem that  learns control rules for a shift-reduce 
parser. The connection with the approach pre- 
sented here (and that  of Wirth) is that  inter- 
mediate stages of a proof/parse are represented 
and then examined to find appropriate rules. In 
CHILL these intermediate stages are states of a 
shift-reduce parser. 

6.2 R e l a t e d  w o r k  in N L P  

Most work on grammar induction has taken 
place using formalisms in which categories 
are atomic: context-free grammars, categorial 
grammars, etc. Few at tempts  have been made 
at rule induction using a rich unification formal- 
ism. Two lines of work that  are exceptions to 
this, and thus comparable to our own, are that  
of Osborne and colleagues; and the work of the 
SICS group using SRI's Core Language Engine 
and similar systems. 

Osborne (1999) argues (correctly) that  the 
hypothesis space of grammars is sufficiently 
large that  some form of bias is required. The 
current paper is concerned with methods for 
effecting what is known as declarative bias in 
the machine learning literature, i.e. hard con- 
straints that  reduce the size of the hypothe- 
sis space. Osborne, on the other hand, uses 
the Minimum Description Length (MDL) prin- 
ciple to effect a preferential (soft) bias towards 
smaller grammars. His approach is incremental 
and the induction of new rules is triggered by 
an unparsable sentence as follows: 

1. Candidate rules are generated where the 
daughters are edges in the chart after the 
failed parse, and the mother  is one of 
these daughters, possibly with its bar level 
raised. 

2. The sentence is parsed and for each success- 
ful parse, the set of candidate rules used in 
that  parse constitutes a model. 

3. The 'best'  model is found using a Minimum 
Description Length approach and is added 
to the existing grammar. 
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So Osborne, like us, uses the edges in the 
chart after a failed parse to form the daughters 
of hypothesised rules. The mothers, though, are 
not found by abduct ion as in our case, also there 
is no subsequent generalisation step. 

Unlike us Osborne induces a probabilistic 
grammar.  When candidate rules are added, 
probabilities are renormalised and the n most 
likely parses are found. If annotated data  is 
being used, models that  produce parses incon- 
sistent with this da ta  are rejected. In (Os- 
borne, 1999), the DCG is mapped to a SCFG 
to compute probabilities, in very recent work a 
stochastic attr ibute-value grammar  is used (Os- 
borne, 2000). Giving the increasing sophistica- 
tion of probabilistic linguistic models (for ex- 
ample, Collins (1997) has a statistical approach 
to learning gap-threading rules) a probabilistic 
extension of our work is a t t rac t ive-- i t  will be 
interesting to see how far an integration of 'log- 
ical' and statistical can go. 

Tha lmann  and Samuelsson (1995) describe a 
scheme which combines robust parsing and rule 
induction for unification grammars.  They  use 
an LR parser, whose states and actions are aug- 
mented so as to t ry  to recover from situations 
that  in a s tandard LR parser would result in an 
error. The usual actions of shift, reduce, and 
accept are augmented by 

h y p o t h e s i s e d  shif t :  shift a new item on to 
the stack even if no such action is specified in 
that  state 

h y p o t h e s i s e d  u n a r y  r e d u c e :  reduce a 
symbol Y as if there was a rule X -~ Y, where 
the value of X is not yet determined. 

h y p o t h e s i s e d  b i n a r y  r e d u c e :  reduce a 
symbols Y Z as if there was a rule X ~ Y Z, 
where the value of X is not yet determined. 

The value of the X symbol is determined by 
the next possibilities for reduction. 

To illustrate, consider the grammar  

1 S -+ NP VP 
2 NP -+ Name 
3 VP --+ Vi 

and a sentence ' John snores loudly'. 
Assume that  all the words are known 
(though this is not necessary for their 
method).  The sequence of events will be: 

Operat ion Stack 
1. Shift 
2. Reduce with 2 
3. Shift 
4. Reduce with 3 
5. HShift 
6. HReduce 
7. Reduce with 1 

Name:john 
NP[Name:john] 
NP[Name:john] Vi:snores 
NP[Name:john] VP[Vi:snores] 
NP VP Adv:loudly 
NP X[VP Adv] 
S[NP [VP VP Adv]] 

After stage 4 we could reduce with 1 but this 
would not lead to an accepting state. Instead 
we perform a hypothesised shift at stage 5 fol- 
lowed by a hypothesised binary reduce with X 

VP Adv in stage 6. Next we reduce with 
rule 1 which instantiates X to VP and we have 
a complete parse provided we hypothesise the 
rule VP ~ VP Adv. 

Two more hypothesised actions are used to 
account for gap threading: 

h y p o t h e s i s e d  move :  put  the current sym- 
bol on a separate movement stack (i.e. hypoth- 
esise that  this consti tuent has been fronted) 

h y p o t h e s i s e d  fill: move the top of the 
movement stack to to top of the main stack 

These actions have costs associated with 
them and a control regime so that  the 'cheap- 
est' analysis will always be preferred. An anal- 
ysis which uses none of the new actions will be 
cost-free. Unary  reduction is more expensive 
than binary reduction because the consequent 
unary rules may lead to cycles, and such rules 
are often redundant .  

These actions hypothesise only the context 
free backbone of the rules. Feature principles 
analogous to those we described above are used, 
along with hand editing, to get the final form of 
the hypothesised rule. Presumably the infor- 
mat ion hypothesised by the move and fill oper- 
ations as to be t ranslated somehow into the gap 
threading notation which is also used by their 
formalism. No details are given of the results of 
this system, nor any empirical evaluation. 

This work shares many of the goals of the 
approach we describe, in particular the use of 
explicit encoding of background knowledge of 
feature principles. The main difference is that  
the technique they describe only hypothesises 
the context free backbone of the necessary rules, 
whereas in our approach the feature structures 
are also hypothesised simultaneously. 

Asker et al. (1992) also describe a method 
for inducing new lexical entries when extending 
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coverage of a unification grammar  to a new do- 
main, a task which is also related to our work in 
that  they are using a full unification formalism 
and using partial analyses to constrain hypothe- 
ses. Firstly, they use 'explanation based gener- 
alisation' to learn a set of sentence templates 
for those sentences in the new corpus that  can 
be successfully analysed. This process essen- 
tially takes commonly occurring trees and 'flat- 
tens' them, abstracting over the content words 
in them. Secondly they use these templates to 
analyse those sentences from the new corpus 
which contain unknown words, treatimg the en- 
tries implied by the templates for these words 
as provisionally correct. Finally these inferred 
entries are checked against a set of hand-coded 
'paradigm' entries, and when all the entries cor- 
responding to a paradigm have been found, a 
new canonical lexical entry for this word is cre- 
ated from the paradigm. 

Again, no results are evaluation are given, but  
it is clear that  this method is likely to yield sim- 
ilar results to our own for inference of lexical 
entries. 

7 F u t u r e  d i r e c t i o n s  

We find our preliminary results encouraging be- 
cause (i) we usually get close to missing rules, 
(ii) the rules are fairly linguistically sophisti- 
cated, for example, involving gap threading and 
(iii) the burden on the user is l ight- -by order- 
ing induced rules by their  coverage, the user sees 
the best rules first, and does not have to bother  
inspecting the mass of highly specialised rules 
produced. The work is incomplete and ongo- 
ing, and we conclude by listing three important  
tasks for the next phase of our work: where we 
intend to do thorough empirical testing on real 
data. 

(1) In (Cussens and Pulman,  2000), edges 
were re-used to speed up cover testing. This is 
still not working in the newer implementation. 
(2) In real applications missing lexical items are 
more significant than  missing grammar  rules. 
Although one can easily learn lexical items by 
encoding them as g rammar  rules it should be 
more efficient to replace an unknown word by a 
variable, and then just  see how it gets instan- 
t iated as we parse. (3) In these small experi- 
ments we could get away with an appealingly 
simple learning strategy: produce and store all 

naive rules then produce and store all possible 
lggs. To scale up we will probably need to use 
a greedier approach. 
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