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A b s t r a c t  

Morphology induction is a subproblem of 
important tasks like automatic learning of 
machine-readable dictionaries and grammar in- 
duction. Previous morphology induction ap- 
proaches have relied solely on statistics of hy- 
pothesized stems and affixes to choose which 
affixes to consider legitimate. Relying on stem- 
and-affix statistics rather than semantic knowl- 
edge leads to a number of problems, such as the 
inappropriate use of valid affixes ("ally" stem- 
ming to "all"). We introduce a semantic-based 
algorithm for learning morphology which only 
proposes affixes when the stem and stem-plus- 
affix are sufficiently similar semantically. We 
implement our approach using Latent Seman- 
tic Analysis and show that our semantics-only 
approach provides morphology induction results 
that rival a current state-of-the-art system. 

1 I n t r o d u c t i o n  

Computational morphological analyzers have 
existed in various languages for years and it has 
been said that "the quest for an efficient method 
for the analysis and generation of word-forms is 
no longer an academic research topic" (Karlsson 
and Karttunen, 1997). However, development 
of these analyzers typically begins with human 
intervention requiring time spans from days to 
weeks. If it were possible to build such ana- 
lyzers automatically without human knowledge, 
significant development time could be saved. 

On a larger scale, consider the task 
of inducing machine-readable dictionaries 
(MRDs) using no human-provided information 
("knowledge-free"). In building an MRD, 
"simply expanding the dictionary to encompass 
every word one is ever likely to encounter...fails 

to take advantage of regularities" (Sproat, 
1992, p. xiii). Hence, automatic morphological 
analysis is also critical for selecting appropriate 
and non-redundant MRD headwords. 

For the reasons expressed above, we are in- 
terested in knowledge-free morphology induc- 
tion. Thus, in this paper, we show how to au- 
tomatically induce morphological relationships 
between words. 

Previous morphology induction approaches 
(Goldsmith, 1997, 2000; D4Jean, 1998; Gauss- 
ier, 1999) have focused on inflectional languages 
and have used statistics of hypothesized stems 
and affixes to choose which affixes to consider 
legitimate. Several problems can arise using 
only stem-and-affix statistics: (1) valid affixes 
may be applied inappropriately ("ally" stem- 
ming to "all"), (2) morphological ambiguity 
may arise ("rating" conflating with "rat" in- 
stead of "rate"), and (3) non-productive affixes 
may get accidentally pruned (the relationship 
between "dirty" and "dirt" may be lost)3 

Some of these problems could be resolved 
if one could incorporate word semantics. For 
instance, "all" is not semantically similar to 
"ally," so with knowledge of semantics, an algo- 
rithm could avoid conflating these two words. 
To maintain the "knowledge-free" paradigm, 
such semantics would need to be automati- 
cally induced. Latent Semantic Analysis (LSA) 
(Deerwester, et al., 1990); Landauer, et al., 
1998) is a technique which automatically iden- 
tifies semantic information from a corpus. We 
here show that incorporating LSA-based seman- 
tics alone into the morphology-induction pro- 
cess can provide results that rival a state-oh 
the-art system based on stem-and-affix statis- 
tics (Goldsmith's Linguistica). 

1Error examples are from Goldsmith 's  Linguistica 
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Our algorithm automatically extracts poten- 
tial affixes from an untagged corpus, identifies 
word pairs sharing the same proposed stem but 
having different affixes, and uses LSA to judge 
semantic relatedness between word pairs. This 
process serves to identify valid morphological re- 
lations. Though our algorithm could be applied 
to any inflectional language, we here restrict 
it to English in order to perform evaluations 
against the human-labeled CELEX database 
(Baayen, et al., 1993). 

2 P r e v i o u s  w o r k  

Existing induction algorithms all focus on iden- 
tifying prefixes, suffixes, and word stems in in- 
flectional languages (avoiding infixes and other 
language types like concatenative or aggluti- 
native languages (Sproat, 1992)). They also 
observe high frequency occurrences of some 
word endings or beginnings, perform statistics 
thereon, and propose that some of these ap- 
pendages are valid morphemes. 

However, these algorithms differ in specifics. 
D~Jean (1998) uses an approach derived from 
Harris (1951) where word-splitting occurs if the 
number of distinct letters that follows a given 
sequence of characters surpasses a threshoid. 
He uses these hypothesized affixes to resegment 
words and thereby identify additional affixes 
that were initially overlooked. His overall goal is 
different from ours: he primarily seeks an affix 
inventory. 

Goldsmith (1997) tries cutting each word 
in exactly one place based on probability and 
lengths of hypothesized stems and affixes. He 
applies the EM algorithm to eliminate inappro- 
priate parses. He collects the possible suffixes 
for each stem calling these a signature which 
aid in determining word classes. Goldsmith 
(2000) later incorporates minimum description 
length to identify stemming characteristics that 
most compress the data, but his algorithm oth- 
erwise remains similar in nature. Goldsmith's 
algorithm is practically knowledge-free, though 
he incorporates capitalization removal and some 
word segmentation. 

Gaussier (1999) begins with an inflectional 
lexicon and seeks to find derivational morphol- 
ogy. The words and parts of speech from his 
inflectional lexicon serve for building relational 
families of words and identifying sets of word 

pairs and suffixes therefrom. Gaussier splits 
words based on p-similarity - words that agree 
in exactly the first p characters. He also builds 
a probabilistic model which indicates that the 
probability of two words being morphological 
variants is based upon the probability of their 
respective changes in orthography and morpho- 
syntactics. 

3 C u r r e n t  a p p r o a c h  

Our algorithm also focuses on inflectional lan- 
guages. However, with the exception of word 
segmentation, we provide it no human informa- 
tion and we consider only the impact of seman- 
tics. Our approach (see Figure 1) can be de- 
composed into four components: (1) initially 
selecting candidate affixes, (2) identifying af- 
fixes which are potential morphological vari- 
ants of each other, (3) computing semantic vec- 
tors for words possessing these candidate affixes, 
and (4) selecting as valid morphological variants 
those words with similar semantic vectors. 

Figure 1: Processing Architecture 

Stage 1 Stage 2 Stage 3 Stage 4 

Identify I[ paa~~ ~l~ I[ semantic I I variants 
potential [lare pos slmell vectors II that have 

affixes I I morplm- I I for I I slmuar 
........ ) ( logical ]( words ] ( semantic 

3.1 H y p o t h e s i z i n g  affixes 
To select candidate affixes, we, like Gaussier, 
identify p-similar words. We insert words into a 
trie (Figure 2) and extract potential affixes by 
observing those places in the trie where branch- 
ing occurs. Figure 2's hypothesized suffixes are 
NULL, "s," "ed," "es," "ing," "e," and "eful." 
We retain only the K most-frequent candidate 
affixes for subsequent processing. The value for 
K needs to be large enough to account for the 
number of expected regular affixes in any given 
language as well as some of the more frequent 
irregular affixes. We arbitrarily chose K to be 
200 in our system. (It should also be mentioned 
that we can identify potential prefixes by insert- 
ing words into the trie in reversed order. This 
prefix mode can additionally serve for identify- 
ing capitalization.) 
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F i g u r e  2: Trie structure 
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3.2 M o r p h o l o g i c a l  variants 

We next identify pairs of candidate affixes that  
descend from a common ancestor node in the 
trie. For example, ("s", NULL) constitutes such 
a pair from Figure 2. We call these pairs rules. 

Two words sharing the same root and the 
same affix rule, such as "cars" and "car," form 
what we call a pair of potential morphological 
variants (PPMVs). We define the ruleset of a 
given rule to be the set of all PPMVs that  have 
that rule in common. For instance, from Figure 
2, the ruleset for ("s", NULL) would be the pairs 
"cars/car" and "cares/care." Our algorithm es- 
tablishes a list which identifies the rulesets for 
every hypothesized rule extracted from the data 
and then it must proceed to determine which 
rulesets or PPMVs describe true morphological 
relationships. 

3.3 Comput ing  Semantic  Vectors 

Deerwester, et al. (1990) showed that  it is 
possible to find significant semantic relation- 
ships between words and documents in a corpus 
with virtually no human intervention (with the 
possible exception of a human-built  stop word 
list). This is typically done by applying singu- 
lar value decomposition (SVD) to a matrix, M, 
where each entry M(i,j)  contains the frequency 
of word i as seen in document j of the corpus. 

This methodology is referred to as Latent Se- 
mantic Analysis (LSA) and is well-described in 
the literature (Landauer, et al., 1998; Manning 
and Schfitze, 1999). 

SVDs seek to decompose a matrix A into the 
product of three matrices U, D, and V T where 
U and V T a r e  orthogonal matrices and D is 
a diagonal matrix containing the singular val- 
ues (squared eigenvalues) of A. Since SVD's 
can be performed which identify singular val- 
ues by descending order of size (Berry, et al., 
1993), LSA truncates after finding the k largest 
singular values. This corresponds to projecting 
the vector representation of each word into a 
k-dimensional subspace whose axes form k (la- 
tent) semantic directions. These projections are 
precisely the rows of the matrix product UkDk. 
A typical k is 300, which is the value we used. 

However, we have altered the algorithm some- 
what to fit our needs. First, to stay as close to 
the knowledge-free scenario as possible, we nei- 
ther apply a stopword list nor remove capitaliza- 
tion. Secondly, since SVDs are more designed 
to work on normally-distributed data (Manning 
and Schiitze, 1999, p. 565), we operate on Z- 
scores rather than counts. Lastly, instead of 
generating a term-document matrix, we build a 
term-term matrix. 

Schiitze (1993) achieved excellent perfor- 
mance at classifying words into quasi-part- 
of-speech classes by building and perform- 
ing an SVD on an N x 4 N  term-term matrix, 
M(i ,Np+j) .  The indices i and j represent the 
top N highest frequency words. The p values 
range from 0 to 3 representing whether the word 
indexed by j is positionally offset from the word 
indexed by i by -2, -1, +1, or +2, respectively. 
For example, if "the" and "people" were re- 
spectively the 1st and 100th highest frequency 
words, then upon seeing the phrase "the peo- 
ple," Schfitze's approach would increment the 
counts of M(1,2N+100) and M(100,N+i) .  

We used Schfitze's general framework but tai- 
lored it to identify local semantic information. 
We built an N x 2 N  matrix and our p values cor- 
respond to those words whose offsets from word 
i are in the intervals [-50,-1] and [1,501, respec- 
tively. We also reserve the N t h  position as a 
catch-all position to account for all words that  
are not in the top (N-l).  An important  issue to 
resolve is how large should N be. We would like 
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to be able to incorporate semantics for an arbi- 
trarily large number  of words and LSA quickly 
becomes impractical on large sets. Fortunately, 
it is possible to build a matr ix  with a smaller 
value of N (say, 2500), perform an SVD thereon, 
and then fold in remaining terms (Manning and 
Schfitze, 1999, p. 563). Since the U and V ma- 
trices of an SVD are orthogonal matrices, then 
u u T : v v T : I .  This implies that  A V = U D .  

This means that  for a new word, w, one can 
build a vector ~T which identifies how w relates 
to the top N words according to the p different 
conditions described above. For example, if w 
were one of the top N words, then ~w T would 
simply represent w's part icular row from the A 
matrix. The product  f~w = ~wTVk is the projec- 
tion of ~T into the k-dimensional latent seman- 
tic space. By storing an index to the words of 
the corpus as well as a sorted list of these words, 
one can efficiently build a set of semantic vec- 
tors which includes each word of interest. 

3.4 S t a t i s t i c a l  C o m p u t a t i o n s  

Morphologically-related words frequently share 
similar semantics, so we want to see how well se- 
mantic vectors of PPMVs correlate. If we know 
how PPMVs correlate in comparison to other 
word pairs from their same rulesets, we can ac- 
tually determine the semantic-based probability 
that  the variants are legitimate. In this section, 
we identify a measure for correlating PPMVs 
and illustrate how ruleset-based statistics help 
identify legitimate PPMVs. 

3.4.1 S e m a n t i c  C o r r e l a t i o n  o f  W o r d s  
The cosine of the angle between two vectors v l  
and v2 is given by, 

c o s ( v l , v 2 ) -  v l - v 2  
II v l  llll v2 H" 

We want to determine the correlation between 
each of the words of every PPMV. We use what 
we call a normalized cosine score (NCS) as a cor- 
relation. To obtain a NCS, we first calculate the 
cosine between each semantic vector, nw,  and 
the semantic vectors from 200 randomly chosen 
words. By this means we obtain w's correlation 
mean (#w) and s tandard deviation (aw). If v 
is one of w's variants, then we define the NCS 
between ~ w  and n v  to be 

cos (nw,  n v )  - #y ). 
min ( 

ye{w,v} ay 

Table 1 provides normalized cosine scores for 
several PPMVs from Figure 2 and from among 
words listed originally as errors in other sys- 
tems. (NCSs are effectively Z-scores.) 

T a b l e  1: Normalized Cosines for various PPMVs 
PPMVs I NCSs PPMVs NCSs I 

car /cars  5.6 ally/allies 6.5 

car /car ing -0.71 ally/all  -1.3 

car/cares -0.14 d i r ty /d i r t  2.4 

car /cared  i -0.96 ra t ing / ra te  0.97 

3 .4 .2  R u l e s e t - l e v e l  S t a t i s t i c s  
By considering NCSs for all word pairs cou- 
pled under a part icular  rule, we can deter- 
mine semantic-based probabilities that  indicate 
which PPMVs are legitimate. We expect ran- 
dom NCSs to be normally-distr ibuted accord- 
ing to Af(0,1). Given that  a particular ruleset 
contains nR PPMVs,  we can therefore approx- 
imate the number  (nT), mean (#T) and stan- 
dard deviation (aT) of true correlations. If we 

_C .~___~ ~ 2 .  
define ~ z ( # , a )  to be f e e  " - J ax, then we 
can compute the probabili ty that  the particular 
correlation is legitimate: 

Pr(  true) = nT ~ Z(~T , aT) 
(nR--nT ~z(O, 1) +nT~Z(~T, aT)" 

3 .4 .3  S u b r u l e s  

It is possible that  a rule can be hypothesized 
at the trie stage that  is t rue under only certain 
conditions. A prime example of such a rule is 
("es", NULL). Observe from Table 1 that  the 
word "cares" poorly correlates with "car." Yet, 
it is t rue that  "-es" is a valid suffix for the words 
"flashes," "catches," "kisses," and many other 
words where the "-es" is preceded by a voiceless 
sibilant. 

Hence, there is merit  to considering subrules 
that  arise while performing analysis on a par- 
ticular rule. For instance, while evaluating the 
("es", NULL) rule, it is desirable to also con- 
sider potential  subrules such as ("ches", "ch") 
and ("tes", "t"). One might expect that  the av- 
erage NCS for the ("ches", "ch") subrule might 
be higher than  the overall rule ("es", NULL) 
whereas the opposite will likely be true for 
(" tes ' ,  "t"). Table 2 confirms this. 
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Table 2: Analysis of subrules 
Rule/Subrule I Average StDev t#instances 

("es", NULL) 1.62 
("ches", "ch" ) 2.20 
("shes", "sh") 2.39 

("res", "r") -0.69 
("tes","t") -0.58 

2.43 173 
1.66 32 
1.52 15 
0.47 6 
0.93 11 

4 R e s u l t s  

We compare our algorithm to Goldsmith's Lin- 
guistica (2000) by using CELEX's (Baayen, 
et al., 1993) suffixes as a gold standard. 
CELEX is a hand-tagged, morphologically- 
analyzed database of English words. CELEX 
has limited coverage of the words from our data 
set (where our data consists of over eight mil- 
lion words from random subcollections of TREC 
data (Voorhees, et a1,1997/8)), so we only con- 
sidered words with frequencies of 10 or more. 

F igure  3: Morphological directed graphs 

(b) (f) 
concerned concerted 

(a) / (c) (g) k 

concerns concerts , ~eoncer~ conceri~ (e) . 

\ conc(edr)ning con~eh!ting / 

(i) (j) 
concerto ~-- concertos 

Morphological relationships can be represented 
graphically as directed graphs (see Figure 3, 
where three separate graphs are depicted). De- 
veloping a scoring algorithm to compare di- 
rected graphs is likely to be prone to disagree- 
ments. Therefore, we score only the vertex sets 
of directed graphs. We will refer to these ver- 
tex sets as conflation sets. For example, con- 
cern's conflation set contains itself as well as 
"concerned," "concerns," and "concerning" (or, 
in shorthand notation, the set is {a,b,c,d}). 

To evaluate an algorithm, we sum the num- 
ber of correct (C), inserted (Z), and deleted (D) 
words it predicts for each hypothesized confla- 

tion set. If Xw represents word w's conflation 
set according to the algorithm, and if Yw repre- 
sents its CELEX-based conflation set, then 

C = E w ( I x w  AYwl/ lYwl) ,  

= Evw(lYw - (Xw NYw)I/IYwl), and 

z = E w ( l x ~  - ( xw  AY~)I/IYwl) .  

However, in making these computations, we dis- 
regard any CELEX words that are not in the 
algorithm's data set and vice versa. 

For example, suppose two algorithms were be- 
ing compared on a data set where all the words 
from Figure 3 were available except "concert- 
ing" and "concertos." Suppose further that one 
algorithm proposed that {a,b,c,d,e,f,g,i} formed 
a single conflation set whereas the other algo- 
rithm proposed the three sets {a,b,c,d},{e,g,i}, 
and {f}. Then Table 3 illustrates how the two 
algorithms would be scored. 

Table 3: Example of scoring 
I II a I b I c I d I e I f I g I i IITotalt 
C1 4/4 4/4 4/4 4/4 3/3 3/3 3/3 1/1 8 
D1 0/4 0/4 0/4 0/4 0/3 0/3 0/3 0/1 0 
Zl  4/4 4 /4  4/4 4/4 5/3 5/3 5/3 7/1 16 
C2 4/4 4 /4  4/4 4/4 2/3 2/3 1/3 1/1 20/3 
D2 0/4 0/4 0/4 0/4 1/3 1/3 2/3 0/1 4/3 
Z2 0/4i0/4 0/4 0/4 1/3 1/3 0/3 2/1 8/3 

To explain Table 3, consider algorithm one's 
entries for 'a.' Algorithm one had pro- 
posed that Xa={a,b,c,d,e,f,g,i} when in reality, 
Ya={a,b,c,d}. Since IXa NYal = 4 and IYal=4, 
then CA=4/4. The remaining values of the table 
can be computed accordingly. 

Using the values from Table 3, we can 
also compute precision, recall, and F-Score. 
Precision is defined to be C/(C+Z), recall is 
C/(C+D), and F-Score is the product of pre- 
cision and recall divided by the average of the 
two. For the first algorithm, the precision, re- 
call, and F-Score would have respectively been 
1/3, 1, and 1/2. In the second algorithm, these 
numbers would have been 5/7, 5/6, and 10/13. 

Table 4 uses the above scoring mechanism to 
compare between Linguistica and our system (at 
various probability thresholds). Note that since 
Linguistica removes capitalization, it will have 
a different total word count than our system. 
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Tab le  4: Performance on English CELEX 

Algorithm Linguistica 
LSA- LSA- LSA- 
based based based 

pr_> 0.5 pr_> 0.7 pr> 0.85 

#Correct 10515 10529 10203 9863 
#Inserts 2157 1852 1138 783 
#Deletes 2571 2341 i 2667 3007 

Precision 83.0% 85.0% 90.0% 92.6% 
Recall 80.4% 81.8% 79.3% 76.6% 

F-Score 81.6% 83.4% 84.3% 83.9% 

5 C o n c l u s i o n s  

These results suggest that  semantics and LSA 
can play a key part  in knowledge-free mor- 
phology induction. Semantics alone worked at 
least as well as Goldsmith's  frequency-based ap- 
proach. Yet we believe that  semantics-based 
and frequency-based approaches play comple- 
mentary  roles. In current work, we are examin- 
ing how to combine these two approaches. 
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