
Specifying Conceptual Models Using Restricted Natural Language

Bayzid Ashik Hossain
Department of Computing

Sydney, NSW
Australia

bayzid-ashik.hossain@mq.edu.au

Rolf Schwitter
Department of Computing

Sydney, NSW
Australia

rolf.schwitter@mq.edu.au

Abstract

The key activity to design an infor-
mation system is conceptual modelling
which brings out and describes the general
knowledge that is required to build a sys-
tem. In this paper we propose a novel ap-
proach to conceptual modelling where the
domain experts will be able to specify and
construct a model using a restricted form
of natural language. A restricted natural
language is a subset of a natural language
that has well-defined computational prop-
erties and therefore can be translated un-
ambiguously into a formal notation. We
will argue that a restricted natural lan-
guage is suitable for writing precise and
consistent specifications that lead to exe-
cutable conceptual models. Using a re-
stricted natural language will allow the
domain experts to describe a scenario in
the terminology of the application domain
without the need to formally encode this
scenario. The resulting textual specifica-
tion can then be automatically translated
into the language of the desired conceptual
modelling framework.

1 Introduction

It is well-known that the quality of an information
system application depends on its design. To guar-
antee accurateness, adaptability, productivity and
clarity, information systems are best specified at
the conceptual level using a language with names
for individuals, concepts and relations that are
easily understandable by domain experts (Bernus
et al., 2013). Conceptual modelling is the most
important part of requirements engineering and is
the first phase towards designing an information
system (Olivé, 2007). The conceptual design pro-
cedure generally includes data, process and be-

havioral perceptions, and the actual database man-
agement system (DBMS) that is used to imple-
ment the design of the information system (Bernus
et al., 2013). The DBMS could be based on any of
the available data models. Designing a database
means constructing a formal model of the desired
application domain which is often called the uni-
verse of discourse (UOD). Conceptual modelling
involves different parties who sit together and de-
fine the UOD. The process of conceptual mod-
elling starts with the collection of necessary infor-
mation from the domain experts by the knowledge
engineers. The knowledge engineers then use tra-
ditional modelling techniques to design the system
based on the collected information.

To design the database, a clear understanding
of the application domain and an unambiguous in-
formation representation scheme is necessary. Ob-
ject role modelling (ORM) (Halpin, 2009) makes
the database design process simple by using nat-
ural language for verbalization, as well as dia-
grams which can be populated with suitable ex-
amples and by adding the information in terms of
simple facts. On the other hand, entity relation-
ship modelling (ERM) (Richard, 1990; Frantiska,
2018) does this by considering the UOD in terms
of entities, attributes and relationships. Object-
oriented modelling techniques such as the unified
modelling language (UML) (O´ Regan, 2017) pro-
vide a wide variety of functionality for specifying
a data model at an implementation level which is
suitable for the detailed design of an object ori-
ented system. UML can be used for database de-
sign in general because its class diagrams provide
a comprehensive entity-relationship notation that
can be annotated with database constructs.

Alternatively, a Restricted Natural Language
(RNL) (Kuhn, 2014) can be used by the domain
experts to specify system requirements for con-
ceptual modelling. A RNL can be defined as a
subset of a natural language that is acquired by

Bayzid Ashik Hossain and Rolf Schwitter. 2018. Specifying Conceptual Models Using Restricted Natural Language. In
Proceedings of Australasian Language Technology Association Workshop, pages 44−52.

constraining the grammar and vocabulary in order
to reduce or remove its ambiguity and complexity.
These RNLs are also known as controlled natural
language (CNL) (Schwitter, 2010). RNLs fall into
two categories: 1. those that improve the read-
ability for human beings especially for non-native
speakers, and 2. those that facilitate the automated
translation into a formal target language. The main
benefits of an RNL are: they are easy to under-
stand by humans and easy to process by machines.
In this paper, we show how an RNL can be used
to write a specification for an information sys-
tem and how this specification can be processed
to generate a conceptual diagram. The grammar
of our RNL specifies and restricts the form of the
input sentences. The language processor trans-
lates RNL sentences into a version of description
logic. Note that the conceptual modelling process
usually starts from scratch and therefore cannot
rely on existing data that would make this process
immediately suitable for machine learning tech-
niques.

2 Related Work

There has been a number of works on formalizing
conceptual models for verification purposes (Be-
rardi et al., 2005; Calvanese, 2013; Lutz, 2002).
This verification process includes consistency and
redundancy checking. These approaches first rep-
resent the domain of interest as a conceptual
model and then formalize the conceptual model
using a formal language. The formal representa-
tion can be used to reason about the domain of in-
terest during the design phase and can also be used
to extract information at run time through query
answering.

Traditional conceptual modelling diagrams
such as entity relationship diagrams and unified
modelling language diagrams are easy to gener-
ate and easily understandable for the knowledge
engineers. These modelling techniques are well
established. The problems with these conven-
tional modelling approaches are: they have no pre-
cise semantics and no verification support; they
are not machine comprehensible and as a conse-
quence automated reasoning on the conceptual di-
agrams is not possible. Previous approaches used
logic to formally represent the diagrams and to
overcome these problems. The description logic
(DL) ALCQI is well suited to do reasoning with
entity relationship diagrams (Lutz, 2002), UML

class diagrams (Berardi et al., 2005) and ORM di-
agrams (Franconi et al., 2012). The DL ALCQI
is an extension of the basic propositionally closed
description logic AL and includes complex con-
cept negation, qualified number restriction, and in-
verse role.

Table 1 shows the constructs of the ALCQI
description logic with suitable examples. It is
reported that finite model reasoning with AL-
CQI is decidable and ExpTime-complete1. Us-
ing logic to formally represent the conceptual dia-
grams introduces some problems too. For exam-
ple, it is difficult to generate logical representa-
tions, in particular for domain experts; it is also
difficult for them to understand these representa-
tions and no well established methodologies are
available to represent the conceptual models for-
mally. A solution to these problems is to use
a RNL for the specification of conceptual mod-
els. There exist several ontology editing and
authoring tools such as AceWiki (Kuhn, 2008),
CLOnE (Funk et al., 2007), RoundTrip Ontol-
ogy Authoring (Davis et al., 2008), Rabbit (De-
naux et al., 2009), Owl Simplified English (Power,
2012) that already use RNL for the specification of
ontologies; they translate a specification into a for-
mal notation. There are also works on mapping
formal notation into conceptual models (Brock-
mans et al., 2004; Bagui, 2009).

3 Proposed Approach

Several approaches have been proposed to use
logic with conventional modelling techniques to
verify the models and to get the semantics of the
domains. These approaches allow machines to un-
derstand the models and thus support automated
reasoning. To overcome the disadvantages asso-
ciated with these approaches, we propose to use
an RNL as a language for specifying conceptual
models. The benefits of an RNL are: 1. the lan-
guage is easy to write and understand for domain
experts as it is a subset of a natural language, 2.
the language gets its semantics via translation into
a formal notation, and 3. the resulting formal no-
tation can be used further to generate conceptual
models.

Unlike previous approaches, we propose to
write a specification of the conceptual model in
RNL first and then translate this specification into
description logic. Existing description logic rea-

1http://www.cs.man.ac.uk/∼ezolin/dl/

45

Construct Syntax Example
atomic concept C Student
atomic role P hasChild
atomic negation ¬C ¬ Student
conjunction C uD Student u Teacher
(unqual.) exist. restriction ∃R ∃ hasChild
universal value restriction ∀R.C ∀ hasChild.Male
full negation ¬(C uD) ¬ (Student u Teacher)
qual. cardinality restrictions ≥ nR.C ≥ 2 hasChild.Female
inverse role p− ∃hasChild−.Teacher

Table 1: The DL ALCQI.

soners2,3 can be used to check the consistency
of the formal notation and after that desired con-
ceptual models can be generated from this nota-
tion. Our approach is to derive the conceptual
model from the specification whereas in conven-
tional approaches knowledge engineers first draw
the model and then use programs to translate the
model into a formal notation (Fillottrani et al.,
2012). Figure 1 shows the proposed system ar-
chitecture for conceptual modelling.

3.1 Scenario

Let’s consider an example scenario of a learning
management system for a university stated below:

A Learning Management System (LMS) keeps
track of the units the students do during their
undergraduate or graduate studies at a particular
university. The university offers a number of
programs and each program consists of a number
of units. Each program has a program name and
a program id. Each unit has a unit code and
a unit name. A student can take a number of
units whereas a unit has a number of students. A
student must study at least one unit and at most
four units. Every student can enrol into exactly
one program. The system stores a student id and
a student name for each student.

We reconstruct this scenario in RNL and af-
ter that the language processor translates the RNL
specification into description logic using a feature-
based phrase structure grammar (Bird et al., 2009).
Our RNL consists of function words and content
words. Function words (e.g., determiners, quanti-
fiers and operators) describe the structure of the

2https://franz.com/agraph/racer/
3http://www.hermit-reasoner.com/

RNL and their number is fixed. Content words
(e.g, nouns and verbs) are domain specific and can
be added to the lexicon during the writing process.
The reconstruction process of this scenario in RNL
is supported by a look-ahead text editor (Guy and
Schwitter, 2017). The reconstructed scenario in
RNL looks as follows:

(a) No student is a unit.

(b) No student is a program.

(c) Every student is enrolled in exactly one pro-
gram.

(d) Every student studies at least one unit and at
most four units.

(e) Every student has a student id and has a stu-
dent name.

(f) No program is a unit and is a student.

(g) Every program is composed of a unit.

(h) Every program is enrolled by a student.

(i) Every program has a program id and has a
program name.

(j) No unit is a student and is a program.

(k) Every unit is studied by a student.

(l) Every unit belongs to a program.

(m) Every unit has a unit code and has a unit
name.

Additionally, we use the following terminologi-
cal statements expressed in RNL:

(n) The verb studies is the inverse of the verb
studied by.

46

Figure 1: Proposed system architecture for conceptual modelling using restricted natural language.

(o) The verb composed of is the inverse of the
verb belongs to.

3.2 Grammar

A feature-based phrase structure grammar has
been built using the NLTK (Loper and Bird, 2002)
toolkit to parse the above-mentioned specification.
The resulting parse trees for these sentences are
then translated by the language processor into their
equivalent description logic statements. Below we
show a scaffolding of the grammar rules with fea-
ture structures that we used for our case study:

S ->
NP[NUM=?n, FNC=subj]
VP[NUM=?n]
FS

VP[NUM=?n] ->
V[NUM=?n] NP[FNC=obj] |
V[NUM=?n] Neg NP[NUM=?n, FNC=obj] |
VP[NUM=?n] CC VP[NUM=?n]

NP[NUM=?n, FNC=subj] ->
UQ[NUM=?n] N[NUM=?n] |
NQ[NUM=?n] N[NUM=?n] |
Det[NUM=?n] N[NUM=?n] |
KP[NUM=?n] VB[NUM=?n] |
KP[NUM=?n] VBN[NUM=?n]

NP[NUM=?n, FNC=obj] ->
Det[NUM=?n] N[NUM=?n] |
RB[NUM=?n] CD[NUM=?n] N[NUM=?n] |
KP[NUM=?n] VB[NUM=?n] |
KP[NUM=?n] VBN[NUM=?n]

V[NUM=?n] ->
Copula[NUM=?n] |
VB[NUM=?n] |
Copula[NUM=?n] VBN[NUM=?n] |

Copula[NUM=?n] JJ[NUM=?n]

VB[NUM=pl] -> "study" | ...
VB[NUM=sg] -> "studies" | ...
VBN -> "studied" "by" | ...
Copula[NUM=sg] -> "is"
Copula[NUM=pl] -> "are"

JJ -> "inverse" "of"
CC -> "and" | "or"

Det[NUM=sg] -> "A" | "a" | ...
Det -> "The" | "the"

UQ[NUM=sg] -> "Every"
NQ -> "No"

Neg -> "not"

N[NUM=sg] -> "student" | ...
N[NUM=pl] -> "students" | ...

RB -> "exactly" | ...

CD[NUM=sg] -> "one"
CD[NUM=pl] -> "two" | ... | "four"

KP -> "The" "verb" | ...

FS -> "."

In order to translate the resulting syntax trees
into the description logic representation, we have
used the owl/xml syntax4 of Web Ontology Lan-
guage (OWL) as the formal target notation.

3.3 Case Study

The translation process starts by reconstructing the
specification in RNL that follows the rules of the

4https://www.w3.org/TR/owl-xmlsyntax/

47

feature based grammar. While writing the specifi-
cation in RNL, we tried to use the same vocabulary
as in the natural language description.

The first two sentences of our specification use
a negative quantifier in subject position and an in-
definite determiner in object position:

(a) No student is a unit.

(b) No student is a program.

The translation of the sentence (a) into owl/xml
notation results in the declaration of two atomic
classes student and unit which are disjoint
from each other.

<Declaration>
<Class IRI="\#student"/>

</Declaration>
<Declaration>

<Class IRI="\#unit"/>
</Declaration>
<DisjointClasses>

<Class IRI="\#student"/>
<Class IRI="\#unit"/>

</DisjointClasses>

Similarly, the translation of the sentence (b)
results in the declaration of two disjoint atomic
classes student and program. Both sentences
(a) and (b) are related to expressing atomic nega-
tion in the DL ALCQI (see table 1).

<Declaration>
<Class IRI="\#student"/>

</Declaration>
<Declaration>

<Class IRI="\#program"/>
</Declaration>
<DisjointClasses>

<Class IRI="\#student"/>
<Class IRI="\#program"/>

</DisjointClasses>

The RNL that we have designed for this case
study allows for verb phrase coordination; for ex-
ample, the two above-mentioned sentences (a+b)
can be combined in the following way:

(a+b) No student is a unit and is a program.

The translation of this sentence (a+b) results in
the declaration of three atomic classes student,
unit and program where student is disjoint
from both unit and program.

<Declaration>
<Class IRI="\#student"/>

</Declaration>
<Declaration>

<Class IRI="\#unit"/>
</Declaration>
<Declaration>

<Class IRI="\#program"/>

</Declaration>
<DisjointClasses>

<Class IRI="\#student"/>
<Class IRI="\#unit"/>

</DisjointClasses>
<DisjointClasses>

<Class IRI="\#student"/>
<Class IRI="\#program"/>

</DisjointClasses>

Now let us consider the following RNL sen-
tences that use a universal quantifier in subject po-
sition and a quantifying expression in object posi-
tion:

(c) Every student is enrolled in exactly one pro-
gram.

(d) Every student studies at least one unit and at
most four units.

The universally quantified sentence (c) which
contains a cardinality quantifier in the object
position is translated into an object property
enrolled in that has the class student as
domain and the class program as range with an
exact cardinality of 1. This corresponds to a qual-
ified cardinality restriction in the DL ALCQI.

<Declaration>
<ObjectProperty IRI="#enrolled_in"/>

</Declaration>
<ObjectPropertyDomain>

<ObjectProperty IRI="#enrolled_in"/>
<Class IRI="#student"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#enrolled_in"/>
<ObjectExactCardinality cardinality="1">

<ObjectProperty IRI="#enrolled_in"/>
<Class IRI="#program"/>

</ObjectExactCardinality>
</ObjectPropertyRange>

The universally quantified sentence (d) which
has a compound cardinality quantifier in object po-
sition is translated into the object property study
that has the class student as domain and the
class unit as range with a minimum cardinality
of 1 and maximum cardinality of 4. The trans-
lation of this sentence corresponds to a qualified
cardinality restriction in the DL ALCQI.

<Declaration>
<ObjectProperty IRI="#study"/>

</Declaration>
<ObjectPropertyDomain>
<ObjectProperty IRI="#study"/>
<Class IRI="#student"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>
<ObjectProperty IRI="#study"/>
<ObjectMinCardinality cardinality="1">
<ObjectProperty IRI="#study"/>

48

<Class IRI="#unit"/>
</ObjectMinCardinality>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#study"/>
<ObjectMaxCardinality cardinality="4">
<ObjectProperty IRI="#study"/>
<Class IRI="#unit"/>
</ObjectMaxCardinality>

</ObjectPropertyRange>

The following RNL sentence has a universal
quantifier in subject position and a coordinated
verb phrase with indefinite noun phrases in object
position:

(e) Every student has a student id and has a stu-
dent name.

The translation of this sentence (e) results in
two data properties for the class student. The
first data property is has student id with a
data type integer and the second data prop-
erty is has student name with the data type
string:

<Declaration>
<DataProperty IRI="\#has_student_id"/>

</Declaration>
<DataPropertyDomain>

<DataProperty IRI="\#has_student_id"/>
<Class IRI="#student"/>

</DataPropertyDomain>
<DataPropertyRange>

<DataProperty IRI="\#has_student_id"/>
<Datatype abbreviatedIRI="xsd:integer"/>

</DataPropertyRange>
<Declaration>

<DataProperty IRI="\#has_student_name"/>
</Declaration>
<DataPropertyDomain>

<DataProperty IRI="\#has_student_name"/>
<Class IRI="#student"/>

</DataPropertyDomain>
<DataPropertyRange>

<DataProperty IRI="\#has_student_name"/>
<Datatype abbreviatedIRI="xsd:string"/>

</DataPropertyRange>

(f) Every program is composed of a unit.

The universally quantified sentence (f) which
contains an indefinite determiner in the object
position is translated into the object property
composed of with the class program as do-
main and the class unit as range. This is corre-
sponds to an unqualified existential restriction in
the DL ALCQI.

<Declaration>
<ObjectProperty IRI="#composed_of"/>

</Declaration>
<ObjectPropertyDomain>

<ObjectProperty IRI="#composed_of"/>

<Class IRI="#program"/>
</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#composed_of"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#composed_of"/>
<Class IRI="#unit"/>

</ObjectSomeValuesFrom>
</ObjectPropertyRange>

The following two RNL sentences have a defi-
nite determiner both in subject position and object
position and specify lexical knowledge for the lan-
guage processor:

(g) The verb studies is the inverse of the verb
studied by.

(h) The verb composed of is the inverse of the
verb belongs to.

The translation of these two sentences results
in the specification of inverse object properties.
The translation of sentence (g) leads to the object
properties study and studied by which are
inverse object properties. Similarly, the transla-
tion of sentence (h) states that the object properties
composed of and belong to are also inverse
object properties. These statements correspond to
the inverse role construct in the DL ALCQI.

<InverseObjectProperties>
<ObjectProperty IRI="#study"/>
<ObjectProperty IRI="#studied_by"/>

</InverseObjectProperties>
<InverseObjectProperties>

<ObjectProperty IRI="#composed_of"/>
<ObjectProperty IRI="#belong_to"/>

</InverseObjectProperties>

The rest of the specification is similar to the ex-
amples that we have discussed above.

4 Reasoning

After generating the owl/xml notation for the RNL
specification, we use Owlready (Lamy, 2017)
that includes the description logic reasoner Her-
miT (Glimm et al., 2014) for consistency check-
ing. Owlready is a Python library for ontology-
oriented programming that allows to load OWL
2.0 ontologies and performs various reasoning
tasks. For example, consistency checking of the
specification can be performed on the class level.
If a domain expert writes for example ”No student
is a unit” and later specifies that ”Every unit is a
student”, then the reasoner can detect this incon-
sistency and informs the domain expert about this
conflict. The owl/xml notation below shows how

49

this inconsistency (”owl:Nothing”) is reported af-
ter running the reasoner.
<rdf:Description

rdf:about="http://www.w3.org/2002/07/owl#Nothing">
<owl:equivalentClass
rdf:resource=

"http://www.w3.org/2002/07/owl#Nothing"/>
<owl:equivalentClass rdf:resource="#student"/>
<owl:equivalentClass rdf:resource="#unit"/>

</rdf:Description>

This inconsistency can be highlighted directly
in the RNL specification; that means the domain
expert can fix the textual specification and does
not have to worry about the underlying formal no-
tation.

5 Conceptual Model Generation

In the next step, we extract necessary informa-
tion such as a list of entities (classes), attributes
(data properties) and relationships (object proper-
ties) from the owl/xml file to generate the con-
ceptual model. This information is extracted by
executing XPath (Berglund et al., 2003)5 queries
over the owl/xml notation and then it is used to
build a database schema containing a number of
tables representing the entities with associated at-
tributes. Relationships among the entities are rep-
resented by using foreign keys in the tables. An
SQL script is generated containing SQLite com-
mands6 for this database schema.

This SQL script is executed by using SQLite to
generate the corresponding database for the spec-
ification. After that, we use SchemaCrawler7 to
generate the entity relationship diagram (see fig.
2) from the SQL script. SchemaCrawler is a
free database schema discovery and comprehen-
sion tool that allows to generate diagrams from
SQL code.

For mapping a description logic representation
to an entity relationship diagram, we have used
the approach described by Algorithm 1. All the
classes in the OWL file become entities in the ER-
diagram. Object properties are mapped into rela-
tions between the entities and data properties are
mapped into attributes for these entities. The qual-
ified cardinality restrictions of the object prop-
erties define relationship cardinalities in the dia-
gram.

We understand conceptual modelling as a round
tripping process. That means a domain expert can

5https://www.w3schools.com/xml/xml xpath.asp
6https://www.sqlite.org/index.html
7https://www.schemacrawler.com/

Algorithm 1: Mapping description logic rep-
resentation to SQLite commands for generat-
ing entity relationship diagrams.

Input: Logical notation in description logic
Output: SQLite script
entity list= extract class(owl/xml file);
data property list=
extract data property(owl/xml file);
object property list=
extract object property(owl/xml file);

for enity in entity list do
create table(entity)
for data property in
data property list do

add data property(entity,
data property)

for object property in
object property list do

if cardinality == 1 then
add data property(entity,
data property)

end
end

end
for object property in
object property list do

create relationship(entity,
object property)

end
end

write the RNL specification first, then generate the
conceptual model from the specification, and then
a knowledge engineer might want to modify the
conceptual model. These modifications will then
be reflected on the level of the RNL by verbalis-
ing the formal notation. During this modification
process the reasoner can be used to identify in-
consistencies found in a given specification and to
give appropriate feedback to the knowledge engi-
neer on the graphical level or to the domain expert
on the textual level.

6 Discussion

The outcome of our experiment justifies the pro-
posed approach for conceptual modelling. We
have used a phase structure grammar to convert a
RNL specification into description logic. This ex-
periment shows that it is possible to generate for-
mal representations from RNL specifications and

50

Figure 2: Entity relationship diagram generated from the formal representation using SchemaCrawler.

these formal representations can be mapped to dif-
ferent conceptual models. The proposed approach
for conceptual modelling addresses two research
challenges8: 1. providing the right set of mod-
elling constructs at the right level of abstraction
to enable successful communication among the
stakeholders (i.e. domain experts, knowledge en-
gineers, and application programmers); 2. pre-
serving the ease of communication and enabling
the generation of a database schema which is a part
of the application software.

7 Future Work

We are planning to develop a fully-fledged re-
stricted natural language for conceptual modelling
of information systems. We want to use this lan-
guage as a specification language that will help
the domain experts to write the system require-
ments precisely. We are also planning to develop
a conceptual modelling framework that will allow
users to write specifications in RNL and will gen-
erate conceptual models from the specification.
This tool will also facilitate the verbalization of
the conceptual models and allow users to manipu-
late the models in a round tripping fashion (from
specification to conceptual models and conceptual
models to specifications). This approach has sev-
eral advantages for the conceptual modelling pro-
cess: Firstly, it will use a common formal repre-
sentation to generate different conceptual models.
Secondly, it will make the conceptual modelling
process easy to understand by providing a frame-
work to write specifications, generate visualiza-
tions, and verbalizations. Thirdly, it is machine-
processable like other logical approaches and sup-
port verification; furthermore, verbalization will

8http://www.conceptualmodeling.org/Conceptual
Modeling.html

facilitate better understanding of the modelling
process which is only available in limited forms
in the current conceptual modelling frameworks.

8 Conclusion

In this paper we demonstrated that an RNL can
serve as a high-level specification language for
conceptual modelling, in particular for specifying
entity-relationship models. We described an ex-
periment that shows how we can support the pro-
posed modelling approach. We translated a spec-
ification of a conceptual model written in RNL
into an executable description logic program that
is used to generate the entity-relationship model.
Our RNL is supported by automatic consistency
checking, and is therefore very suitable for for-
malizing and verifying conceptual models. The
presented approach is not limited to a particular
modeling framework and can be used apart from
entity-relationship models also for object-oriented
models and object role models. Our approach has
the potential to bridge the gap between a seem-
ingly informal specification and a formal represen-
tation in the domain of conceptual modelling.

References
Sikha Bagui. 2009. Mapping OWL to the entity re-

lationship and extended entity relationship models.
International Journal of Knowledge and Web Intel-
ligence 1(1-2):125–149.

Daniela Berardi, Diego Calvanese, and Giuseppe De
Giacomo. 2005. Reasoning on uml class diagrams.
Artificial Intelligence 168(1):70–118.

Anders Berglund, Scott Boag, Don Chamberlin,
Mary F Fernández, Michael Kay, Jonathan Ro-
bie, and Jérôme Siméon. 2003. XML Path Lan-
guage (XPath). World Wide Web Consortium (W3C)
https://www.w3.org/TR/xpath20/.

51

Peter Bernus, Kai Mertins, and Günter Schmidt. 2013.
Handbook on architectures of information systems.
Springer Science & Business Media.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Publications received. Computational Linguistics
36:283–284.

Sara Brockmans, Raphael Volz, Andreas Eberhart, and
Peter Löffler. 2004. Visual modeling of owl dl on-
tologies using uml. In International Semantic Web
Conference. Springer, pages 198–213.

Diego Calvanese. 2013. Description Logics for Con-
ceptual Modeling Forms of reasoning on UML Class
Diagrams. EPCL Basic Training Camp 2012-2013.

Brian Davis, Ahmad Ali Iqbal, Adam Funk, Valentin
Tablan, Kalina Bontcheva, Hamish Cunningham,
and Siegfried Handschuh. 2008. Roundtrip ontol-
ogy authoring. In International Semantic Web Con-
ference. Springer, pages 50–65.

Ronald Denaux, Vania Dimitrova, Anthony G Cohn,
Catherine Dolbear, and Glen Hart. 2009. Rabbit to
owl: ontology authoring with a cnl-based tool. In
International Workshop on Controlled Natural Lan-
guage. Springer, pages 246–264.

Pablo R Fillottrani, Enrico Franconi, and Sergio Tes-
saris. 2012. The icom 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web
3(3):293–306.

Enrico Franconi, Alessandro Mosca, and Dmitry Solo-
makhin. 2012. Orm2: formalisation and encoding
in owl2. In OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Sys-
tems”. Springer, pages 368–378.

Joseph Frantiska. 2018. Entity-relationship diagrams.
In Visualization Tools for Learning Environment De-
velopment, Springer, pages 21–30.

Adam Funk, Valentin Tablan, Kalina Bontcheva,
Hamish Cunningham, Brian Davis, and Siegfried
Handschuh. 2007. Clone: Controlled language for
ontology editing. In The Semantic Web, Springer,
pages 142–155.

Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoi-
los, and Zhe Wang. 2014. HermiT: An OWL 2 Rea-
soner. Journal of Automated Reasoning 53(3):245–
269.

Stephen C Guy and Rolf Schwitter. 2017. The peng asp
system: architecture, language and authoring tool.
Language Resources and Evaluation 51(1):67–92.

Terry Halpin. 2009. Object-role modeling. In Encyclo-
pedia of Database Systems, Springer, pages 1941–
1946.

Tobias Kuhn. 2008. Acewiki: A natural and expressive
semantic wiki. arXiv preprint arXiv:0807.4618.

Tobias Kuhn. 2014. A survey and classification of con-
trolled natural languages. Computational Linguis-
tics 40(1):121–170.

Jean-Baptiste Lamy. 2017. Owlready: Ontology-
oriented programming in python with automatic
classification and high level constructs for biomed-
ical ontologies. Artificial intelligence in medicine
80:11–28.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-
tional linguistics-Volume 1. Association for Compu-
tational Linguistics, pages 63–70.

Carsten Lutz. 2002. Reasoning about entity relation-
ship diagrams with complex attribute dependencies.
In Proceedings of the International Workshop in
Description Logics 2002 (DL2002), number 53 in
CEUR-WS (http://ceur-ws.org). pages 185–194.

Gerard O´ Regan. 2017. Unified modelling language.
In Concise Guide to Software Engineering, Springer,
pages 225–238.

Antoni Olivé. 2007. Conceptual Modeling of Informa-
tion Systems. Springer-Verlag, Berlin, Heidelberg.

Richard Power. 2012. Owl simplified english: a finite-
state language for ontology editing. In Interna-
tional Workshop on Controlled Natural Language.
Springer, pages 44–60.

Barker Richard. 1990. CASE Method: Entity Relation-
ship Modelling. Addition-Wesley Publishing Com-
pany, ORACLE Corporation UK Limited.

Rolf Schwitter. 2010. Controlled natural languages for
knowledge representation. In Proceedings of the
23rd International Conference on Computational
Linguistics: Posters. Association for Computational
Linguistics, pages 1113–1121.

52

