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Abstract

Transcription of speech is an important
part of language documentation, and yet
speech recognition technology has not
been widely harnessed to aid linguists. We
explore the use of a neural network ar-
chitecture with the connectionist tempo-
ral classification loss function for phone-
mic and tonal transcription in a language
documentation setting. In this framework,
we explore jointly modelling phonemes
and tones versus modelling them sepa-
rately, and assess the importance of pitch
information versus phonemic context for
tonal prediction. Experiments on two
tonal languages, Yongning Na and East-
ern Chatino, show the changes in recogni-
tion performance as training data is scaled
from 10 minutes to 150 minutes. We dis-
cuss the findings from incorporating this
technology into the linguistic workflow for
documenting Yongning Na, which show
the method’s promise in improving effi-
ciency, minimizing typographical errors,
and maintaining the transcription’s faith-
fulness to the acoustic signal, while high-
lighting phonetic and phonemic facts for
linguistic consideration.

1 Introduction

Language documentation involves eliciting speech
from native speakers, and transcription of these
rich cultural and linguistic resources is an integral
part of the language documentation process. How-
ever, transcription is very slow: it often takes a lin-
guist between 30 minutes to 2 hours to transcribe
and translate 1 minute of speech, depending on the
transcriber’s familiarity with the language and the
difficulty of the content. This is a bottleneck in the

standard documentary linguistics workflow: lin-
guists accumulate considerable amounts of speech,
but do not transcribe and translate it all, and there is
arisk that untranscribed recordings could end up as
“data graveyards” (Himmelmann, 2006, 4,12-13).
There is clearly a need for “devising better ways
for linguists to do their work™ (Thieberger, 2016,
92).

There has been work on low-resource speech
recognition (Besacier et al., 2014), with ap-
proaches using cross-lingual information for better
acoustic modelling (Burget et al., 2010; Vu et al.,
2014; Xu et al., 2016; Miiller et al., 2017) and lan-
guage modelling (Xu and Fung, 2013). However,
speech recognition technology has largely been in-
effective for endangered languages since architec-
tures based on hidden Markov models (HMMs),
which generate orthographic transcriptions, re-
quire a large pronunciation lexicon and a language
model trained on text. These speech recognition
systems are usually trained on a variety of speak-
ers and hundreds of hours of data (Hinton et al.,
2012, 92), with the goal of generalisation to new
speakers. Since large amounts of text are used for
language model training, such systems often do
not incorporate pitch information for speech recog-
nition of tonal languages (Metze et al., 2013), as
they can instead rely on contextual information for
tonal disambiguation via the language model (Le
and Besacier, 2009; Feng et al., 2012).

In contrast, language documentation contexts
often have just a few speakers for model training,
and little text for language model training. How-
ever, there may be benefit even in a system that
overfits to these speakers. If a phonemic recog-
nition tool can provide a canvas transcription for
manual correction and linguistic analysis, it may
be possible to improve the leverage of linguists.
The data collected in this semi-automated work-
flow can then be used as training data for further re-
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finement of the acoustic model, leading to a snow-
ball effect of better and faster transcription.

In this paper we investigate the application of
neural speech recognition models to the task of
phonemic and tonal transcription in a resource-
scarce language documentation setting. We use
the connectionist temporal classification (CTC)
formulation (Graves et al., 2006) for the purposes
of direct prediction of phonemes and tones given
an acoustic signal, thus bypassing the need for a
pronunciation lexicon, language model, and time
alignments of phonemes in the training data. By
drastically reducing the data requirements in this
way, we make the use of automatic transcription
technology more feasible in a language documen-
tation setting.

We evaluate this approach on two tonal lan-
guages, Yongning Na and Eastern Chatino (Cruz
and Woodbury, 2006; Michaud, 2017). Na is a
Sino-Tibetan language spoken in Southwest China
with three tonal levels, High (H), Mid (M) and
Low (L) and a total of seven tone labels. East-
ern Chatino, spoken in Oaxaca, Mexico, has a
richer tone set but both languages have extensive
morphotonology. Overall estimates of numbers of
speakers for Chatino and Na are similar, stand-
ing at about 40,000 for both (Simons and Fennig,
2017), but there is a high degree of dialect differ-
entiation within the languages. The data used in
the present study are from the Alawa dialect of
Yongning Na, and the San Juan Quiahije dialect
of Eastern Chatino; as a rule-of-thumb estimate, it
is likely that these materials would be intelligible
to a population of less than 10,000 (for details on
the situation for Eastern Chatino, see Cruz (2011,
18-23)).

Though a significant amount of Chatino speech
has been transcribed (Chatino Language Docu-
mentation Project, 2017), its rich tone system and
opposing location on the globe make it a useful
point of comparison for our explorations of Na,
the language for which automatic transcription is
our primary practical concern. Though Na has pre-
viously had speech recognition applied in a pilot
study (Do et al., 2014), phoneme error rates were
not quantified and tone recognition was left as fu-
ture work.

We perform experiments scaling the training
data, comparing joint prediction of phonemes and
tones with separate prediction, and assessing the
influence of pitch information versus phonemic
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context on phonemic and tonal prediction in the
CTC-based framework. Importantly, we qualita-
tively evaluate use of this automation in the tran-
scription of Na. The effectiveness of the approach
has resulted in its incorporation into the linguist’s
workflow. Our open-source implementation is
available online.!

2 Model

The underlying model used is a long short-
term memory (LSTM) recurrent neural network
(Hochreiter and Schmidhuber, 1997) in a bidirec-
tional configuration (Schuster and Paliwal, 1997).
The network is trained with the connectionist tem-
poral classification (CTC) loss function (Graves
et al., 2006). Critically, this alleviates the need for
alignments between speech features and labels in
the transcription which we do not have. This is
achieved through the use of a dynamic program-
ming algorithm that efficiently sums over the prob-
ability of neural network output label that corre-
spond to the gold transcription sequence when re-
peated labels are collapsed.

The use of an underlying recurrent neural net-
work allows the model to implicitly model con-
text via the parameters of the LSTM, despite the
independent frame-wise label predictions of the
CTC network. It is this feature of the architec-
ture that makes it a promising tool for tonal pre-
diction, since tonal information is suprasegmental,
spanning many frames (Mortensen et al., 2016).
Context beyond the immediate local signal is in-
dispensable for tonal prediction, and long-ranging
context is especially important in the case of mor-
photonologically rich languages such as Na and
Chatino.

Past work distinguishes between embedded
tonal modelling, where phoneme and tone labels
are jointly predicted, and explicit tonal modelling,
where they are predicted separately (Lee et al.,
2002). We compare several training objectives for
the purposes of phoneme and tone prediction. This
includes separate prediction of 1) phonemes and 2)
tones, as well as 3) jointly predict phonemes and
tones using one label set. Figure 1 presents an ex-
ample sentence from the Na corpus described in
§3.1, along with an example of these three objec-
tives.

"https://github.com/oadams/mam



0 sec ' 2.7 sec

/i | goimid-dzo1 | t"i4, alwod dzoJ tswl | myl. |/
Quant a la sceur, elle demeurait a la maison, dit-on.
As for the sister, she stayed at home.

mixwiE, BEXRE.

Target label sequence:
l.|t"igomidzot"iasodzotswmy
2.0 44T
3.|t"idgodimididzolt"idalsoddzoltswimy]

Figure 1: A sentence from the Na corpus. Top
to bottom: spectrogram with Fy in blue; wave-
form; phonemic transcription; English, French and
Chinese translations; target label sequences: 1.
phonemes only, 2. tones only, 3. phonemes and
tones together.

3 Experimental Setup

We designed the experiments to answer these pri-
mary questions:

1. How do the error rates scale with respect to
training data?

How effective is tonal modelling in a CTC
framework?

. To what extent does phoneme context play a
role in tone prediction?

Does joint prediction of phonemes and tones
help minimize error rates?

We assess the performance of the systems as
training data scales from 10 minutes to 150 min-
utes of a single Na speaker, and between 12 and
50 minutes for a single speaker of Chatino. Exper-
imenting with this extremely limited training data
gives us a sense of how much a linguist needs to
transcribe before this technology can be profitably
incorporated into their workflow.

We evaluate both the phoneme error rate (PER)
and tone error rate (TER) of models based on the
same neural architecture, but with varying input
features and output objectives. Input features in-
clude log Filterbank features® (fbank), pitch fea-
tures of Ghahremani et al. (2014) (pitch), and a

241 log Filterbank features along with their first and sec-
ond derivatives
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combination of both (fbank+pitch). These in-
put features vary in the amount of acoustic infor-
mation relevant to tonal modelling that they in-
clude. The output objectives correspond to those
discussed in §2: tones only (tone), phonemes only
(phoneme), or jointly modelling both (joint). We
denote combinations of input features and target
labellings as (input)=-(output).

In case of tonal prediction we explore similar
configurations to that of phoneme prediction, but
with two additional points of comparison. The first
is predicting tones given one-hot phoneme vec-
tors (phoneme) of the gold phoneme transcription
(phoneme=-tone). The second predicts tones di-
rectly from pitch features (pitch=-tone). These
important points of comparison serve to give us
some understanding as to how much tonal infor-
mation is being extracted directly from the acous-
tic signal versus the phoneme context.

3.1 Data

We explore application of the model to the Na
corpus that is part of the Pangloss collection
(Michailovsky et al., 2014). This corpus consists
of around 100 narratives, constituting 11 hours of
speech from one speaker in the form of traditional
stories, and spontaneous narratives about life, fam-
ily and customs (Michaud, 2017, 33). Several
hours of the recordings have been phonemically
transcribed, and we used up to 149 minutes of this
for training, 24 minutes for validation and 23 min-
utes for testing. The total number of phoneme and
tone labels used for automatic transcription was 78
and 7 respectively.

For Chatino, we used data of Cavar et al. (2016)
from the GORILLA language archive for Eastern
Chatino of San Juan Quiahije, Oaxaca, Mexico for
the purposes of comparing phoneme and tone pre-
diction with Na when data restriction is in place.
We used up to 50 minutes of data for training, 8
minutes for validation and 7 minutes for testing.
The phoneme inventory we used consists of 31 la-
bels along with 14 tone labels. For both languages,
preprocessing involved removing punctuation and
any other symbols that are not phonemes or tones
such as tone group delimiters and hyphens con-
necting syllables within words.

4 Quantitative Results

Figure 2 shows the phoneme and tone error rates
for Na and Chatino.
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Figure 2: Phoneme error rate (PER) and tone error
rate (TER) on test sets as training data is scaled for
Na (left) and Chatino (right). The legend entries
are formatted as (input) = (output) to indicate
input features to the model and output target labels.

Error rate scaling Error rates decrease logarith-
mically with training data. The best methods reli-
ably have a lower than 30% PER with 30 minutes
of training data. We believe it is reasonable to ex-
pect similar trends in other languages, with these
results suggesting how much linguists might need
to transcribe before semi-automation can become
part of their workflow.

In the case of phoneme-only prediction, use of
pitch information does help reduce the PER, which
is consistent with previous work (Metze et al.,
2013).

Tonal modelling TER is always higher than
PER for the same amount of training data, despite
there being only 7 tone labels versus 78 phoneme
labels in our Na experiment. This is true even
when pitch features are present. However, it is un-
surprising since the tones have overlapping pitch
ranges, and can be realized with vastly different
pitch over the course of a single sentence. This
suggests that context is more important for predict-
ing tones than phonemes, which are more context-
independent.

fbank=>tone and pitch=-tone are vastly in-

56

ferior to other methods, all of which are privy to
phonemic information via training labels or input.
However, combining the fbank and pitch input fea-
tures (fbank+pitch=-tone) makes for the equal
best performing approach for tonal prediction in
Na at maximum training data. This indicates both
that these features are complementary and that the
model has learnt a representation useful for tonal
prediction that is on par with explicit phonemic in-
formation.

Though tonal prediction is more challenging
than phoneme prediction, these results suggest au-
tomatic tone transcription is feasible using this ar-
chitecture, even without inclusion of explicit lin-
guistic information such as constraints on valid
tone sequences which is a promising line of future
work.

Phoneme context To assess the importance of
context in tone prediction, phoneme=-tone gives
us a point of comparison where no acoustic in-
formation is available at all. It performs reason-
ably well for Na, and competitively for Chatino.
One likely reason for its solid performance is that
long-range context is modelled more effectively
by using phoneme input features, since there are
vastly fewer phonemes per sentence than speech
frames. The rich morphotonology of Na and
Chatino means context is important in the realisa-
tion of tones, explaining why phoneme=>tone can
perform almost as well as methods using acoustic
features.

Joint prediction Interestingly, joint prediction
of phonemes and tones does not outperform the
best methods for separate phoneme and tone pre-
diction, except in the case of Chatino tone pre-
diction, if we discount phoneme=-tone. In light
of the celebrated successes of multitask learning
in various domains (Collobert et al., 2011; Deng
et al., 2013; Girshick, 2015; Ramsundar et al.,
2015; Ruder, 2017), one might expect training
with joint prediction of phonemes and tones to
help, since it gives more relevant contextual infor-
mation to the model.

Na versus Chatino The trends observed in the
experimentation on Chatino were largely consis-
tent with those of Na, but with higher error rates
owing to less training data and a larger tone la-
bel set. There are two differences with the Na re-
sults worth noting. One is that phoneme=-tone is
more competitive in the case of Chatino, suggest-



Figure 3: Confusion matrix showing the rates of
substitution errors between tones (as a percentage,
normalized per row).

ing that phoneme context plays a more important
role in tonal prediction in Chatino. The second
is that fbank=>tone outperforms pitch=-tone,
and that adding pitch features to Filterbank fea-
tures offers less benefit than in Na.

4.1 Error Types

Figure 3 shows the most common tone substitution
mistakes for fbank+pitch=>joint in the test set.
Proportions were very similar for other methods.
The most common tonal substitution errors were
those between between M and L. Acoustically, M
and L are neighbours; as mentioned above, in Na
the same tone can be realised with a different pitch
at different points in a sentence, leading to overlap-
ping pitch ranges between these tones. Moreover,
M and L tones were by far the most common tonal
labels.

5 Qualitative Discussion

The phoneme error rates in the above quantitative
analysis are promising, but is this system actually
of practical use in a linguistic workflow? We dis-
cuss here the experience of a linguist in applying
this model to Na data to aid in transcription of 9
minutes and 30 seconds of speech.

5.1 Recognition Errors

The phonemic errors typically make linguistic
sense: they are not random added noise and often
bring the linguist’s attention to phonetic facts that
are easily overlooked because they are not phone-
mically contrastive.

One set of such errors is due to differences
in articulation between different morphosyntactic
classes. For example, the noun ‘person’ /hil/ and
the relativizer suffix /-hil/ are segmentally identi-
cal, but the latter is articulated much more weakly
than the former and it is often recognized as /i/
in automatic transcription, without an initial /h/.
Likewise, in the demonstrative /{s"w/ the initial
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consonant /ts"/ is often strongly hypo-articulated,
resulting in its recognition as a fricative /s/, /z/, or
/7/ instead of an aspirated affricate. As a further
example, the negation that is transcribed as /mod/
in Housebuilding2.290 instead of /my4/. This
highlights that the vowel in that syllable is prob-
ably nazalised, and acoustically unlike the average
/vl vowel for lexical words. The extent to which
a word’s morphosyntactic category influences the
way it is pronounced is known to be language-
specific (Brunelle et al., 2015); the phonemic tran-
scription tool indirectly reveals that this influence
is considerable in Na.

A second set is due to loanwords containing
combinations of phonemes that are unattested in
the training set. For example /zuilped/, from Man-
darin ribén (HZ , ‘Japan’). /pe/ is otherwise unat-
tested in Na, which only has /pi/; accordingly, the
syllable was identified as /pi/. In documenting
Na, Mandarin loanwords were initially transcribed
with Chinese characters, and thus cast aside from
analyses, instead of confronting the issue of how
different phonological systems coexist and inter-
act in language use.

A third set of errors made by the system result
in an output that is not phonologically well formed,
such as syllables without tones and sequences with
consonant clusters such as /kgy/. These cases are
easy for the linguist to identify and amend.

The recognition system currently makes tonal
mistakes that are easy to correct on the basis of
elementary phonological knowledge: it produces
some impossible tone sequences such as M+L+M
inside the same tone group. Very long-ranging
tonal dependencies are not harnessed so well by
the current tone identification tool. This is con-
sistent with quantitative indications in §4 and is a
case for including a tonal language model or refin-
ing the neural architecture to better harness long-
range contextual information.

5.2 Benefits for the Linguist

Using this automatic transcription as a starting
point for manual correction was found to confer
several benefits to the linguist.

Faithfulness to acoustic signal The model pro-
duces output that is faithful to the acoustic sig-
nal. In casual oral speech there are repetitions and
hesitations that are sometimes overlooked by the
transcribing linguist, who is engrossed in a holistic
process involving interpretation, translation, anno-



tation, and communication with the language con-
sultant. When using an automatically generated
transcription as a canvas, there can be full confi-
dence in the linearity of transcription, and more at-
tention can be placed on linguistically meaningful
dialogue with the language consultant.

Typographical errors and the transcriber’s
mindset Transcriptions are made during field-
work with a language consultant and are difficult
to correct down the line based only on auditory
impression when the consultant is not available.
However, such typographic errors are common,
with a large number of phoneme labels and sig-
nificant use of combinations of keys (Shift, Alter-
native Graph, etc). By providing a high-accuracy
first-pass automatic transcription, much of this
manual data entry is entirely avoided. Enlisting the
linguist solely for correction of errors also allows
them to embrace a critical mindset, putting them in
“proofreading mode”, where focus can be entirely
centred on assessing the correctness of the system
output without the additional distracting burden of
data entry.

Speed Assessing automatic transcription’s influ-
ence on the speed of the overall language docu-
mentation process is beyond the scope of this pa-
per and is left to future work. Language docu-
mentation is a holistic process. Beyond phone-
mic transcription, documentation of Na involves
other work that happens in parallel: translating,
discussing with a native speaker, copying out new
words into the Na dictionary, and being constantly
on the lookout for new and unexpected linguis-
tic phenomena. Further complicating this, the
linguist’s proficiency of the language and speed
of transcription is dynamic, improving over time.
This makes comparisons difficult.

From this preliminary experiment, the effi-
ciency of the linguist was perceived to be im-
proved, but the benefits lie primarily in the ad-
vantages of providing a transcript faithful to the
recording, and allowing the linguist to minimize
manual entry, focusing on correction and enrich-
ment of the transcribed document.

The snowball effect More data collection means
more training data for better ASR performance.
The process of improving the acoustic model by
training on such semi-automatic transcriptions has
begun, with the freshly transcribed Housebuild-
ing2 used in this investigation now available for
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subsequent Na acoustic modelling training.

As a first example of output by incorporating
automatic transcription into the Yongning Na doc-
umentation workflow, transcription of the record-
ing Housebuilding was completed using automatic
transcription as a canvas; this document is now
available online.’

6 Conclusion

We have presented the results of applying a CTC-
based LSTM model to the task of phoneme and
tone transcription in a resource-scarce context:
that of a newly documented language. Beyond
comparing the effects of various training inputs
and objectives on the phoneme and tone error rates,
we reported on the application of this method to
linguistic documentation of Yongning Na. Its ap-
plicability as a first-pass transcription is very en-
couraging, and it has now been incorporated into
the workflow. Our results give an idea of the
amount of speech other linguists might aspire to
transcribe in order to bootstrap this process: as
little as 30 minutes in order to obtain a sub-30%
phoneme error rate as a starting point, with fur-
ther improvements to come as more data is tran-
scribed in the semi-automated workflow. There is
still much room for modelling improvement, in-
cluding incorporation of linguistic constraints into
the architecture for more accurate transcriptions.
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