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Abstract

We present a clustering approach for doc-
uments returned by a PubMed search,
which enable the organisation of evi-
dence underpinning clinical recommenda-
tions for Evidence Based Medicine. Our
approach uses a combination of document
similarity metrics, which are fed to an ag-
glomerative hierarchical clusterer. These
metrics quantify the similarity of pub-
lished abstracts from syntactic, semantic,
and statistical perspectives. Several evalu-
ations have been performed, including: an
evaluation that uses ideal documents as se-
lected and clustered by clinical experts; a
method that maps the output of PubMed to
the ideal clusters annotated by the experts;
and an alternative evaluation that uses the
manual clustering of abstracts. The results
of using our similarity metrics approach
shows an improvement over K-means and
hierarchical clustering methods using TF-
IDF.

1 Introduction

Evidence Based Medicine (EBM) is about indi-
vidual patients care and providing the best treat-
ments using the best available evidence. The mo-
tivation of EBM is that clinicians would be able
to make more judicious decisions if they had ac-
cess to up-to-date clinical evidence relevant to the
case at hand. This evidence can be found in schol-
arly publications available in repositories such as
PubMed1. The volume of available publications
is enormous and expanding. PubMed repository,
for example, indexes over 24 million abstracts. As

1www.ncbi.nlm.nih.gov/pubmed

a result, methods are required to present relevant
recommendations to the clinician in a manner that
highlights the clinical evidence and its quality.

The EBMSummariser corpus (Mollá and
Santiago-martinez, 2011) is a collection of
evidence-based recommendations published in
the Clinical Inquiries column of the Journal
of Family Practice2, together with the abstracts
of publications that provide evidence for the
recommendations. Visual inspection of the
EBMSummariser corpus suggests that a com-
bination of information retrieval, clustering and
multi-document summarisation would be useful
to present the clinical recommendations and the
supporting evidence to the clinician.

Figure 1 shows the title (question) and ab-
stract (answer) associated with one recommenda-
tion (Mounsey and Henry, 2009) of the EBM-
Summariser corpus. The figure shows three main
recommendations for treatments to hemorrhoids.
Each treatment is briefly presented, and the qual-
ity of each recommendation is graded (A, B, C) ac-
cording to the Strength of Recommendation Tax-
onomy (SORT) (Ebell et al., 2004). Following the
abstract of the three recommendations (not shown
in Figure 1), the main text provides the details
of the main evidence supporting each treatment,
together with the references of relevant publica-
tions. A reference may be used for recommending
several of the treatments listed in the recommen-
dations. Each recommendation is treated in this
study as a cluster of references for evaluation pur-
poses, and the corpus therefore contains overlap-
ping clusters.

It has been observed that a simple K-means
clustering approach provides a very strong base-

2www.jfponline.com/articles/
clinical-inquiries.html
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Which treatments work best for Hemorrhoids?
Excision is the most effective treatment for thrombosed external hemorrhoids
(strength of recommendation [SOR]: B, retrospective studies). For prolapsed in-
ternal hemorrhoids, the best definitive treatment is traditional hemorrhoidectomy
(SOR: A, systematic reviews). Of nonoperative techniques, rubber band ligation
produces the lowest rate of recurrence (SOR: A, systematic reviews).

Figure 1: Title and abstract of one sample (Mounsey and Henry, 2009) of the Clinical Inquiry section of
Journal of Family Practice.

line for non-overlapping clustering of the EBM-
Summariser corpus (Shash and Mollá, 2013; Ek-
bal et al., 2013). Past work was based on the clus-
tering of the documents included in the EBMSum-
mariser corpus. But in a more realistic scenario
one would need to cluster the output from a search
engine. Such output would be expected to produce
much noisier data that might not be easy to cluster.

In this paper, we cluster documents retrieved
from PubMed searches. We propose a hierarchical
clustering method that uses custom-defined sim-
ilarity metrics. We perform a couple of evalua-
tions using the output of PubMed searches and the
EBMSummariser corpus. Our results indicate that
this method outperforms a K-means baseline for
both the EBMSummariser corpus and PubMed’s
retrieved documents.

The remainder of the paper is structured as fol-
lows. Section 2 describes related work. Section 3
provides details of the clustering approach and the
evaluation approaches. Section 4 presents the re-
sults, and Section 5 concludes this paper.

2 Related Work

Document clustering is an unsupervised machine
learning task that aims to discover natural group-
ings of data and has been used for EBM in several
studies. Lin and Demner-Fushman (2007) clus-
tered MEDLINE citations based on the occurrence
of specific mentions of interventions in the docu-
ment abstracts. Lin et al. (2007) used K-means
clustering to group PubMed query search results
based on TF-IDF. Ekbal et al. (2013) used ge-
netic algorithms and multi-objective optimisation
to cluster the abstracts referred in the EBMSum-
mariser corpus, and in general observed that it was
difficult to improve on Shash and Mollá (2013)’s
K-means baseline, which uses TF-IDF similar to
Lin and Demner-Fushman (2007).

It can be argued that clustering the abstracts that
are cited in the EBMSummariser corpus is easier

than clustering those from Pubmed search results,
since the documents in the corpus have been cu-
rated by experts. As a result, all documents are
relevant to the query, and they would probably
cluster according to the criteria determined by the
expert. However, in a more realistic scenario the
documents that need to be clustered are frequently
the output of a search engine. Therefore, there
might be documents that are not relevant, as well
as duplicates and redundant information. An un-
even distribution of documents among the clusters
may also result.

There are several approaches to cluster search
engine results (Carpineto et al., 2009). A com-
mon approach is to cluster the documents snippets
(i.e., the brief summaries appearing in the search
results page) instead of the entire documents (Fer-
ragina and Gulli, 2008). Our approach for clus-
tering search engine results is similar to this group
of approaches, since we only use the abstract of
publications instead of the whole articles. The
abstracts of scholarly publications usually contain
the key information that is reported in the docu-
ment. Hence, it can be considered that there is
less noise in abstracts compared to the entire doc-
ument (from a document clustering perspective).
A number of clustering approaches can then be
employed to generate meaningful clusters of doc-
uments from search results (Zamir and Etzioni,
1998; Carpineto et al., 2009).

3 Materials and Method

In this section we describe an alternative to K-
means clustering over TF-IDF data. In particular,
we devise separate measures of document similar-
ity and apply hierarchical clustering using our cus-
tom matrix of similarities.

We first introduce the proposed semantic sim-
ilarity measures for quantifying the similarity of
abstracts. We then describe the process of prepar-
ing and annotating appropriate data for clustering
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semantically similar abstracts. Finally, the experi-
mental set up will be explained.

Prior to describing the similarity measures, a
glossary of the keywords that are used in this sec-
tion is introduced:

Effective words: The words that have noun,
verb, and adjective Part of Speech (POS) roles.

Effective lemmas: Lemma (canonical form) of
effective words of an abstract.

Skipped bigrams: The pairs of words which are
created by combining two words in an abstract that
are located in arbitrary positions.

3.1 Quantifying similarity of PubMed
abstracts

In order to be able to group the abstracts which
are related to the same answer (recommendation)
for a particular question, the semantic similarity of
the abstracts was examined. A number of abstract-
level similarity measures were devised to quantify
the semantic similarity of a pair of abstracts. Since
formulating the similarity of two natural language
pieces of text is a complex task, we performed a
comprehensive quantification of textual semantic
similarity by comparing two abstracts from differ-
ent perspectives. Each of the proposed similarity
measures represents a different view of the sim-
ilarity of two abstracts, and therefore the sum of
all of them represents a combined view of each of
these perspectives. The details of these measures
can be found below. Note that all the similarity
measures have a normalised value between zero
(lowest similarity) and one (highest similarity).

Word-level similarity: This measure calculates
the number of overlapping words in two abstracts
which is then normalised by the size of the longer
abstract (in terms of the number of all words).
The words are compared in their original forms
in the abstracts (even if there were multiple oc-
currences). Equation (1) depicts the calculation of
Word-level Similarity (WS).

WS(A1, A2) =

∑
wi∈A1

{
1 if wi is in A2

0 Otherwise

L
(1)

where A1 and A2 refer to the bags of all words
in two given abstracts (including multiple occur-
rences of words), and L is the size of the longest
abstract in the pair.

Word’s lemma similarity: This measure is cal-
culated similarly to the previous measure, but the
lemma of words from a pair of abstracts are com-
pared to each other, instead of their original dis-
play forms in the text, using WordNet (Miller,
1995). For example, for a given pair of words,
such as criteria and corpora, their canonical forms
(i.e., criterion and corpus, respectively) are looked
up in WordNet prior to performing the compari-
son.

Set intersection of effective lemmas: The sets
of lemmas of effective words of abstract pairs are
compared. The number of overlapping words (or
the intersection of two sets) is normalised by the
size of the smaller abstract. In contrast to the pre-
vious measure, only unique effective lemmas par-
ticipate in the calculation of this measure. This
measure is calculated as follows:

SEL(A1, A2) =
|Aset

1 ∩Aset
2 |

S
(2)

In Equation (2), Aset
1 and Aset

2 are the sets of
effective lemmas of two abstracts, and S is the size
of the smallest abstract in a pair.

Sequence of words overlap: We generate slid-
ing windows of different sizes of words, from a
window of two words up to the size of the longest
sentence in a pair of abstracts. We compute the
number of equal sequences of words of two ab-
stracts (irrespective of length). Also, we keep the
size of the longest equal sequence of words that
the two abstracts share together. Hence, this re-
sults in two similarity measures; (i) the number
of shared sequences of different sizes, and (ii)
the size of the longest shared sequence. Due to
the variety of sizes of sentences / abstracts and
therefore varying sizes and number of sequences,
we normalise each of these measures to reach a
value between zero and one. In addition, follow-
ing the same rationale, sequence-based measures
are calculated by only considering effective words
in abstracts, and alternatively, from a grammati-
cal perspective, by only considering POS tags of
the constituent words of abstracts. The number of
shared sequences (or Shared Sequence Frequency
— SSF) for two given abstracts (i.e., A1 and A2)
is calculated as follows:
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SSF (A1, A2) =

∑M
l=2

∑
Sl∈A1

{
1 if Sl ∈ A2

0 Otherwise

N
M

(3)
In Equation (3), M is the size of the longest

sentence in both abstracts and N is the number of
available sequences (i.e., S in formula) with size l.

POS tags sequence alignment: For this sim-
ilarity measure, a sequence of the POS tags
of words in an abstract is generated. The
Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) was employed for aligning two
sequences of POS tags from a pair of abstracts
to find their similarity ratio. The Needleman-
Wunsch algorithm is an efficient approach for
finding the best alignment between two sequences,
and has been successfully applied, in particular in
bioinformatics, to measure regions of similarity in
DNA, RNA or protein sequences.

Jaccard Similarity: An abstract can be consid-
ered as a bag of words. To incorporate this per-
spective, we calculate the Jaccard similarity co-
efficient of a pair of abstracts. We also calculate
the Jaccard similarity of sets of effective lemmas
of abstract pairs. The former similarity measure
shows a very precise matching of the occurrences
of words in exactly the same form (singular / plu-
ral, noun / adjective / adverb, and so on), while the
latter measure considers the existence of words in
their canonical forms.

Abstract lengths: Comparing two abstracts
from a word-level perspective, the relative length
of two abstracts in terms of their words (length of
smaller abstracts over the longer one) provides a
simple measure of similarity. Although this can
be considered as a naive attribute of a pair of ab-
stracts, it has been observed that this measure can
be useful when combined with other more power-
ful measures (Hassanzadeh et al., 2015).

Cosine similarity of effective lemmas: In or-
der to calculate the cosine similarity of the effec-
tive lemmas of a pair of abstracts, we map the
string vector of the sequence of effective lemmas
to its corresponding numerical vector. The nu-
merical vector, with the dimension equal to the
number of all unique effective lemmas of both ab-
stracts, contains the frequency of occurrences of

each lemma in the pair. For example, for the two
sequences [A,B,A,C,B] and [C,A,D,B,A] the
numerical vectors of the frequencies of the terms
A,B,C and D for the sequences are [2, 2, 1, 0]
and [2, 1, 1, 1], respectively. Equation (4) depicts
the way the cosine similarity is calculated for two
given abstracts A1 and A2.

Cosine(A1, A2) =
V1.V2

||V1||||V2||
(4)

where V1 and V2 are the vector of lemmas of
the effective words of two abstracts in a pair,
and V1.V2 denotes the dot product of two vectors
which is then divided by the product of their norms
(i.e. ||V1||||V2||).

Skipped bigram similarities: The set of the
skipped bigrams of two abstracts can be used as
a basis for similarity computation. We create the
skipped bigrams of the effective words and then
calculate the intersection of each set of these bi-
grams with the corresponding set from the other
abstract in a pair.

3.2 Combining similarities
In order to assign an overall similarity score to
any two given abstracts, the (non-weighted) av-
erage of all of the metrics listed above is calcu-
lated and is considered as the final similarity score.
These metrics compare the abstracts from differ-
ent perspectives, and hence, the combination of all
of them results in a comprehensive quantification
of the similarity of abstracts. This averaging tech-
nique has been shown to provide good estimation
of the similarity of sentences when compared to
human assessments both in general English and
Biomedical domain corpora (Hassanzadeh et al.,
2015).

3.3 Data set preparation and evaluation
methods

In order to prepare a realistic testbed, we generated
a corpus of PubMed abstracts. The abstracts are
retrieved and serialised from the PubMed reposi-
tory using E-utilities URLs3. PubMed is queried
by using the 465 medical questions, unmodi-
fied, from the EBMSummariser corpus (Mollá and
Santiago-martinez, 2011). The maximum num-
ber of search results is set to 20,000 (if any) and
the results are sorted based on relevance using

3www.ncbi.nlm.nih.gov/books/NBK25497/
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Figure 2: Statistics on the queried questions and
their retrieved documents.

PubMed’s internal relevance criteria.4 In total,
212,393 abstracts were retrieved and serialised.
The distributions of the retrieved abstracts per
question were very imbalanced. There are a con-
siderable number of questions with only one or no
results from the PubMed search engine (39% of
the questions). Figure 2 shows the frequency of
the retrieved results and the number of questions
with a given number and/or range of search results.

Some types of published studies may contain
better quality of evidence than others, and some,
such as opinion studies, provide very little evi-
dence, if any at all. In addition, it is common to
have a large number of search results for a given
query. Hence, in order to find EBM-related publi-
cations as well as to ensure the quality and higher
relevance of the abstracts, the retrieved abstracts
were filtered based on their publication types. The
types of publications are provided in the metadata
returned by the PubMed abstracts. To determine
the filters, we performed statistical analysis over
available corpora in the EBM domain, in partic-
ular, EBMsummariser corpus (includes 2,658 ab-
stracts), NICTA-PIBOSO corpus (includes 1,000
abstracts) (Kim et al., 2011), and our retrieved
PubMed documents (includes 212,393 abstracts)
— more details about the corpora can be found
in Malmasi et al. (2015). Table 1 shows the fre-
quency of the most frequent publication types in
these EBM corpora. There are 72 different types
of publications in PubMed5, but we limited the
retrieved abstracts to the seven more frequently

4www.nlm.nih.gov/pubs/techbull/so13/
so13_pm_relevance.html

5www.ncbi.nlm.nih.gov/books/NBK3827/

occurring publication types in the EBM domain.
Whenever we needed to reduce the number of re-
trieved abstracts from PubMed search results, we
filter the results and only keep the abstracts with
the mentioned publication types in Table 1. Note
that each PubMed abstract can have more than
one publication type. For example, a “Clinical
Trial” abstract can also be a “Case Report” and
so on. Hence, the sum of the percentages in Ta-
ble 1 may exceed 100%. We assume that all the
documents are informative when the number of re-
turned search results is less than 50, and hence, no
filtering was applied in these cases.

After retrieving the documents, in order to be
able to evaluate the automatically-generated clus-
ters of retrieved abstracts we devised two scenar-
ios for generating gold standard clusters: Semantic
Similarity Mapping and Manual Clustering.

Semantic Similarity Mapping scenario: We
generated the gold standard clusters automatically
using the cluster information from the EBMSum-
mariser corpus. The answers for each question
is known according to this corpus; each answer
forms a cluster and citations associated with that
answer are assigned to the respective cluster. In
order to extend the gold standard to include all the
retrieved PubMed abstracts, each abstract was as-
signed to one of these clusters. To assign an ab-
stract to a cluster, we compute the similarity be-
tween the abstract and each of the cited abstracts
for the question. To achieve this, we used our pro-
posed combination of similarity measures. The
abstract is assigned to the cluster with the highest
average similarity. For example, suppose that for a
given question there are three clusters of abstracts
from the EBMSummariser corpus. By following
this scenario, we assign each of the retrieved doc-
uments to one of these three clusters. We first cal-
culate the average similarity of a given retrieved
document to the documents in the three clusters.
The cluster label (i.e., 1, 2, or 3 in our example)
for this given retrieved abstract is then adopted
from the cluster with which it has the highest av-
erage similarity. This process is iterated to assign
cluster labels to all the retrieved abstracts. How-
ever, it could occur that some clusters may not
have any abstracts assigned to them. For the men-
tioned example, this will result when the retrieved
documents would be assigned only to two of the
three clusters. When that happens, the question
is ignored to avoid a possible bias due to cluster
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Table 1: Statistics over the more common publication types in EBM domain corpora.

Publication Type EBMSummariser NICTA-PIBOSO Retrieved

Clinical Trial 834 (31%) 115 (12%) 12,437 (6%)
Randomized Controlled Trial 763 (29%) 79 (8%) 13,849 (7%)
Review 620 (23%) 220 (22%) 26,162 (12%)
Comparative Study 523 (20%) 159 (16%) 19,521 (9%)
Meta-Analysis 251 (9%) 22 (2%) 2,067 (1%)
Controlled Clinical Trial 61 (2%) 9 (1%) 1,753 (1%)
Case Reports 37 (1%) 82 (8%) 8,599 (4%)

incompleteness. Following this scenario, we were
able to create proper clusters for retrieved abstracts
of 129 questions out of the initial 465.

Manual Clustering scenario: This scenario is
based on the Pooling approach used in the evalua-
tion of Information Retrieval systems (Manning et
al., 2008). In this scenario, a subset of the top k
retrieved documents is selected for annotation. To
select the top k documents we use the above clus-
ters automatically generated by our system. In or-
der to be able to evaluate these automatically gen-
erated clusters, for each of them we determine its
central document. A document is considered the
central document of a cluster if it has the high-
est average similarity to all other documents in the
same cluster. We then select the k documents that
are most similar to the central document. The in-
tuition is that if a document is close to the cen-
tre of a cluster, it should be a good representation
of the cluster and it would less likely be noise.
Two annotators (authors of this paper) manually
re-clustered the selected top k documents follow-
ing an annotation guideline. The annotators are
not restricted to group the documents to a specific
number of clusters (e.g., to the same number of
clusters as the EBMSummariser corpus). These
manually generated clusters are then used as the
gold standard clusters for the Manual Clustering
evaluation scenario. The system is then asked to
cluster the output of the search engine. Then, the
documents from the subset that represents the pool
of documents are evaluated against the manually
curated clusters. The value of k in our experiment
was set to two per cluster. In total, 10 queries (with
different numbers of original clusters, from 2 to 5
clusters) were assessed for a total of 62 PubMed
abstracts.

3.4 Experimental setup
We employed a Hierarchical Clustering (HC) al-
gorithm in order to cluster the retrieved ab-
stracts (Manning et al., 2008). HC methods con-
struct clusters by recursively partitioning the in-
stances in either a top-down or a bottom-up fash-
ion (Maimon and Rokach, 2005). A hierarchi-
cal algorithm, such as Hierarchical Agglomerative
Clustering (HAC), can use as input any similarity
matrix, and is therefore suitable for our approach
in which we calculate the similarity of documents
from different perspectives.

As a baseline approach, we use K-means clus-
tering (KM) with the same pre-processing as re-
ported by Shash and Mollá (2013), namely we
used the whole XML files output by PubMed and
removed punctuation and numerical characters.
We then calculated the TF-IDF of the abstracts,
normalised each TF-IDF vector by dividing it by
its Euclidean norm, and applied K-means cluster-
ing over this information. We employed the HC
and KM implementations available in the R pack-
age (R Core Team, 2015).

We use the Rand Index metric to report the
performance of the clustering approaches. Rand
Index (RI) is a standard measure for comparing
clusterings. It measures the percentage of cluster-
ing decisions on pairs of documents that are cor-
rect (Manning et al., 2008). Eq. 5 depicts the cal-
culation of RI.

RI =
TP + TN

TP + FP + FN + TN
(5)

A true positive (TP) refers to assigning two sim-
ilar documents to the same cluster, while a true
negative (TN) is a decision of assigning two dis-
similar documents to different clusters. A false
positive (FP) occurs when two dissimilar docu-
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Table 2: Clustering results over 129 questions of
the EBMSummariser corpus.

Method Rand Index

KM + TF-IDF 0.5261
HC + TF-IDF 0.5242
HC + Similarity Metrics 0.6036*

* Statistically significant (p-value< 0.05) when
compared with second best method.

ments are grouped into the same cluster. A false
negative (FN) decision assigns two similar docu-
ments to different clusters.

4 Experimental Results

In this section, the results from applying our sim-
ilarity metrics in order to cluster abstracts in the
EBM domain are presented. We first introduce our
experiments on clustering the abstracts from the
EBMSummariser corpus and then we report the
results over the retrieved abstracts from PubMed.

4.1 Results on EBMSummariser corpus

In order to evaluate our clustering approach using
our similarity metrics, we first employ the EBM-
Summariser corpus. As previously mentioned,
this corpus contains a number of clinical inquiries
and their answers. In each of these answers, which
are provided by medical experts, one or more ci-
tations to published works are provided with their
PubMed IDs. We apply our clustering approach
to group all the citations mentioned for a question
and then compare the system generated clusters
with those of the human experts. Table 2 shows the
results of using Hierarchical Clustering (HC) and
K-means clustering (KM) using the proposed sim-
ilarity measures and TF-IDF information. In order
to have a consistent testbed with our experiments
over retrieved documents, the reported results of
the corpus are over a subset of the available ques-
tions of the EBMSummariser corpus, that is, those
129 questions which were found valid for evalua-
tion in the Semantic similarity mapping scenario
in Section 3.3.

Note the improvement of the Rand Index
against the TF-IDF methods, i.e., 0.0775. This
difference between HC using our similarity met-
rics and the next best approach, namely KM clus-
tering using TF-IDF, is statistically significant

(Wilcoxon signed rank test with continuity correc-
tion; p-value = 0.01092).

Our implementation of KM used 100 random
starts. It should also be noted that KM can not be
used over our similarity metrics, because the final
representation of these metrics are the quantifica-
tion of the similarity of a pair of documents and
not a representation of a single document (i.e., the
appropriate input for KM clustering).

4.2 Results on PubMed documents

As mentioned in Section 3.3, we devised two
methods for evaluating the system’s generated
clusters: the manual scenario, and the semantic
similarity mapping scenario. The results of the
clustering approach are reported for these two sce-
narios in Table 3 and Table 4, respectively.

Table 3 shows the results for the manual evalu-
ation. It reports the comparison of the system’s
results against the manually clustered abstracts
from the two annotators. This evaluation scenario
shows that, in most cases, the HC approach that
employs our similarity metrics produced the best
Rand Index. The only exception occurs over the
Annotator 1 clusters, where KM using TF-IDF
gained better results (i.e., 0.4038 RI). However,
for this exception, it is noticed that this difference
between the HC approach that uses our similarity
metrics and KM using TF-IDF is not statistically
significant (p-value=0.5).

Table 3 also shows that the results are similar
for two of the three approaches on each annota-
tor, which suggests close agreement among an-
notators. Note, incidentally, that the annotations
were of clusters, and not of labels, and therefore
standard inter-annotator agreements like Cohen’s
Kappa cannot be computed.

Table 4 shows the results of the methods by us-
ing the semantic similarity mapping evaluation ap-
proach. It can be observed that, similar to the man-
ual evaluation scenario, HC clustering with the
similarity metrics gained the best Rand Index. Fi-
nally, although the absolute values of Rand Index
are much higher than that from the manual cluster-
ing evaluations, the difference between HC on our
similarity metrics and the HC and KM methods on
TF-IDF information is not statistically significant
(p-value=0.1873).

To compare with the results reported in the lit-
erature, we computed the weighted mean cluster
Entropy for the entire set of 456 questions. Ta-
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Table 3: Clustering results over retrieved PubMed documents with Manual Clustering evaluation scenario
(Rand Index) for 129 questions from the EBMSummariser corpus.

Methods Annotator 1 clusters Annotator 2 clusters Average
KM + TF-IDF 0.4038 0.3095 0.3566
HC + TF-IDF 0.2877 0.2898 0.2887
HC + Similarity Metrics 0.3825 0.3926 0.3875

Table 4: Clustering results over retrieved PubMed
documents with Semantic Similarity Mapping
evaluation scenario for 129 questions from the
EBMSummariser corpus.

Method Rand Index

KM + TF-IDF 0.5481
HC + TF-IDF 0.5463
HC + Similarity Metrics 0.5912

Table 5: Clustering results over the entire EBM-
Summariser corpus.

Method Entropy
KM + TF-IDF
(as in Shash and Mollá (2013))

0.260

KM + TF-IDF (our replication) 0.3959
HC + Similarity metrics 0.3548*

* Statistically significant (p-value< 0.05) when
compared with preceding method.

ble 5 shows our results and the results reported
by Shash and Mollá (2013). The entropy gener-
ated by the HC system using our similarity metrics
was a small improvement (lower entropy values
are better) on the KM baseline (our replication of
K-means using TF-IDF), which is statistically sig-
nificant (p-value=0.00276). However, we observe
that our KM baseline obtains a higher entropy than
that reported in Shash and Mollá (2013), even
though our replication would have the same set-
tings as their system. Investigation into the reason
for the difference is beyond the scope of this paper.

5 Conclusion

In this paper we have presented a clustering
approach for documents retrieved via a set of
PubMed searches. Our approach uses hierarchical
clustering with a combination of similarity metrics

and it reveals a significant improvement over a K-
means baseline with TF-IDF reported in the liter-
ature (Shash and Mollá, 2013; Ekbal et al., 2013).

We have also proposed two possible ways to
evaluate the clustering of documents retrieved by
PubMed. In the semantic similarity mapping eval-
uation, we automatically mapped each retrieved
document to a cluster provided by the corpus. In
the manual clustering evaluation, we selected the
top k documents and manually clustered them to
form the annotated clusters.

Our experiments show that using semantic sim-
ilarity of abstracts can help gain better clusters
of related published studies, and hence, can pro-
vide an appropriate platform to summarise multi-
ple similar documents. Further research will focus
on employing domain-specific concepts in simi-
larity metrics calculation as well as using tailored
NLP tools in biomedical domain, such as BioLem-
matizer (Liu et al., 2012). Further investigations
can also be performed in order to track the effects
and contribution of each of the proposed similarity
measures on formulating the abstract similarities,
and hence, on their clustering. In addition, in order
to have more precise quantification of the similar-
ity of abstracts, their sentences can be firstly clas-
sified using EBM related scientific artefact model-
ing approaches (Hassanzadeh et al., 2014). Know-
ing the types of sentences, the similarity measures
can then be narrowed to sentence-level metrics by
only comparing sentences of the same type. These
investigations can be coupled with the exploration
of overlapping clustering methods for allowing the
inclusion of a document in several clusters.
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