
Automated Generation of Test Suites for Error Analysis of Concept
Recognition Systems

Tudor Groza1,2

1School of ITEE
The University of Queensland

2Garvan Institute of Medical Research
Australia

tudor.groza@uq.edu.au

Karin Verspoor
Dept of Computing and Information Systems

The University of Melbourne
Australia

karin.verspoor@unimelb.edu.au

Abstract

We present an architecture and implemen-
tation of a system that builds structured
test suites for concept recognition systems.
The system applies provided test case def-
initions to a target concept vocabulary,
to generate test cases organised accord-
ing to those definitions. Test case defini-
tions capture particular characteristics, or
produce regular transformations, of con-
cept terms. The test suites produced by
the system enable detailed, systematic, er-
ror analysis of the performance of concept
recognition systems.

1 Introduction

In this paper, we introduce a framework to auto-
mate development of test suites for ontology con-
cept recognition systems. The objective of the
work is to enable the assessment of system com-
petence and performance, by organising test cases
into groups based on carefully defined characteris-
tics. While failure analysis is often done in terms
of such characteristics, it is generally done in an
unsystematic manner. By providing a framework
for automatically building test suites, we aim to
enable more systematic investigation of errors.

We focus in this initial work on ontology con-
cept recognition systems, that is, systems that aim
to detect concepts defined in an ontology in nat-
ural language text. Prior work has demonstrated
substantial differences in the performance of such
systems, due to linguistic variability in the expres-
sion of ontology concepts (Funk et al., 2014). The
use of structured test suites has been shown to en-
able identification of performance errors of such
systems (Cohen et al., 2010), as well as being use-
ful for finding bugs (Cohen et al., 2008). Struc-
tured test suites enable systematic evaluation, ex-
haustivity, inclusion of negative data, and control

over data (Oepen et al., 1998). They can focus
on specific linguistic phenomena, that can be pre-
sented in isolation and in controlled combinations.

Evaluation of the performance of NLP methods
is typically done with respect to annotated training
data. Methods are assessed based on their abil-
ity to reproduce human performance on a task,
as measured in terms of the standard metrics of
precision, recall, and F-score. Such metrics pro-
vide a quantitative basis for comparing perfor-
mance of different methods. However, they are
by their nature aggregative, considering all anno-
tations in the corpus as equal for evaluation pur-
poses. Furthermore, such metrics do not provide
insight into the nature of errors made by the meth-
ods. As stated by (Cohen et al., 2004), testing a
system on an annotated corpus “tells you how of-
ten the system failed, but not what it failed at; it
tells you how often the system succeeds, but not
where its strengths are.” Yet investigation of the
strengths and failures of a system can reveal infor-
mation meaningful for improving system perfor-
mance, and is a critical component of error analy-
sis. This approach is commonly applied in soft-
ware testing. The methodology of equivalence
partitioning (Myers, 1979) explicitly involves par-
titioning the input into equivalence classes that are
representative of a range of possible test cases.

This paper introduces a framework for support-
ing automatic generation of test suites, with the
goal of supporting more rigorous testing and eval-
uation of ontology concept recognition system.
Concept recognition (CR) aims to link ontological
concepts, defined in a specified ontology, to free
text spans denoting entities of interest. CR is a nat-
ural evolution of the more traditional Named En-
tity Recognition (NER) task, which focuses only
on detecting the mentions of entities of interest
within unstructured textual sources, without align-
ing them to ontological terms. Well-studies CR
tasks include, in particular, gene and protein nor-

Tudor Groza and Karin Verspoor. 2014. Automated Generation of Test Suites for Error Analysis of Concept
Recognition Systems. In Proceedings of Australasian Language Technology Association Workshop, pages 23−31.



malisation (Lu et al., 2011), which involves en-
tity linking of gene/protein mentions to biological
data bases. In the context of large structured vo-
cabularies, the CR task involves mapping of terms
to specific vocabulary identifiers. The set of NER
categories in CR is therefore effectively as large as
the number of primary terms in the vocabulary.

Our test suite generation framework consists of
3 main components:

1. An Input Wrapper that loads terminology
from an ontology, controlled vocabulary, or
other target resource.

2. Test Case Definitions that specify character-
istics of target terms to be incorporated as
cases into the test suite.

3. A Test Suite Factory that produces a struc-
tured test suite for the input ontology, from
the test case definitions.

Together, these components support auto-
matic creation of a structured test suite, that
can be used to systematically assess the per-
formance of a concept recognition system.
Each test case defines an equivalence class of
terms, along a defined dimension. The frame-
work is available at https://github.com/
tudorgroza/cr_testsuites. We wel-
come contributions of new test case definitions and
input wrappers.

2 Background

2.1 Concept Recognition Systems
The class of NLP system that we are primarily
concerned with testing is the concept recognition
system. These are systems that aim to detect men-
tions of terms corresponding to concepts from an
ontology or controlled vocabulary in natural lan-
guage text. These could be named entity recog-
nition systems, where the set of named entities is
defined by a target resource (e.g., the set of all reg-
istered US corporations, or the set of all genes in
GenBank1).

In the biomedical domain, ontology concept
recognition systems have been a recent focus of
development, due to a proliferation of biomedi-
cal ontologies2. A number of systems have re-

1http://www.ncbi.nlm.nih.gov/genbank
2There are 384 ontologies, containing close to 6 million

concept classes in total, listed in the US National Center for
Biomedical Ontology’s BioPortal, http://bioportal.
bioontology.org (Whetzel et al., 2011).

cently been developed, or deployed, to address
this domain, including the US National Library
of Medicine’s MetaMap tool (Aronson and Lang,
2010), the NCBO Annotator (Jonquet et al., 2009),
ConceptMapper (Tanenblatt et al., 2010; Funk
et al., 2014), WhatIzIt (Rebholz-Schuhmann and
others, 2008) and Neji (Campos et al., 2013).

These systems could equally make use of ma-
chine learning, or rule-based methods. Rule-based
systems have the advantage of being flexibly re-
deployable to new ontologies or vocabularies that
might be defined, as they do not require train-
ing data. Furthermore, in a normalisation context
in which specific vocabulary items must be de-
tected and normalised to an identifier (e.g., not just
recognising a US corporation mention, but map-
ping that mention to a specific register ID), the
number of target classes is effectively the number
of concept classes. This can be prohibitive for an
effective machine learning technique.

2.2 Use of Test Suites in NLP

A structured test suite consists of a set of carefully
selected test cases that are designed to test spe-
cific functionality or the performance of an algo-
rithm on a controlled input. In the development
of software systems, test suites are used for ac-
ceptance and regression testing, to ensure that the
software satisfies a given set of requirements and
that a change to the code does not inadvertently
break a given required functionality. In NLP, a
test suite can be used to automatically verify the
performance of an algorithm on specific linguistic
phenomena. Test suites rely on controlled varia-
tion of the linguistic inputs, and allow analysis to
be performed along particular dimensions of varia-
tion. This is in stark contrast to standard annotated
corpora that reflect natural linguistic variation and
natural distribution of entities, which is dependent
on the collection strategy for the corpus. In error
analysis of a task using an annotated corpus, the
categorisation of annotations and errors into co-
herent groups is typically done in post-hoc analy-
sis. It has been demonstrated that this can be both
challenging to implement and insightful with re-
gards to the generalisability of algorithms (Stoy-
anov et al., 2009; Kummerfeld et al., 2012; Kum-
merfeld and Klein, 2013). Using a test suite, it is
done a priori through the test suite construction.

The use of test suites has long benefited de-
velopment of NLP systems for syntactic analysis

24



(Oepen et al., 1998; Oepen, 1999), as well as from
systematic organisation of grammatical phenom-
ena along typological dimensions. The LinGO
Grammar Matrix (Bender et al., 2010; Bender
et al., 2002) captures linguistic variation along a
number of defined dimensions, and enables cre-
ation of an initial grammar based on a library of
syntactic structures. One of the key elements of
the Matrix is support for regression testing via au-
tomated tests, such that any change to a grammar
or the linguistic phenomena captured in the sys-
tem can be automatically assessed for impact to
the performance on previously existing phenom-
ena. Such test suites are used for validation and
exploration of changes to a grammar, during gram-
mar engineering (Bender et al., 2008).

However, the approach has had limited adop-
tion beyond analysis of deep parsing systems. A
methodology and data resources was introduced
to support feature-based evaluation of molecular
biology entity recognition systems (Cohen et al.,
2004). The data resources included examples of
entity names across four categories of variation,
orthographic (length, token “shape”, presence of
Greek letters, etc.), morphosyntactic (prefixes,
suffixes, presence function words, etc.), source
(e.g., a dictionary or a database), and lexical (e.g.,
status with respect to a language model or vocabu-
lary). That work demonstrated that a test suite can
be a good predictor of performance on named en-
tities with particular typographic characteristics.

The approach was later applied to ontology con-
cept recognition systems (Cohen et al., 2010).
That work identifies a core set of terminological
features that was common to the ontology concept
recognition context and the named entity recog-
nition context: a) Length b) Numerals c) Punctu-
ation d) Function/stopwords e) Source or author-
ity f) Canonical form in source (e.g., ontology or
database); and g) Syntactic context.

In each case of this prior work, the test suites
have been generated manually and contain a lim-
ited number of examples.

Other frameworks supporting evaluation of
NLP systems, including ontology concept recog-
nition systems, have been developed. U-compare
(Kano et al., 2009) provides a sophisticated eval-
uation environment, specifically targeting evalua-
tion and comparison of workflows for document
annotation, including syntactic annotation, NER,
and information extraction of events. The frame-

work allows multiple systems to be compared over
the same data, producing quantitative results in
terms of precision, recall, and F-score, as well as
supports visual inspection of annotations and an-
notation differences (Kano et al., 2011). How-
ever, there is no direct support for quantitative er-
ror analysis.

3 A Framework for Ontology Test Suite
generation

We propose a framework to automate development
of test suites for ontology concept recognition sys-
tems. Given an ontology definition file, and a set
of specifications of the typological dimensions of
interest, the framework generates a test suite. This
test suite organises the ontology terms and any
synonyms defined in the ontology according to the
typological dimensions of interest.

Figure 1 depicts the high-level architecture of
the framework. This comprises three major com-
ponents: (i) the Input Wrapper – handling the pro-
cessing of a given ontology or term resource, ac-
cording to a specification file; (ii) the Test Case –
defining specific characteristics along a dimension
of interest; and (iii) the Test Case Factory – gener-
ating a test suite from a given input according to a
set of defined test cases. In the following sections
we describe each of these components.

3.1 Input Wrapper

The Input Wrapper processes a given terminologi-
cal input resource, according to a provided spec-
ification, and provides an iterator over the en-
tity profiles defined by the dataset. Generically,
the InputWrapper does not rely on any assump-
tions about the input resource, but rather delegates
these assumptions to the underlying implementa-
tion. This means that the input resource could be
an explicitly structured ontology or dictionary, as
well as an annotated (gold standard) corpus, for
which the target vocabulary for a particular set of
entities or concepts can be inferred from the anno-
tations.

An Entity Profile captures the terminological
representation of an individual concept or named
entity, and is expected to include the following
properties: (i) a unique identifier – i.e., the URI
of a concept in the case of an ontology, or a
plain identifier in the case of an annotated corpus;
(ii) the list of labels – i.e., preferred and/or alterna-
tive labels for ontological concepts, or a canonical

25



Length 1

Length
CompositeTestCase

Length 2

...
Contains-Punctuation

TestCase

ITestCase

ISimpleTestCase ICompositeTestCase

ID
Name
PropertiesTestSuiteFactory

TestSuite

TestCaseDefinition

TestCaseResult

Textual grounding
Original label
URI

IInputDataWrapper

OntoDataWrapperNERDataWrapper

IEntityProfile
URI
Labels
Synonyms
...

SpecDefinition

Labels
Synonyms
...

INPUT WRAPPER TEST CASE
FACTORY

TEST CASE

Figure 1: High-level overview of the test suite framework and its three major components: Input Wrapper
– handling the input and producing Entity Profiles; Test Case – defining specific test case scenarios; Test
Case Factory – bridging the provided input and a set of defined test cases.

textual representation for a concept or entity de-
rived from a corpus annotation; and (iii) the list
of synonyms – i.e., exact, related, broader or nar-
rower synonyms for ontological concepts, or al-
ternative textual representations for a concept or
entity, as inferred from an annotated corpus.

3.1.1 Ontology term resources
The underlying Input Wrapper implementation is
also responsible for defining the structure of the
specification, according to which the processing is
done. The current implementation of the frame-
work provides an Ontology Data Wrapper that
is able to perform the above-listed steps for a
given ontology. The format of the ontology should
be one of the formats supported by the OWL
Api (Horridge and Bechhofer, 2011) – e.g., OWL,
OBO, or RDF/XML. The resulting entity profiles
will correspond to ontological concepts described
via their URIs and the labels or synonyms defined
in the specification. The actual specification is
independent of the ontology, the ontology format
or the implementation of the ontology processing
mechanism within the OntoDataWrapper and it is
defined using a simple JSON configuration file.
This enables one to create and process the same
ontology using different configurations.

The structure of the configuration file specifies:

• conceptTypes, the types of concepts to be
processed

• labelProperties, the label properties to
be considered

• synonymProperties, the synonyms
properties to be considered, including a
possible filtering based on the synonym type

• uriPatterns, URI patterns that should be
included or excluded from the processing

Below we provide an example of an ontology
specification (for an OntoDataWrapper) that
will process only classes and will use the stan-
dard dfs:label and skos:prefLabel prop-
erties, in addition to any exact synonyms, defined
by the pair ono:synonym – ono:synonym
type. Furthermore, the specification ex-
cludes from processing three particular URIs
(HP:0000001, HP:0000004 and HP:0000005).
Please note that for brevity purposes, we do not
list the complete URI of the properties.
{
"conceptTypes": ["CLASS"],

"labelProperties":{
"http://.../rdf-schema#label":{},
"http://.../skos#prefLabel":{},

},

"synonymProperties":{
"http://.../obo/synonym":{

"http://.../obo/synonymtype":["EXACT"]}
},

"uriPatterns":{
"http://.../obo":[

"*",
"˜HP_0000001",
"˜HP_0000005",
"˜HP_0000004"]

}
}

3.1.2 Annotated corpus resources
We can straightforwardly extend the basic frame-
work developed for ontology concepts to standard

26



text corpora with annotations of ontology concepts
or named entities over naturalistic text data. The
framework enables organisation of annotated ex-
amples according to typological characteristics.

At a minimum, all that is required to achieve
this at the basic technical level is to de-
fine an appropriate InputDataWrapper, e.g.
NERDataWrapper in Figure 1. This Input
Wrapper must know how to parse the relevant cor-
pus representation. It would iterate through each
annotation in the corpus, and either generate a new
Entity Profile, or augment an existing Entity Pro-
file when a new synonym or alternate form of an
existing Entity is encountered.

3.2 Test Case Definitions

Test cases have the role of selecting or manipulat-
ing entity profiles characterised by certain prop-
erties of interest. As exemplified in (Cohen et
al., 2010), the equivalence relations captured in
such test cases may focus on length-based proper-
ties, lexical composition, lexical variation, etc. In
principle, we can classify test cases into two cat-
egories: simple and composite. Simple test cases
have a non-parametric form and analyse a particu-
lar property of entity profiles – e.g., if they contain
punctuation. Composite test cases consist of a se-
ries of simple test cases concentrated on a single
property, but which can be parametrized. For ex-
ample, the process of verifying the existence of a
given stop word (e.g., “of”, “by”, “from”) in an en-
tity profile is independent of the actual stop word.
Hence, a test case targeting treatment of terms
containing stop words can take the stop word as
a parameter. We consider this type of test case to
be composite.

Our framework supports both types of test
cases. In general, a Test Case includes high-level
metadata (i.e., an identifier and a name, to improve
human readability) and the set of properties that
can be configured – as per the listing below.
public interface ITestCase {

public String getId();

public String getName();

public List<String> getAcceptedProperties();

public void addEntity(IEntityProfile profile);
}

public interface ISimpleTestCase extends ITestCase {

public void runTestCases(Properties properties);

public List<ITestCaseResult> retrieveTestCases();
}

The properties supported by the Test Case might
include the number of entries to be generated in
the test suite for this test case (this would apply to
both test case types), or parameter values (which
would be particular to a composite test case), e.g.,
the set of stop words to be analysed. The runtime
values for these properties are transferred to the
test case via a TestCaseDefinition, or in a program-
matic manner, subject to the deployment settings.

Running a Test Case involves three steps:
(i) populating the Test Case with Entity Profiles,
(ii) generating Test Case Results according to the
specified properties values, and (iii) retrieving the
Test Case Results. The last two steps are depen-
dent on the test category, as shown in the defini-
tion of the Simple Test Case interface in the listing
above.

The results are currently provided as a
set of objects that contain the resulting
textual grounding (to be used as in-
put in validation), the original lexical
representation and the identifier of
the associated entity. For example, let’s consider
a lexical variation Test Case applied to the
Gene Ontology3 (Gene Ontology Consortium,
2000) concept GO:0070170 (regulation of tooth
mineralization). The process result consists of:

• textual grounding: regulated tooth
mineralization

• original lexical
representation: regulation of tooth
mineralization

• concept identifier: GO:0070170

Currently, the framework contains three simple
test cases:

• Contains Arabic numeral – generates candi-
dates that contain isolated Arabic numerals
(e.g., 1, 2, ...)

• Contains Roman numeral – generates candi-
dates that contain isolated Roman numerals
(e.g., I, IX, ...)

• Contains punctuation – generates candidates
that contain punctuation tokens

and two parametric composite test cases
3The Gene Ontology is an ontology capturing concepts

related to gene function and biological processes.

27



• Contains stop word – generates candidates
that contain user-specified stop words (e.g.,
OF, FROM, BY, ...)

• Length – generates candidates that have lexi-
cal groundings with a length in tokens equal
to the list of user-specified lengths.

All test cases generate results in a randomised
manner. That is, except for the core test case func-
tionality, no particular heuristics or rules are used
when selecting the resulting concepts.

3.3 Test Suite Factory

The Test Suite Factory connects the Input Wrap-
per to the existing Test Case implementations. Its
role is to generate sets of Test Cases – a Test Suite
– according to a provided definition on a given in-
put. The implementation of the Test Suite Factory
allows it to be used both in a continuous pipeline
manner, as well as in a batch process. In the
pipeline setting, the factory accepts dynamic cre-
ation and alteration of Test Suite definitions, while
in the batch process setting the definitions need to
be provided via a simple configuration file. Sub-
ject to the deployment setting, the resulting Test
Suite can be used directly in evaluation experi-
ments, or serialised for offline processing.

There are a few technical aspects that are worth
mentioning in the context of the Test Suite Factory.
The current implementation forces a generic Test
Case to ingest one Entity Profile at-a-time (pro-
vided by the Input Wrapper Entity Profile itera-
tor) – see the Test Case interface definition in the
listing above. The actual processing of this En-
tity Profile is then delegated to the specific Test
Case implementation (independently of its cate-
gory). The rationale behind this decision was to
maintain the memory footprint of the Input Wrap-
per at a reasonable level. This enables, for exam-
ple, the processing of the 110MB SNOMED-CT
clinical vocabulary (in its tabulated format, con-
taining 398K concepts and 1.19M descriptions) on
a standard machine without the need of a large
memory allocation. Yet in order to take advantage
of a multi-core architecture, where this is avail-
able, the test suite generation process introduces
two parallelisation points. A first parallelisation
point is created when iterating over the Entity Pro-
files, with each Entity Profile being provided at the
same time to all instantiated Test Cases. The sec-
ond parallelisation point is delegated to the Test

Case implementation, which may take advantage
of it when generating the Test Case Results.

4 Use of the generated Test Suite for
evaluation

The framework we have developed provides the
critical scaffolding for designing and creating Test
Suites. It can be applied for concept recognition
evaluation using the following workflow:

1. Given an ontology of interest, define the de-
sired Input Wrapper specification – see the
example discussed above;

2. Specify a desired Test Suite definition – us-
ing existing Test Cases and/or implementing
additional ones;

3. Generate Test Case Results (via the Test Case
Factory) and serialise them on disk.

To allow for an easy and versatile creation of
Test Suite definitions, the Test Case Factory is
able to instantiate Test Suites based on a config-
uration file that specifies the list of Test Cases and
the properties to be used at runtime. Below we
list an example of such a configuration file us-
ing all existing Test Case implementations (intro-
duced above). Each Test Case is specified using
its unique identifier, followed by a set of values
for the properties it requires. The number of en-
tries to be generated (by both simple and compos-
ite test cases) is specified via the NO ENTRIES
property. In addition, the composite Test Case
Contains-STOP requires the actual stop words to
be analysed (here TO, FROM and OF). A similar
configuration could be provided also to the Length
composite Test Case. The current implementation
provides, however, the option of generating tests
on all available lengths represented in the input
terminology (ontology or corpus annotations), as
shown in the listing below.
testcase[0].id=Contains-Arabic
testcase[0].property[NO_ENTRIES]=6

testcase[1].id=Contains-Arabic
testcase[1].property[NO_ENTRIES]=6

testcase[2].id=Contains-Punctuation
testcase[2].property[NO_ENTRIES]=4

testcase[3].id=Contains-STOP
testcase[3].set[TO].property[STOP_WORD]=to
testcase[3].set[TO].property[NO_ENTRIES]=10
testcase[3].set[FROM].property[STOP_WORD]=from
testcase[3].set[FROM].property[NO_ENTRIES]=6
testcase[3].set[OF].property[STOP_WORD]=of
testcase[3].set[OF].property[NO_ENTRIES]=5

testcase[4].id=Length
testcase[4].set[ALL].property[LENGTH]=ALL

28



An excerpt from the application of this Test
Suite to the Gene Ontology is listed below.

#Contains-Arabic

T-helper 1 cell differentiation | GO:0045063
RNA cap 4 binding | GO:0000342

#Contains-Roman

transcription from RNA polymerase
III type 2 promoter | GO:0001009

mitochondrial respiratory chain complex
III assembly | GO:0034551

#Contains-Punctuation

21U-RNA binding | GO:0034583
6-deoxy-6-sulfofructose-1-phosphate

aldolase activity | GO:0061595

#Contains-STOP-OF

establishment of neuroblast polarity | GO:0045200
regulation of tooth mineralization | GO:0070170

#Contains-STOP-TO

response to cortisone | GO:0051413
glutamate catabolic process to 4-hydroxybutyrate |
GO:0036241

#Contains-STOP-FROM

calcitriol biosynthetic process from calciol |
GO:0036378
positive regulation of exit from mitosis | GO:0031536

#Length-1

costamere | GO:0043034
amicyanin | GO:0009488
plasmodesma | GO:0009506

#Length-2

spermidine transport | GO:0015848
lobed nucleus | GO:0098537

#Length-3

energy transducer activity | GO:0031992
sinoatrial valve morphogenesis | GO:0003185

A specific concept recognition system evalua-
tion process can ingest this serialisation, parse it
into strings and annotations (identifier labels), and
apply the concept recognition system directly to
the test suite. Standard evaluation metrics (e.g.,
Precision, Recall, F-Score) can be computed di-
rectly on this data. Furthermore, by taking advan-
tage of the intrinsic structure of the test suite, with
individual test case strings grouped together, the
Test Suite can be used to compute evaluation met-
rics per-category basis. This provides a more in-
formative view of the strengths and weaknesses of
the system under scrutiny, on the basis of the test
cases. Coupled with a standardised error analy-
sis framework, the test suite can be used to cre-
ate comparative overviews across multiple con-
cept recognition systems.

5 Discussion

5.1 Towards an end-to-end test suite-based
evaluation system

The current implementation focuses on the test
suite generation framework. We assume that a test
suite generated with the framework will be used in
a separate evaluation process, as described in Sec-
tion 4.

Future developments of the framework will in-
clude an integrated evaluation pipeline, which
will realise the required steps, notably parsing of
the test suite, submission of each test string in
turn to a concept recognition system, tracking of
matches (TP/FP/FN), and category-based calcula-
tion of quantitative evaluation metrics.

Moreover, for ontology-based concept recog-
nition, we intend to provide a library of gener-
ated Test Suites using ontologies from the BioPor-
tal (Whetzel et al., 2011), in addition to a series
of baselines, created using off-the-shelf systems,
such as the NCBO Annotator (Jonquet et al., 2009)
or ConceptMapper (Tanenblatt et al., 2010).

5.2 Generation of term variants
The sample test cases implemented to date address
particular characteristics of concept terms. They
involve matching of existing ontology terms and
synonyms in the input source to these character-
istics, and result in the organisation and grouping
of those terms according to those characteristics.
However, test cases can also be defined that ma-
nipulate terms in controlled ways to produce term
variants for testing. This allows testing of the ro-
bustness of concept recognition in the face of par-
ticular types of changes to the input.

Several such changes were explored in the Gene
Ontology test suite of (Cohen et al., 2010), includ-
ing generation of plural variants of singular terms,
and manipulation of word order of a multi-word
term (which could either be expected to be toler-
ated by a concept recognition system, or an ex-
plicit error case that should be avoided).

Variants might be generated in which words of a
multi-word term are separated, e.g. with a particu-
lar type of intervening text. An adjective might be
inserted in a noun phrase (e.g., regulation of exit
from mitosis → regulation of rapid exit from mi-
tosis), or a quantifier added (e.g., ensheathment of
neurons→ ensheathment of some neurons).

Alternative syntactic realisations such as nom-
inalisations or adjectival forms (e.g., nucleus →

29



nuclear), or linguistic alternations (e.g., regulation
of X → X regulation) can be generated. Semantic
variation can also be captured, such as substitution
of a phrase within a synonym, e.g., positive regu-
lation→ up-regulation (as a substring of a longer
term). Similarly, variants that involve abstraction
or manipulation of terms with other terms embed-
ded within them (i.e., recursive structure) can be
generated to measure structural impacts (Verspoor
et al., 2009; Ogren et al., 2005).

To the extent that such changes are system-
atic and generalisable, they can be represented
programmatically and used to generate test cases
within the test suite. This is planned for the next
phase of system development.

5.3 Sentential contexts

The current framework focuses on generating test
suites that consist of target vocabulary terms, or
controlled variants of those terms. However, it has
been previously pointed out that the performance
of a concept recognition system may be depen-
dent on the complexity of linguistic environment
in which a concept is mentioned, rather than (or in
combination with) the characteristics of the con-
cept term itself (Cohen et al., 2004). Indeed, many
methods for named entity recognition depend on
the availability of meaningful (or at least syntac-
tically correct) linguistic contexts in which term
mentions occur; conditional random field models
that are trained on naturally occurring data, for in-
stance, are explicitly defined to make use of sen-
tential context in their models.

Therefore, we aim to provide Test Case defini-
tions that enable systematic specification of sen-
tential contexts for the terms of the vocabulary
source. This can be achieved with a Compos-
ite Test Case which combines Test Cases for con-
cepts, with a set of sentential contexts (themselves
varying according to controlled characteristics).

6 Conclusions

We have introduced a framework for automated
creation of test suites for concept recognition sys-
tems. While prior work on test suites has ei-
ther produced a static test suite for a particular
NLP task (e.g., grammar engineering), or pro-
vided data aimed at generating specific types of
test cases (Cohen et al., 2004), we have produced
a software implementation that directly supports
the specification of test cases, and generation of

the test suite according to those test cases for a
provided input terminology. The input can be ex-
tracted directly from a structured vocabulary re-
source such as an ontology, or inferred from anno-
tations over a natural language corpus.

Test suites provide a powerful tool for error
analysis. Following software engineering method-
ology, the organisation of data into explicitly de-
fined classes provides insight into how a system
succeeds or fails, rather than how often. An anal-
ysis of the performance of a concept recognition
system in these terms is complementary to the
standard evaluation metrics. While assessment
of precision, recall, and F-score over naturalistic
data clearly remains the most suitable strategy for
gauging overall performance of the system, a test
suite provides a more granular assessment corre-
sponding to potential error categories.

Our initial implementation contains only a lim-
ited number of existing test case definitions. How-
ever, the framework is flexible and new test cases
appropriate to particular sets of concepts, and par-
ticular corpus characteristics, can easily be added.
We invite the community to contribute test cases
to the framework.

Acknowledgments

Tudor Groza gracefully acknowledges the fund-
ing received from the Australian Research Council
(ARC) via the Discovery Early Career Researcher
Award (DECRA) [DE120100508].

References
Alan R. Aronson and Francois-Michel Lang. 2010. An

overview of MetaMap: historical perspective and re-
cent advances. Journal of the American Medical In-
formatics Association, 17:229–236.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
John Carroll, Nelleke Oostdijk, and Richard Sut-
cliffe, editors, Proceedings of the Workshop on
Grammar Engineering and Evaluation at the 19th
International Conference on Computational Lin-
guistics, pages 8–14, Taipei, Taiwan.

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2008. Grammar engineering for linguistic hypoth-
esis testing. In Nicholas Gaylord, Stephen Hilder-
brand, Heeyoung Lyu, Alexis Palmer, and Elias Pon-
vert, editors, Texas Linguistics Society 10: Com-
putational Linguistics for Less-Studied Languages.
CSLI Publications.

30



Emily M. Bender, Scott Drellishak, Antske Fokkens,
Laurie Poulson, and Safiyyah Saleem. 2010. Gram-
mar customization. Research on Language & Com-
putation, 8(1):23–72. 10.1007/s11168-010-9070-1.

David Campos, Sergio Matos, and Jose Luis Oliveira.
2013. A modular framework for biomedical concept
recognition. BMC Bioinformatics, 14:281.

K. Bretonnel Cohen, Lorraine Tanabe, Shuhei Ki-
noshita, and Lawrence Hunter. 2004. A resource for
constructing customized test suites for molecular bi-
ology entity identification systems. In HLT-NAACL
2004 Workshop: BioLINK 2004, Linking Biological
Literature, Ontologies and Databases, pages 1–8.
Association for Computational Linguistics.

K. Bretonnel Cohen, William A. Baumgartner, Jr., and
Lawrence Hunter. 2008. Software testing and the
naturally occurring data assumption in natural lan-
guage processing. In Software Engineering, Testing,
and Quality Assurance for Natural Language Pro-
cessing, SETQA-NLP ’08, pages 23–30, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

K. Bretonnel Cohen, Christophe Roeder, William
A. Baumgartner Jr., Lawrence E. Hunter, and Karin
Verspoor. 2010. Test suite design for biomedi-
cal ontology concept recognition systems. In Pro-
ceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10),
Valletta, Malta, May. European Language Resources
Association (ELRA).

Christopher Funk, William Baumgartner, Benjamin
Garcia, et al. 2014. Large-scale biomedical concept
recognition: an evaluation of current automatic an-
notators and their parameters. BMC Bioinformatics,
15(1):59.

Gene Ontology Consortium. 2000. Gene Ontol-
ogy: tool for the unification of biology. Nat Genet,
25(1):25–29.

Matthew Horridge and Sean Bechhofer. 2011. The
OWL API: A Java API for OWL Ontologies. Se-
mantic Web Journal, 2(1):11–21.

Clement Jonquet, Nigam H Shah, and Mark A Musen.
2009. The open biomedical annotator. Summit on
translational bioinformatics, 2009:56–60.

Yoshinobu Kano, William A. Baumgartner, Luke Mc-
Crohon, et al. 2009. U-compare. Bioinformatics,
25(15):1997–1998.

Y. Kano, J. Bjorne, F. Ginter, T. Salakoski, et al.
2011. U-compare bio-event meta-service: compati-
ble bionlp event extraction services. BMC bioinfor-
matics, 12(1):481.

K. Jonathan Kummerfeld and Dan Klein. 2013. Error-
driven analysis of challenges in coreference reso-
lution. In Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Process-
ing, pages 265–277. Association for Computational
Linguistics.

K. Jonathan Kummerfeld, David Hall, R. James Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 1048–1059. Association
for Computational Linguistics.

Zhiyong Lu, Hung-Yu Kao, Chih-Hsuan Wei, et al.
2011. The gene normalization task in BioCreative
III. BMC Bioinformatics, 12(Suppl 8):S2.

Glenford J. Myers. 1979. The Art of Software Testing.
John Wiley & Sons, Inc.

S. Oepen, K. Netter, and J. Klein. 1998. TSNLP -
test suites for natural language processing. In John
Nerbonne, editor, Linguistic Databases, chapter 2,
pages 13–36. CSLI Publications.

Stephan Oepen. 1999. Competence and Performance
Laboratory. User and Reference Manual. Technical
report, Computational Linguistics, Saarland Univer-
sity.

P Ogren, K Cohen, and L Hunter. 2005. Implications
of compositionality in the Gene Ontology for its cu-
ration and usage. In Pacific Symposium on Biocom-
puting, pages 174–185.

Dietrich Rebholz-Schuhmann et al. 2008. Text pro-
cessing through Web services: calling Whatizit.
Bioinformatics, 24(2):296–298.

Veselin Stoyanov, Nathan Gilbert, Claire Cardie, and
Ellen Riloff. 2009. Conundrums in noun phrase
coreference resolution: Making sense of the state-
of-the-art. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 656–664. Associa-
tion for Computational Linguistics.

Michael Tanenblatt, Anni Coden, and Igor Sominsky.
2010. The ConceptMapper Approach to Named En-
tity Recognition. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta, May. Euro-
pean Language Resources Association (ELRA).

K. Verspoor, D. Dvorkin, K.B. Cohen, and L. Hunter.
2009. Ontology quality assurance through analysis
of term transformations. Bioinformatics, 25(12):i77.

Patricia L Whetzel, Natalya F Noy, Nigam H Shah,
Paul R Alexander, Csongor Nyulas, Tania Tudo-
rache, and Mark A Musen. 2011. BioPortal: en-
hanced functionality via new Web services from the
National Center for Biomedical Ontology to access
and use ontologies in software applications. Nu-
cleic Acids Research, 39(Web Server issue):W541–
5, July.

31


