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Abstract

There has been considerable work on syn-
tactic language models and they have ad-
vanced greatly over the last decade. Most
of them have used a probabilistic context-
free grammar (PCFG) or a dependency
grammar (DG). In particular, DG has at-
tracted more and more interest in the
past years since dependency parsing has
achieved great success. While much work
has evaluated the effects of different de-
pendency representations in the context of
parsing, there has been relatively little in-
vestigation into them on a syntactic lan-
guage model. In this work, we conduct
the first assessment of three dependency
representations on a transition-based de-
pendency parsing language model. We
show that the choice of dependency rep-
resentation has an impact on overall per-
formance from the perspective of language
modelling.

1 Introduction

Syntactic language models have been successfully
applied to a wide range of domains such as speech
recognition, machine translation, and disfluency
detection. Although n-gram based language mod-
els are the most widely used due to their simplic-
ity and efficacy, they suffer from a major draw-
back: they cannot characterise the long-range rela-
tions between words. A syntactic language model,
which exploits syntactic dependencies, can incor-
porate richer syntactic knowledge and information
through syntactic parsing. In particular, syntactic
structure leads to better performance of language
model compared to traditional n-gram language
models (Chelba and Jelinek, 2000). Most of the
syntactic language models have used a probabilis-
tic context-free grammar (PCFG) (Roark, 2001;

Charniak, 2001) or a dependency grammar (DG)
(Wang and Harper, 2002; Gubbins and Vlachos,
2013) in order to capture the surface syntactic
structures of sentences.

Researchers have shown an increased interest in
dependency parsing and it has increasingly been
recognised as an alternative to constituency pars-
ing in the past years. Accordingly, various repre-
sentations and associated parsers have been pro-
posed with respect to DG. DG describes the syn-
tactic structure of a sentence in terms of head-
dependent relations between words. Unlike con-
stituency models of syntax, DG directly models
relationships between pairs of words, which leads
to a simple framework that is easy to lexicalise and
parse with. Moreover, a DG-based, particularly
transition-based, parser is fast and even achieves
state-of-the-art performance compared to the other
grammar-based parsers. It is therefore suitable for
identifying syntactic structures in incremental pro-
cessing, which is a useful feature for online pro-
cessing tasks such as speech recognition or ma-
chine translation.

The aim of this study is to explore different de-
pendency representations and to investigate their
effects on the language modelling task. There are
publicly available converters to generate depen-
dencies. Ivanova et al. (2013) investigated the ef-
fect of each dependency scheme in terms of pars-
ing accuracy. Elming et al. (2013) evaluated four
dependency schemes in five different natural lan-
guage processing (NLP) applications. However, to
our knowledge, no previous work has investigated
the effect of dependency representation on a syn-
tactic language model.

The remainder of this paper is organised as fol-
lows. Section 2 gives a brief overview of related
work on dependency schemes and language mod-
elling. In Section 3 we discuss three dependency
schemes and Section 4 describes our dependency
parsing language model. Then, the experimental
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settings and a series of results are presented in Sec-
tion 5. Finally, conclusions and directions for fu-
ture work are given in Section 6.

2 Related Work

A number of studies have been conducted on de-
pendency representations in NLP tasks. Several
constituent-to-dependency conversion schemes
have been proposed as the outputs of the convert-
ers (Johansson and Nugues, 2007; de Marneffe
and Manning, 2008; Choi and Palmer, 2010; Tratz
and Hovy, 2011). Previous work has evaluated
the effects of different dependency representations
in various NLP applications (Miwa et al., 2010;
Popel et al., 2013; Ivanova et al., 2013; Elming
et al., 2013). A substantial literature has exam-
ined the impact of combining DG with another di-
verse grammar representation, particularly in the
context of parsing (Sagae et al., 2007; Øvrelid et
al., 2009; Farkas and Bohnet, 2012; Kim et al.,
2012).

Many works on syntactic language models have
been carried out using phrase structures. Chelba
and Jelinek (2000) experiment with the applica-
tion of syntactic structure in a language model
for speech recognition. Their model builds the
syntactic trees incrementally in a bottom-up strat-
egy while processing the sentence in a left-to-right
fashion and assigns a probability to every word
sequence and parse. The model is very close to
the arc-standard model that we investigate in this
paper. Roark (2001) implements an incremental
top-down and left-corner parsing model, which is
used as a syntactic language model for a speech
recognition task. The model effectively exploits
rich syntactic regularities as features and achieves
better performance than an n-gram model. Char-
niak (2001) describes a syntactic language model
based on immediate-head parsing, which is called
a Trihead model and empirically shows that the
Trihead model is superior to both a trigram base-
line and two previous syntactic language models.

Wang and Harper (2002) present a syntac-
tic DG-based language model (SuperARV) for
speech recognition. Multiple knowledge sources
are tightly integrated based on their constraint DG
but SuperARV does not construct explicit syntac-
tic dependencies between words. Nonetheless, it
achieves better perplexity than both a baseline tri-
gram and other syntactic language models. Re-
cently, Gubbins and Vlachos (2013) showed how

to use unlabelled and labelled dependency gram-
mar language models to solve the Sentence Com-
pletion Challenge set (Zweig and Burges, 2012).
Their models performed substantially better than
n-gram models.

3 Alternative Dependency
Representations

Previous work has defined different dependency
schemes, and provided software tools for convert-
ing the syntactic constituency annotations of ex-
isting treebanks to dependency annotations. We
experiment with the following three schemes for
the language modelling task.

• LTH: The LTH dependency scheme is ex-
tracted from the automatic conversion of
Penn Treebank using the LTH converter (Jo-
hansson and Nugues, 2007).1 The converter
has a lot of options that generate linguis-
tic variations in dependency structures and it
was configured to produce a functional rather
than lexical DG in this study.

• P2M: The P2M scheme is obtained by run-
ning the Penn2Malt converter (Nivre, 2006)2

based on a standard set of head rules. This
converter was deprecated by the LTH con-
verter but it is still used to make a comparison
with previous results.

• STD: The STD scheme is used in the
Stanford parser (de Marneffe and Manning,
2008)3, which comes with a converter. In
this study, the Penn Treebank was converted
to Stanford basic dependencies for projective
dependency parsing.

The syntactic representations differ in system-
atic ways as shown in Figure 1. For instance, aux-
iliaries take the lexical verb as a dependent in all
schemes except for STD, where the lexical verb is
the head of a VP. In addition to the typological dif-
ferences, there is rich variation in dependency la-
bels with respect to the schemes. The STD scheme
has 49 dependency labels, which is the largest set

1http://nlp.cs.lth.se/software/
treebank_converter/

2http://w3.msi.vxu.se/˜nivre/research/
Penn2Malt.html

3http://nlp.stanford.edu/software/
lex-parser.shtml
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Aux Verb
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Aux Verb
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Rel Verb
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Rel Verb
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CompVerb
LTH, P2M
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a Conj b
P2M

a Conj b
STD

a Conj b
LTH

Figure 1: Auxiliaries, relative/subordinate clauses
and coordination in the DG schemes.

of dependency labels used here. The LTH depen-
dencies are defined by 22 label types, whereas the
P2M scheme employs 12 labels. The fine-grained
set of dependency labels in STD allows a more
precise expression of grammatical relations. For
instance, the label adv (unclassified adverbial) in
LTH can be expressed using either advcl (adver-
bial clause modier) or advmod (adverbial modier)
in STD. We evaluate the dependency schemes by
incorporating them into a language model archi-
tecture in the experiments.

4 A Dependency Parsing Language
Model

In this section we describe our syntactic language
model in terms of parsing and language mod-
elling. Using the theoretical framework for gen-
erative transition-based dependency parsing intro-
duced by Cohen et al. (2011), we propose a gener-
ative version of the arc-standard model that defines
probability distributions over transitions and finds
the most probable ones given stack features.

4.1 Generative Dependency Parsing Model
Following Nivre (2008), a transition-based depen-
dency parsing model is defined as a tuple S =
(C, T, I, Ct), where C is a set of configurations,
T is a set of permissible transitions, I is an initial-
isation function, and Ct is a set of terminal config-
urations. A transition sequence for a sentence is a
sequence of configurations where each non-initial
configuration is obtained by applying a transition
to a previous configuration. A configuration is a
triple (α, β,A), where α is stack, β is queue and
A is a set of dependency arcs. The stack α stores
partially processed words and the queue β records
the remaining input words, respectively. The func-

tion I maps a sentence to an initial configuration
with empty α and A, and β containing the words
of the sentence. The set Ct has a terminal config-
uration, where α contains a single word and β is
empty.

The arc-standard model has three distinct types
of transitions as follows:

• Shiftpw (SHpw ): move the first item i in the
queue onto the stack and predict POS p and
word w for the item

• Left-Arcl (LAl ): combine the top two items
i, j on the stack and predict a dependency la-
bel l over an arc j → i

• Right-Arcl (RAl ): combine the top two
items i, j on the stack and predict a depen-
dency label l over an arc i→ j

This model processes the input sentence from
left to right in a bottom-up fashion using three
transitions. A parse tree is incrementally derived
through the transition sequence. In particular,
Shift predicts the next POS p and word w in the
queue with a probability P (Shift , p, w), which is
a probability both of the Shift transition and the
POS/word prediction.

The probability of a parse tree is defined as the
product of the probabilities of transitions in Eq (1).

P (π) =

2n−1∏
i=1

P (ti|αi−1, Ai−1) (1)

where π is a parse tree, n is the number of words
in a sentence and t is a transition such that t ∈ T .

More specifically, transitions are conditioned on
topmost stack items and in particular, the probabil-
ity of Shift is defined as follows:

P (Shiftpw|α,A)
= P (Shift|α,A) · P (p|Shift, α,A)
·P (w|p, Shift, α,A) (2)

This factored generative approach alleviates the
effect of sparsity. More specifically, first a rela-
tively coarse-grained Shift is predicted given stack
features and then we predict a fine-grained POS
tag for the transition. Then a more fine-grained
prediction of a word is made for the POS to fur-
ther decompose the Shift prediction.

For labelled dependency parsing, we simultane-
ously generate the dependency and its label. In
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contrast, Left-Arc and Right-Arc are predicted
in unlabelled dependency parsing without consid-
ering the dependency label. For instance, as ex-
plained in Section 3, 22 dependency labels are in
the LTH scheme and thus 45 combinations of tran-
sitions and labels are jointly learned and predicted
including the Shift transition, which does not have
a label, in the labelled parsing model. Note that
the probability of Shift transition is estimated in a
factored fashion as described above.

The above probabilities are subject to the fol-
lowing normalisation condition, namely the sum
of all transition probabilities should be one:

∑
p∈P

∑
w∈W

P (Shiftpw|α,A) +
∑
l∈L

P (Left-Arcl|α,A)

+
∑
l∈L

P (Right-Arcl|α,A) = 1

where P and W stand for predefined POS tag
and word vocabularies, respectively. L is a set of
dependency labels corresponding to each depen-
dency scheme.

4.2 Beam Search

Our parsing model maintains a beam contain-
ing multiple configurations. To allow the parser
to consider configurations with expensive early
moves but cheap late moves, we sort our config-
urations by a figure-of-merit (FOM ) that adjusts a
configuration’s probability with heuristics about.
The beam search runs in each word position using
a separate priority queue. A priority queue con-
tains configurations that have been constructed by
the same numbers of Shift , and the same or dif-
ferent numbers of Left-Arc or Right-Arc transi-
tions. An initial configuration is inserted into the
first priority queue corresponding to the first word
position and then the algorithm loops until all con-
figurations have terminal conditions. Each con-
figuration is populated off the queue and updated
by applying each of permissible transitions to the
current configuration. The updated configuration
is pushed onto the corresponding queue with re-
spect to the number of Shift . The configurations
in each priority queue are ranked according to the
FOM s. The ranked configurations are discarded if
they fall outside the beam. Looping continues for
the current word position until the queue is empty.
For the configurations in the final queue, we com-
pute the probability of an input sentence by sum-
ming over all their probabilities.

Configurations in the same queue cover differ-
ent amounts of the input string since they could
have different numbers of Left-Arc or Right-Arc.
The configurations are not comparable to each
other in terms of their probabilities. For this rea-
son, we propose a FOM to penalise the case
where the stack has more items. To this end, the
FOM incorporates the probability cost of the re-
ductions that will be required to reduce all the
items on the stack. An estimate of the proba-
bility of reductions uses a rough approximation
1/(4L)m, L is the number of labels (if the scheme
is unlabelled, L=1) and m is the number of stack
items. The FOM is estimated by multiplying
the probability of a configuration by the predicted
probability of reducing every stack item.

4.3 Random Forest Model for Word
Distribution

The probability of a word in Eq (2) is calculated
from the word RF model. The training procedure
of our RF model is similar to that of Xu and Je-
linek (2007). The growing algorithm starts with
a root node and a decision tree is constructed by
splitting every node recursively from the root node
through a two-step splitting rule. Node splitting
terminates when each node triggers a stopping rule
in order to avoid overfitting.

We overcome data sparsity by first observing
that a decision tree essentially provides a hierar-
chical clustering of the data, since each node splits
the data. We linearly interpolate the distributions
of the leaf nodes recursively with their parents, ul-
timately backing off to the root node. The interpo-
lation parameters should be sensitive to the counts
in each node so that we back off only when the
more specific node does not have enough obser-
vations to be reliable. However, giving each node
of each decision tree its own interpolation param-
eter would itself introduce data sparsity problems.
We instead use Chen’s bucketing approach (Chen
and Goodman, 1996) for each tree level, in which
nodes on the same level are grouped into buckets
and one interpolation parameter is estimated for
each bucket. The first step is to divide up the nodes
on the same level into bins based on Chen’s scores.
We then use the EM algorithm to find the optimal
interpolation parameter for all the nodes in each
bucket using heldout data.

In a RF model, the predictions of all decision
trees are averaged to produce a more robust pre-
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S1p, S2p, S3p POS
S1w, S2w, S3w word
S1lp, S2lp POS of left-most child
S1rp, S2rp POS of right-most child
S1lw, S2lw word of left-most child
S1rw, S2rw word of right-most child
S1∗ll, S2

∗
ll Label of left-most child

S1∗rl, S2
∗
rl Label of right-most child

Table 1: Conditioning stack features, where Si
represents the ith item on the stack (S1 is a top-
most stack item). Note that dependency label fea-
tures are only used in labelled parsing.∗

diction, as in Eq (3):

P (w|p, Shift, α,A)

=
1

m

m∑
t=1

P j(w|p, Shift, α,A) (3)

wherem denotes the total number of decision trees
and P j(w|·) is the probability of the word w cal-
culated by the jth decision tree.

The word probability is calculated conditioned
on the stack features of the current configuration.
Table 1 shows the stack features that are used in
our RF model. Our unlabelled parsing model es-
timates the conditional probabilities of the word,
given 14 different features. The labelled parsing
model uses four additional label-related features.

4.4 Maximum Entropy Model for
Transition/POS Distribution

Conditional ME models (Berger et al., 1996) are
used as another classifier in our parsing-based lan-
guage model together with RF. The probability of
a transition or a POS tag in Eq (2) is calculated
from the corresponding transition ME or POS ME
model. For instance, the probability of Shift is
calculated as shown in Eq (4).

PME(Shift|α,A) (4)

=
1

Z(α,A)
exp(λ · f(α,A, Shift))

where f(α,A, Shift) denotes feature functions
that return non-zero values if particular stack items
appear in (α,A) and the transition is Shift . λ is
the corresponding real-valued weight vector, and
more informative features receive weights further
from zero. Z(α,A) =

∑
t∈T exp(λ ·f(α,A, t)) is

the partition function that ensures the distribution
is properly normalised. The feature weights λ are

tuned to maximise the regularised conditional like-
lihood of the training data. It is equivalent to the
minimisation of the regularised negative log con-
ditional likelihood:

λ̂ = argmin
λ

(−
∑
i

logPλ(yi|xi) +
∑
j

λ2j
2σ2j

) (5)

where
∑

j λ
2
j/2σ

2
j is a Gaussian prior regu-

lariser that reduces overfitting by penalising large
weights. In practice, we use a single parameter σ
instead of having a different parameter σi for each
feature.

In this work we use the limited memory BFGS
(L-BFGS) algorithm (Liu and Nocedal, 1989),
which is an efficient numerical optimisation algo-
rithm, to find the optimal feature weights λ̂. In the
ME model, we rely on two kinds of features: (1)
atomic features from Table 1, and (2) conjunctive
features that are combinations of the atomic fea-
tures. The feature templates are shown in Table 2.

Type Features
Unigram S1p, S2p, S3p, S1w, S2w, S3w

S1lp, S2lp, S1rp, S2rp
S1lw, S2lw, S1rw, S2rw
S1∗ll, S2

∗
ll, S1

∗
rl, S2

∗
rl

Bigram S1w ◦ S1p, S2w ◦ S2p, S3w ◦ S3p
S1w ◦ S2w, S1p ◦ S2p
S1p ◦ S1lp, S2p ◦ S2lp
S1p ◦ S1rp, S2p ◦ S2rp
S1w ◦ S1∗ll, S1w ◦ S1∗rl
S1p ◦ S1∗ll, S1p ◦ S1∗rl
S2w ◦ S2∗ll, S2w ◦ S2∗rl
S2p ◦ S2∗ll, S2p ◦ S2∗rl

Trigram S1p ◦ S2p ◦ S3p, S1p ◦ S2w ◦ S2p
S1w ◦ S2w ◦ S2p, S1w ◦ S1p ◦ S2p
S1w ◦ S1p ◦ S2w, S2p ◦ S2lp ◦ S1p
S2p ◦ S2rp ◦ S1p, S2p ◦ S1p ◦ S1lp
S2p ◦ S1p ◦ S1rp, S2p ◦ S2lp ◦ S1w
S2p ◦ S2rp ◦ S1w, S2p ◦ S1w ◦ S1lp

Fourgram S1w ◦ S1p ◦ S2w ◦ S2p

Table 2: Stack feature templates of the ME model.

4.5 Language Model

A generative parsing model assigns a joint
probabilityP (π, s) for a parse tree π and an in-
put sentence s. The probability of a sentence
P (s) is computed by summing over all parse trees,
P (s) =

∑
π P (π, s). Therefore, our generative

parser can be used as a language model, which as-
signs a probability P (s) to a sentence s, using the
probabilities of parse trees from Eq (1).
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Figure 2: Perplexity results trained and tested on WSJ.
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Figure 3: Perplexity results trained and tested on Switchboard.

5 Experiments

5.1 Experimental Settings

We empirically evaluate the effects of three depen-
dency schemes (LTH, P2M, STD) on our depen-
dency language models in terms of perplexity and
word error rate (WER). Several experiments are
conducted varying the number of decision trees
and the beam size on each dependency scheme.
Each dependency language model uses a maxi-
mum beam size of 100, and up to 40 decision trees
are generated for the RF classifier. We train the
transition/POS ME classifiers using 400 iterations
with no frequency cutoff for features and σ for
the Gaussian prior is set to 1. Our experiments
use three evaluation datasets for unlabelled and la-
belled dependency language models.
Perplexity Results trained and tested on WSJ:
Most of the syntactic language models (Roark,
2001; Charniak, 2001; Xu and Jelinek, 2007;

Wang and Harper, 2002) were evaluated on the
Wall Street Journal (WSJ) section of the Penn
Treebank (Marcus et al., 1993) in terms of per-
plexity. The WSJ is speechified by following the
conventions of previous work. All punctuation is
removed, words are lowercased, and numbers are
replaced by a symbol N. All words outside the vo-
cabulary limit (10,000 words) are mapped to a spe-
cial UNK symbol. Sections 0-20 are used as the
training set, sections 21-22 as the heldout set, and
sections 23-24 for testing.

Perplexity Results trained and tested on
Switchboard: We ran experiments on the Switch-
board part of the Penn Treebank. Following
Johnson and Charniak (2004), both sections 2
and 3 were used for a training set (sw2005.mrg-
sw3993.mrg). We split section 4 into a held-
out set (sw4519.mrg-sw4936.mrg) and a test set
(sw4004.mrg-sw4153.mrg). The Switchboard
corpus was preprocessed so that all disfluencies
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are removed from constituent trees prior to con-
verting to dependency structure. We applied three
converters on the cleaned version of Switchboard
to obtain three dependency schemes. The vocab-
ulary consists of all the words in the training data
and contains 13,706 word types.
WER Results trained on WSJ and tested on
HUB1: We performed a small speech recogni-
tion evaluation on n-best lists from the DARPA
’93 HUB1 test setup. A real task-based evalua-
tion would be worthwhile besides perplexity since
previous studies found that lower perplexity does
not necessarily mean lower WER in their models
(Roark, 2001; Wang and Harper, 2002; Xu and
Jelinek, 2007). The HUB1 corpus consists of 213
sentences taken from the WSJ with a total of 3,446
words. The corpus is provided along with a lattice
trigram model, which is trained on approximately
40 million words with a vocabulary of 20 thou-
sand words. We used the A* decoding algorithm
of SRILM to extract 50-best lists from the lattices
measuring the lattice trigram and acoustic scores.
The average number of candidates is roughly 21.7
in the lists. The WER of the lattice trigram model
is 13.7% and the oracle WER, which is the low-
est WER to the references, is 7.9% for the 50-best
lists. There are token discrepancies between the
Penn Treebank and the HUB1 lattices for contrac-
tions, possessives and numbers.4 For simplicity,
we do not speechify the numbers (i.e., not expand
them into text), whereas we follow previous work
in dealing with the discrepancies of contractions or
possessives. We use the Penn Treebank tokenisa-
tion, which separates clitics from their base word
(i.e. ‘can’t’ is represented as ‘ca n’t’), for training
and running our models. Two tokens of treebank
format are then combined into one to be aligned
with gold standard word sequences for the WER
evaluation. Our trained models were used with the
same training data (1 million words) and vocab-
ulary as in the above perplexity experiments on
WSJ. We followed Roark (2001) in multiplying
the language model scores by 15 before interpo-
lating them with the acoustic model scores.

5.2 Experimental Results

The Effects of Decision Trees and Beam Search:
To illustrate the effects of decision trees and beam
size, we plot perplexity that corresponds to each

4For instance, “Bill ’s car isn ’t worth $100” vs. “Bill’s
car isn’t worth one hundred dollars”.

scheme. As can be seen from Figure 2a, the per-
plexities are improved for all schemes using more
decision trees. Perplexity reductions of two la-
belled schemes (LTH, STD) are relatively large
except for labelled P2M, and particularly the per-
plexities drop sharply up to random forests of size
8 for labelled LTH. On the other hand, the per-
plexities of unlabelled schemes are decreased at
a sluggish pace and they are more insensitive to
the number of decision trees. As Figure 2b illus-
trates, the general shape of the perplexity curves
drops quickly as beam size increases from 1 to 10,
and then to flatten as beam size increases further.
We do not obtain much benefit if the beam size is
larger than 10. Figure 3 shows the perplexity re-
sults on Switchboard for different numbers of de-
cision trees and variable beam sizes as on WSJ.
We can observe the positive effects of these two
parameters (random forest size and beam search)
with respect to perplexity. Figure 3b shows similar
trends to the WSJ perplexities, which are dramat-
ically reduced up to a beam size of 10, and then
level out. The perplexity trends in Figure 3a are
quite different, showing that unlabelled schemes
have a gentle slope over numbers of decision trees.
The number of decision trees has a relatively high
impact on the performance of unlabelled schemes
on Switchboard.
Performance Comparison: Table 3 presents the
perplexity and WER results of unlabelled and la-
belled schemes for LTH, P2M and STD. We can
see that labelled LTH achieves the lowest per-
plexities, whereas unlabelled P2M and STD per-
form the worst overall. For labelled schemes we
observe their superior performance compared to
unlabelled schemes in terms of perplexity. The
perplexity results indicate that dependency labels
improve the performance of a dependency lan-
guage model. In particular, labelled STD has the
largest perplexity reduction (3.2%) compared to
unlabelled STD, which yields the worst perplexity
on WSJ. Overall, LTH outperforms both P2M and
STD regardless of unlabelled or labelled scheme
in terms of perplexity. Although the WERs are not
significantly different across the different meth-
ods, unlabelled P2M leads to the best performance
(14.6%), whereas labelled P2M is the worst per-
forming scheme (15.1%).5 Labelled LTH and

5All results of statistical significance tests are presented
with p < 0.05 level using the SCLITE toolkit with the op-
tion MAPSSWE, which stands for Matched Pairs Sentence
Segment Word Error.
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Models WSJ Perplexity SWBD Perplexity HUB1 WER
Unlabelled LTH 128.84 75.81 14.8
Unlabelled P2M 131.12 77.09 14.6
Unlabelled STD 133.18 76.61 14.7
Labelled LTH 126.97 75.33 14.9
Labelled P2M 130.45 75.59 15.1
Labelled STD 128.96 75.34 14.7

Table 3: Perplexities and WERs of unlabelled and
labelled LTH, P2M and STD schemes. We mea-
sured their performance on WSJ, Switchboard and
HUB1 datasets.

STD perform roughly on par with unlabelled LTH
and STD, respectively.
Analysis and Discussion: Our results indicate
that the choice of dependency representation af-
fects the performance of the syntactic language
model. One thing to note is that it is hard to
tell what scheme is overall best in our experi-
ments. An interesting observation is that the de-
pendency labels are somewhat ineffective for the
speech recognition task in contrast to perplexity
evaluation. The results demonstrate that each eval-
uation measure tends to have its own preferred
scheme. For instance, the LTH scheme is preferred
for the perplexity evaluation, whereas STD is pre-
ferred under WER. Our finding is in line with pre-
vious work, which claims that a task-based eval-
uation does not correlate well with a theoretical
evaluation (Rosenfeld, 2000; Jonson, 2006; Och et
al., 2004; Miwa et al., 2010; Elming et al., 2013;
Smith, 2012). They commonly claim that lower
perplexity does not necessarily mean lower WER,
and the relation between two measures is clearly
not transparent. Miwa et al. (2010) found that STD
performs better for event extraction, whereas LTH
outperforms STD in terms of parsing accuracy.

5.3 Comparison with Previous Work

In this section, we compare our model to previ-
ous work discussed in the literature. As baselines,
we use two influential models, namely a modi-
fied Kneser-Ney (mKN) trigram model (Chen and
Goodman, 1998) and Charniak’s Trihead language
model (Charniak, 2001).6 The two models were

6The mKN is still considered one of the best smooth-
ing methods for n-gram language models and the Trihead
model achieves the better perplexity and WER compared to
Chelba’s and Roark’s models (Lease et al., 2005). Moreover,
there is no significant difference between Chelba’s SLM and
Wang’s SuperARV in terms of WER although the SuperARV
even obtains a much lower perplexity (Wang and Harper,
2002). For these reasons, we think that Charniak’s model is
the strongest competitor among syntactic language models.

Models Perplexity WER
mKN trigram 148.65 17.2
Trihead 131.40 15.0
Unlabelled LTH 128.84 14.8
Labelled LTH 126.97 14.9

Table 4: Perplexity and WER comparisons with
previous work.

trained with the same training data and vocabulary
on WSJ as mentioned in Section 5.1. The SRILM
toolkit (Stolcke, 2002) was used to build the tri-
gram mKN smoothed language model.

The performance of the two baselines in Table
4 was measured conducting the same test proce-
dures on WSJ and HUB1. Our perplexities and
WERs were selected from the previous sections
for the LTH scheme, which performs well uni-
formly. It is shown that both unlabelled and la-
belled LTH schemes significantly improve upon
the mKN baseline in terms of WER. The WER im-
provement of LTH over the Trihead model is not
statistically significant, although the LTH scheme
achieves better perplexity than Trihead regardless
of dependency labels.

6 Conclusion and Future Work

We explored three different dependency schemes
using a dependency parsing language model. Our
study indicates that the choice of scheme has an
impact on overall performance. However, no de-
pendency scheme is uniformly better than the oth-
ers in terms of both perplexity and WER. Nev-
ertheless, there are some generalisations we can
make. When evaluated on WSJ and Switchboard,
unlabelled and labelled LTHs are generally better
than the others in terms of perplexity. In contrast,
unlabelled and labelled STDs yield the best overall
performance in the HUB1 WER evaluation. It is
interesting to see that perplexity has a weak corre-
lation with WER in dependency parsing language
models. We note that it is hard to figure out from
our results which dependency directions are pre-
ferred in structures such as prepositional phrase
attachment. For instance, “Is the rightmost noun
favoured? or Is the leftmost noun favoured?” as a
head in noun sequences in the context of language
modelling. As future work, we plan to carry out
further investigation of the effect of each structure
and explore what is the most or least preferable
combination of structures on a syntactic language

11



model.
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